
Abstract
Background/Objectives: Discrete wavelet Transform (DWT) is substantially applied in many Digital Signal Processing
(DSP) applications. Multiplication of the coefficient is the key factor for complexity in FIR filters. Methods/Statistical 
Analysis: This paper presents different multiplication techniques used to reduce the complexity in DWT such as Constant
Shift Method (CSM), Vedic multiplication and Binary Signed Sub-coefficient (BSS) method. CSM technique uses Shift and
Add unit followed with Mux to select appropriate output. BSS technique uses signed sub-coefficients, which reduces the
multiplexer size. Vedic multiplication is famous for its low complexity architecture of bit-bit multiplication. Partial product
and BCSE methods are used for designing the architectures. The coefficients are represented in IEEE 754 floating point
half precision standard. Software simulation is performed in ModelSim and the designs are synthesized in Cadence RC tool
for 180 nm technology. Findings: The CSM method gives high speed operation because of its reduced number of adders.
The Vedic method provides low power and high speed operation. The BSS method uses Multiplexers and signed bit as
control switch, which has a great impact over area requirement. The area requirement is reduced by 6% in BSS technique.
Vedic multiplier gives about 23% power reduction compared to conventional multiplier. Both CSM and BSS techniques
can be called Reconfigurable architectures as they can be hardwired and the mux output depends on the coefficients only. 
Conclusion/Improvements: CSM technique is gives the perfect balance for power reduction and area efficiency. Vedic
technique gives immense reduction in power consumption but the area overhead is increased.
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1. Introduction
Recently, a great amount of work is proposed to provide 
a decent speech recognition system. It should give continu-
ous speech recognition despite the noisy ambience. Gaining
statistical information about the signal is called feature
extraction. A resemblance to Heisenberg’s Uncertainty
hypothesis, time domain signals have a wide frequency
band and signals with narrow frequency band have a large
time period in time domain. Fourier transform is not suf-
ficient for speech, which is non-stationary signal.

Several systems have been suggested to improve speech
recognition. Linear Predictive Coding (LPC) and Mel-
Frequency Cepstrum Coefficients (MFCC) are some of
the orthodox techniques for feature extraction of speech
signal. Linear Predictive Cepstral Coefficients (LPCC) and 

their regression coefficients were designed from them.
MFCC is based on filter bank approach. In this method,
filters are spread out in a shape same as human ears. These
methods have high noise sensitivity. Yet, humans can iso-
late the speech in composite acoustic atmosphere. This fact
has encouraged scientists to develop more robust speech
feature extraction architecture.

Wavelets are used to reduce the influence of noise
intrusion in feature extraction using DWT as shown in
Figure 1. Mallat1 proposed the DWT algorithm to extract
the data from the signal. Filters are one of the most broadly
used signal processing techniques. Wavelets can be recog-
nized by duplication of filters with rescaling. It performs a
multi-resolution signal analysis, in which locality is adjust-
able in both time and frequency domains. Correlation
between local maxima of high frequency components are 
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extracted from multi-scale wavelet decomposition of the 
signal. DWT can be modelled by diverse choice of wavelet 
families2 and basis functions. Haar wavelet is the modest 
among all DWT wavelet families. Daubechies (db4) wave-
let is so far the most popular DWT family. The selection of 
DWT family is up to the application. As application var-
ies, the mother wavelet also changes. Conventional DWT 
includes decomposition of Finite Impulse Response (FIR) 
filters. Because of the tedious calculations required in the 
DWT technique, many studies are proposed to project an 
innovative swift and low-power DWT3–5.

The crucial roadblock in any DSP implementation is 
the coefficient multiplication. In traditional way, the tech-
nique used for multiplication is add/shift method, which 
is the most power consuming and tedious work. In non-
reconfigurable systems, the coefficients are constant, due 
to which a series of adders and shifters are required. To 
reduce the complexity, some techniques are proposed such 
as Canonical Signed Digit6 (CSD) and Binary Common 
Sub-expression Elimination7 (BCSE).

Other approaches are focused on the implementa-
tion of FIR filter used in DWT by partitioning the filter 
coefficients into fixed groups (sub-coefficients) and com-
pute the products of input depending on the coefficients. 
Multiplexers are used to select the proper output from the 
coefficient multiplication.

Vedic Mathematics8 is a primitive system for a fast 
and effective way of computations. It contains 16 different 
equations named as “Sutras”. The use of Vedic mathemat-
ics is to do faster calculations such as multiplication, 
division, squaring, square root, cubing and cube root. It 
can also be used for applications which need linear and 
non-linear differential equations, trigonometry, matrices, 
exponential and logarithm equations.

In the next section, the architecture of DWT is dis-
cussed. The BCSE9–12 method is analyzed in Section 3. The 
Constant Shift Method (CSM) is proposed in Section 4. 
Section 5 represents Vedic multiplication. Binary Signed 
Sub-coefficient (BSS) method is discussed in Section 6. 
The results are compared in Section 7. Conclusion is given 
in the final section.

2. � Discrete Wavelet Transform 
(DWT)

The initial proposition about Discrete Wavelet Transform 
(DWT) was given by Mallat1. The conventional DWT 
is also called Mallat-tree decomposition or Mallat  
algorithm. It consists low-pass and high-pass filter bank 
of the discrete time-domain signal. As shown in Figure 
2, the sequence x[n] denotes input signal, where n is an 
integer. G0 and H0 represents low pass filter and high pass 
filter respectively. Each decomposition level gives two out-
put signals such as coarse approximations a[n] and detail 
information d[n]. The low pass filter produces coarse 
approximations a[n] is produced by the low pass filter. The 
detail information d[n] of the signal is given by the high 
pass filter. The filter banks applied in the Forward Wavelet 
Transform is named Analysis filters, while the Inverse 
Wavelet Transform uses the filter banks as Synthesis filters.

There are numerous ways to construct a filter bank4 
such as Direct Form, Lattice structure, Lifting Scheme 
and Poly-phase. A filter bank fundamentally consists of a 
set of low pass filter and high pass filter, along with deci-
mators or expanders.

2.1  Direct Form Structure
The Direct Form structure of DWT for analysis filter has 
low pass and high pass filter. Decimators are given at the 
end of the filter outputs. The synthesis filter has reverse 
steps as up-samplers at first and then followed by the low 
pass and high pass filters. Figure 3 describes both analysis 
and synthesis filters.

2.2  Daubechies (db4) DWT
Daubechies wavelet filters were first introduced by Ingrid 
Daubechies. They are also called Maxflat filters because 
of their flat frequency response at 0 and π. Daubechies 
wavelets are proposed by set of filters. The process con-
tains convolution of input signal and filter coefficients 

Figure 1.  DWT based feature extraction block diagram.

Figure 2.  3-level decomposition forward DWT.
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As given in the equation, y[n] can be represented by 
sum of partial products of input data. The operations can 
be easily executed by shift and add method because of 
the reduced bits of the coefficient. In includes set of pre-
computed partial products. The block is named as Process 
Element (PE).

The redundant binary common sub-expressions (BCS) 
are focused in BCSE method. An n-bit binary coefficients 
can form 2n – (n+1) BCSs. For example, 3-bit sub-coef-
ficient have [011], [101], [110] and [111] BCSs. If x is an 
input, then the BCSs can be expressed as: [101] = x + 2-2x, 
[110] = x + 2-1x, [011] = 2-1x + 2-2x, [111] = x + 2-1x + 2-2x. 
The other BCSs like [001], [010] and [100] don’t require any 
adder or shifter. The direct realization can infer 5 adders but 
the reuse of output can reduce the adders to 3.for example, 
[011] can be written as [011] = 2-1x + 2-2x = 2-1 (x + 2-1x). 
The shift and add architecture is shown in Figure 4.

The total adders required for n-bit coefficient is 
2n-1-1. In SDR receivers, the coefficients are needed to 
be changed according to the frequency which requires 
reconfigurability.

4.  Constant Shift Method (CSM)
The Constant Shift Method (CSM) deals in taking the 
output from shift and add block and multiplexing it to get 
the correct output depending on the coefficients. In this 
method, the coefficients are already stored in LUT. They 
are partitioned into groups of sub-coefficients and used as 
the control signals for the multiplexers. If the coefficients  
are grouped in 3-bits, then the n-bit coefficient is divided 
into [n/3] groups. The numbers of multiplexers required 
are the absolute value of [n/3] or the next integer. A 
shown in Figure 5, the method is explained with 11 bits. 

and input. This filter is broadly famous for the orthogonal 
properties. They provides perfect reconstruction of the 
input signal at the end of synthesis filter bank. The coef-
ficients are shown in Table 1.

3.  Study of BCSE Method
To review the BCSE method in FIR filter, the partial prod-
uct method is essential. N-tap FIR filter is taken which is 
described by Equation (1).
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Where h[k] is the kth coefficient. The partial product 
method is represented by splitting the coefficient to sub-
coefficients and multiplying the input by sub-coefficients. 
The result is determined by shift and add operations.

If the coefficients are considered w-bits, which further are 
split into k sub-coefficients with m bit word-length, where 
m=w/k. Then h[i] coefficient is written by Equation (2).
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Where di,j is the jth sub-coefficient of the ith coefficient. 
Using representation for filter coefficients, the FIR filter 
transform function can be written as given in Equation 
(3) and (4).
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Figure 3.  Analysis and synthesis filter bank of DWT.

Figure 4.  Shift and add unit.
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Table 1.  Filter coefficients for Daubechies (DB4) WT

1. Tap 2. Low Pass Filter 3. High Pass Filter

0 0.4829629 0.1294095

1 0.8365163 0.2241439

2 0.2241439 -0.8365163

3 -0.1294095 0.4829629
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5.  Vedic Multiplication
Vedic Mathematics includes a set of 16 Sutras. They are 
derived from the ancient Vedas. The Sutras are used to 
do complex calculations by converting them into simple 
equations. They are used to solve trigonometry, arithme-
tic, logarithmic problems.

5.1  Urdhva Tiryagbhyam
Urdhva Tiryagbhyam is one of the 16 Sutras available in 
Vedic Mathematics. It uses Vertical and Cross-wise bit 
multiplication.

In this method, all the partial products of the input 
data are produced, followed by the addition. Generated 
carry is propagated to the next bit adder as shown in 
Figure 6. The example of the method is discussed below.

Steps to be followed are given below:

Generate all the partial products by vertical and cross-•	
wise multiplication.
Add the partial products according to the bit positions •	
and pass the generated carry for the next addition.
Repeat the step ii for all bits.•	

All the partial products can be generated simultane-
ously. This process gives net delay as the delay of adders 
only. Due to the bit-multiplication method, the time 
complexity and power consumption is less compared to 
conventional shift and add method.

6.  �Binary Signed Sub-Coefficient 
Method

In the proposed technique, the coefficients are represented 
in signed form. So for the conventional partitioning, 

The coefficient h=1.1111111111. This is the worst-case 
coefficient that can occur. It needs the most number of 
adders and shifters due to no nonzero bits. So the output 
y can be written as shown in Equation (5).

	 y x x x x x= + + +…+ +− − − −2 2 2 21 2 9 10 � (5)

By partitioning the coefficient into group of 3-bit,
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As we can see that x+2-1x and x+2-1x+2-2x can be 
obtained by the shift and add unit. The equation can be 
computed by three 8:1 multiplexers, one 4:1 multiplexer 
and some shifter and adders. The final shifter will do 2-3, 
2-6 and 2-9 shift. By partitioning,

	 y r r r r= + + +− − −1 2 2 2 3 2 43 6 9 � (8)

	 y r r r r= + + +( )− − −1 2 2 2 3 2 43 6 3 � (9)

	 y r r= + −5 2 66 � (10)

Where r1, r2, r3 and r4 are the output of the multiplexers 
while r5 and r6 are taken as (r1 + 2-3r2) and (r3 + 2-3r4). 
As the shifts are constants and don’t change irrespective 
of the coefficients, the architecture can be hardwired.

Figure 5.  CSM architecture for 11-bit multiplication.

Figure 6.  Vedic Multiplication.
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Power, timing and area constraints are compared for 
different multipliers. Simulation is done in ModelSim and 
synthesized in Cadence RC tool for 180 nm technology.

Figure 8 shows the results of power dissipation 
comparison between different multipliers. As shown in 
it, Vedic multiplier is the least power hungry module 
among all.

As shown in Figure 9, cell area required by Vedic mul-
tiplier is the most among all as it contains great amount of 
AND gates. The CSM technique has the least area require-
ment due to the constant block arrangement.

In Figure 10, power dissipation in DWT architecture 
with different multiplication modules is shown. The DWT 
with Vedic multiplier built in it gives tremendous reduc-
tion in power compared to the conventional DWT.

Figure 11 gives the insight about the area requirement 
in 3-level decomposition DWT with different multipliers 

the n-bit word can have values from 0 to 2n-1. But in 
the BSS method, each sub-coefficient has a signed digit, 
due to which the range of n-bit word is -2n-1 to +2n-1-1. 
This method gives relaxation in subtraction operation 
by reducing multiplexer blocks from 2n-1:1. For it h 4-bit 
sub-coefficient word, if the value is greater than 8, then 
the MSB is removed and 1 is added in the (i-1)th sub-
coefficient and so on. For example, if the coefficient is 
hi=12’h49A then 9 and A are greater than 8 (23), they are 
converted into BSS form. 

	 h Ai = + +4 2 9 28 4* * � (11) 

	 hi = + −( ) + −4 2 2 7 2 1 2 68 4 4 4* ( )* * � (12) 

	 h * *i = − −5 2 6 2 68 4 � (13)

So, the final coefficient will be hi=12h56’6’.

The sign is saved in the MSB of all sub-coefficients. 
This technique reduces the word length from 4 to 3 and 
mux size for 15:1 to 8:1. As shown in Figure 7, coefficients 
are given to BSS decoder which computes sub-coefficients 
and add/sub control bits. The sign digit work as a control 
signal for the add/sub unit as switch between addition 
and subtraction.

7.  Results and Discussion
In this section, results of power consumption and area 
requirement for all architectures are shown. To represent 
the coefficients, IEEE 754 floating point half precision 
standard is proposed. The coefficients have 16 bits, in 
which 10 LSB bits represent mantissa, the MSB is sign bit 
and 5 intermediate bits gives exponents.

Figure 7.  4-bit BSS representation for 11-bit coefficient.

Figure 8.  Power comparison between different multiplica-
tion techniques.

Figure 9.  Cell area comparison between different multipliers.
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MUXs which has a great impact over area requirement. 
The area requirement is reduced by 6% in BSS technique. 
Vedic multiplier gives about 23% power reduction com-
pared to conventional multiplier. DWT architecture 
designed with Vedic multiplier produces about 45% 
power efficiency. As CSM technique is gives the perfect 
balance for power reduction and area efficiency, it gives 
the moderate design for overall performance. For low 
power approach, DWT designed with Vedic multiplier 
is advised to implement. For low-complexity approach, 
DWT designed with BSS technique should be used. For 
generalized structure, DWT with CSM technique is best 
among all of the architectures.
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8.  Conclusion
An efficient DWT architecture is proposed for speech sig-
nal feature extraction. Different techniques are discussed 
for designing an efficient multiplier unit which is used to 
design DWT. Partial product and BCSE methods are used 
for designing the architectures. The CSM method gives 
high speed operation. The Vedic method provides low 
power and high speed operation. The BSS method uses 
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