
Indian Journal of Science and Technology, Vol 9(48), DOI: 10.17485/ijst/2016/v9i48/96312, November 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Cloud computing has drawn extensive attention from
both academia and industry for its flexible and on
demand computing services1. Cloud is a computing
paradigm that combines technologies such as Service-
Oriented Architecture2 (SOA), Abstraction and
Virtualization to provide computing as a service to its
growing customer base. Cloud computing enables users
to access dynamically scalable and virtualized3 computing
resources over Internet. A Cloud consists of pool of data
centers also known as nodes clubbed into clusters. Each
node is partitioned virtually into Virtual Machines (VMs)
to maximise the resource utilization of the underlying
infrastructure. The virtualised cloud architecture is
abstracted from its clients. Managing and providing
computational resources to user applications is one of

the main challenges for cloud providers. When users
of cloud submit their execution jobs known as cloudlet
to the cloud, it is the responsibility of Service broker to
allocate an appropriate cluster to a cloudlet. The VM load
balancer further allocates an appropriate VM4 on a node
in the allocated cluster for processing.

The increasing demand for infrastructure-less
computing has given boost to the cloud computing
industry. Considering the increasing number of cloud
providers and growing competition among them, it is
necessary to focus research on improving the QoS of
Cloud. A client outsourcing computing requirements
to Cloud expects the cloud to guarantee response time
and processing time of the execution jobs on Cloud to
be comparable to in-house data centers. Considering
the increasing dependency of businesses on Cloud, it
is necessary to design load balancing algorithms that

Abstract
Objectives: One of the essential requirements for improving Quality of Service of Cloud is to design load balancing
algorithms that equally spread the load among the VMs such that neither of them is overloaded at any given
point of time while ensuring that each of the VM is optimally utilised. The objective of this paper is to propose
an efficient VM load balancing policy called Timestamp based Stateful Throttled VM load balancing algorithm.
Methods/Statistical Analysis: The proposed algorithm deals with the space performance constraints of the existing
Stateful Throttled VM Load balancing algorithm. It is based on the principle of locality of reference and deletes the old
state information to reclaim space. The authors have carried out experimental analysis to compare the proposed algorithm
with the existing algorithms. Findings: The comparative analysis shows that the algorithm behaves in the same manner
as Stateful Throttled Algorithm while taking into consideration its space performance limitations. The authors have
observed better performance in terms of response time and data center processing time for Timestamp based Stateful
Throttled VM load balancing algorithm than Throttled VM load balancing algorithm in case of spatially distributed VMs.
Application/Improvements: The salient features of the proposed algorithm are better response time and data center
processing time in case of spatially distributed data centers in cloud.

Keywords: Cloud Computing, Data Center, Load Balancing, Virtualization, Virtual Machine

Time stamp based Stateful Throttled VM Load
Balancing Algorithm for the Cloud

Ansuyia Makroo* and Deepak Dahiya

School of Engineering and Technology, Ansal University, Gurgaon - 122003, Haryana, India;
ansuyia@gmail.com, deepakdahiya@ansaluniversity.edu.in

Vol 9 (48) | November 2016 | www.indjst.org Indian Journal of Science and Technology2

Timestamp based Stateful Throttled VM Load Balancing Algorithm for the Cloud

equally spread the load among the VMs such that neither
of them is overloaded at any given point of time while
ensuring that each of the VMs is optimally utilised.

Figure 1. Generalized architecture of Cloud.

In order to save the state information of last VM
allocated to a Userbase, State preserving1 Virtual
Machine Load balancing policies use a hashmap. This
state information in the hashmap is used for lookup in
the subsequent requests from the Userbase. If hashmap
lookup returns the state information of the last VM
allocation and if the particular VM is available, then
there is no need to run the VM allocation algorithm,
which significantly reduces the time complexity of the
VM allocation. However the hashmap used in the state
preserving algorithms has limitations in terms of space
performance constraints. The authors have proposed
the Timestamp based Stateful Throttled (TST) VM load
balancing algorithm that prescribes a mechanism to deal
with the space performance constraints of a hashmap
used in the existing Stateful Throttled VM Load balancing
algorithm.

The rest of the paper is organized as follows: Section
1 introduces the proposed work. Section 2 and 3 include
motivation and review of the available Cloud VM load
balancing algorithms. Section 4 describes the proposed
algorithm i.e., Timestamp based Throttled VM Load
Balancing algorithm in detail. Section 5 includes the
experimental setup for testing and comparative analysis
of the algorithm. This section further gives experimental
and analysed results. Finally, Section 6 and 7 summarize
the conclusion and the future scope of work.

2. �Motivation and Problem
Definition

The wide adoption of the cloud computing in IT industry
has revolutionized the way industry uses computing
resources. To meet the SLAs promised by cloud provider
to users, the biggest hurdle for cloud developer is the
efficient utilization of VMs in such a way that none of them
are overloaded or under loaded. It is an important task to
allocate the userbase requests to the VMs on the shared
infrastructure while ensuring the optimal response time
and processing time of the requests. The existing state
preserving6,7 Throttled VM load balancing algorithm uses
a hashmap to store the state of previous allocation of a
Userbase request to a VM in memory for faster access and
retrieval. The hashmap is an in-memory data structure
that stores the key, value pairs (Userbase, VM). The
hashmap with open addressing8 has been chosen for the
given scenario of Throttled load balancing algorithm as it
the most efficient data structure in terms time complexity.
The time complexity of both insertion and retrieval
operations for the hashmap is O(1). However, with the
growing userbase, the limited in-memory userbase is an
obstacle. Also, the increasing load factor degrades the
performance of a hashmap.

The limitations of State preserving Throttled VM load
balancing algorithm, leads us to the following problem
definition:

“To develop a Timestamp based Stateful Throttled
VM load balancing algorithm for Cloud that efficiently
deals with the performance issues in the existing Stateful
Throttled VM load balancing algorithm and carry out
comparative analysis of the proposed algorithm with the
existing algorithms.”

3. Related Study

Cloud computing architecture is based on delivering
computing resources like Infrastructure, Platform
and Software9 as a service to the clients on pay per use
basis. The popular cloud providers including Google,
Microsoft, Yahoo, and IBM are working on improving its
QoS and resource utilisation10. The increasing research
focus on these areas is to attract more customers in the
environment of growing competition and maximise

Ansuyia Makroo and Deepak Dahiya

Vol 9 (48) | November 2016 | www.indjst.org Indian Journal of Science and Technology 3

their earnings. One area that impacts the performance of
cloud and hence requires increased research focus is load
balancing which deals with distributing load of the user
request workloads among the underlying resources in the
cloud computing environment. Cloud physical resources
are virtually partitioned into Virtual machines. The user
jobs are deployed on the virtual machines in such a way
that the underlying shared infrastructure details as well
the deployment details are abstracted from the user
giving them an illusion that the application is running
in isolation. However in the environment of resource
contention, it is necessary that the jobs are deployed in
a manner that maximises the throughput and minimises
the response times. Currently, there are a number of cloud
load balancing algorithms available. One of the most
commonly used load balancing algorithm that allocates
homogenous VMs to the user request in Round Robin
fashion is the Round Robin load balancing algorithm.
A variant of the Round Robin load balancing algorithm
that is suitable for heterogeneous VMs is Weighted
Round Robin Algorithm in which the weight of each
VM is proportional to the size of the resources like CPU,
RAM etc. The number of requests deployed on a VM are
proportional to its weight. Another variant of Round
Robin algorithm called Round Robin with server affinity
uses the state information of the previous allocation of
a Userbase request for subsequent requests. The Active
Monitoring Load Balancer balances the load on the
available VMs in a way that balances out the number
of active tasks on each VM at any given point of time.
Honeybee Foraging Algorithm draws its inspiration from
the behaviour of honey bee foraging strategy11–13. This
algorithm is useful in the case of heavily loaded VMs
as it considers the prioritisation of tasks that have been
removed from such VMs. Min-Min algorithm is based
on relative prioritisation of unassigned jobs in the order
of minimum completion times. It initially selects the job
with least minimum completion time and assigns it to the
node that produces the minimum completion time for
the jobs and continues the process till all the unassigned
jobs are allocated VMs. The Min-Min algorithm has a
disadvantage that it may cause starvation of large jobs14.
Another VM load balancing algorithm that is based
on relative prioritisation of unassigned jobs and aims
to reduce the waiting times of large jobs is Max-Min.
However this algorithm, works in the reverse fashion
i.e., the node with minimum completion time is assigned

the job with the overall maximum completion time. This
process is repeated until all the unassigned tasks are
assigned. The Fuzzy-based load balancing algorithms
migrates the jobs to another VM based on high load
status of a VM in a heterogeneous cloud environment.
Throttled load balancer ensures that at a given point time,
maximum numbers of user requests allocated to a VM
are less than or equal to a predefined threshold value. In
case all the VMs are allocated maximum requests, then
further requests are queued until one of them becomes
available. A variant of Throttled Load Balancer that uses
the state of previous allocation of a cloudlet to determine
the next VM for the incoming cloudlets from the same
userbase is Stateful Throttled Load Balancer. Load
balancing in cloud has become a key area of research
focus in academia and industry. However not all cloud
researches get the opportunity to test their applications
and algorithms on real cloud test bed. In order to deal
with the limitation, a number of cloud simulation tools
have been developed that can be used by researchers to
test their applications and algorithms. CloudSim is one
such simulator that supports simulation of virtualized
cloud environment with data center partitioned into
VMs and multiple data centers integrated to form a
cluster. It allows the user to design and develop service
broker algorithms and load balancing for mapping
user requests to cluster and finally the VM respectively.
Another simulator that extends the features of CloudSim
is CloudAnalyser. It has an easy to use Graphical User
Interface that makes simulation easy for the users.
CloudAnalyser provides support for running multiple
simulations and carrying out comparative analysis of the
algorithms while abstracting the architecture details from
the user. The simulator, GreenCloud15 helps analyse the
energy consumption of the distributed environments.
NetworkCloudSim16, another cloud simulator simulates
data centers of the Cloud and generalized applications
such as HPC, e-commerce and workflows. Out of all the
above simulators, CloudAnalyser is the most suitable to
analyze the proposed VM load balancing algorithm in
different scenarios as it provides users with the capability
to modify and test their algorithms with the help of user
friendly GUI (Graphical User Interface). This motivated
the authors to use CloudAnalyser for testing and
comparison of the VM load balancing algorithm.

Vol 9 (48) | November 2016 | www.indjst.org Indian Journal of Science and Technology4

Timestamp based Stateful Throttled VM Load Balancing Algorithm for the Cloud

4. �Proposed Algorithm:
Timestamp based Throttled
VM Load Balancing Algorithm

The scalable and elastic cloud model gives an illusion
of infinite resources. However in reality the cloud has
limited resources. The load on the cloud VMs varies from
time to time based on active incoming cloudlets deployed
on it from the userbase. At peak traffic times, there is a
possibility that some of the VMs may be overloaded in the
shared cloud environment. In such cases, the processing
requirements of VM exceed capacity of resources that
are available on it leading to poor performance and even
failure of the cloudlets deployed on it. However, the
cloud providers are obligated to meet the agreed SLAs
and the failure of the cloudlets is unacceptable. Throttled
VM load balancing algorithm is based on the strategy
to define the threshold number of cloudlets that can be
deployed on a VM at a given point of time. We have used
two terms to explain the algorithm: Capacity and Load.
The capacity of VM is the threshold value of Cloudlets
that can be assigned to it at a given point of time. The
Load of VM is the number of cloudlets currently assigned
to it. A VM is available if the load is less than capacity
else it is busy. When an incoming request arrives at
Throttled Load balancer, it assigns the next sequentially
available VM. The Stateful Throttled VM load balancing
algorithm extends the Throttled VM load balancer by
using the state of userbase request allocation to determine
the VM to be allocated to the userbase request in future.
The state information is stored in a Userbase Table based
on hashmap with open addressing. A hashmap with
open addressing is used to store the state information
as it has a constant time complexity thereby decreasing
the overall time complexity of the load balancing
algorithm. However one of the major limitation of using a
hashmap is the trade-off between the time and the space
performance. The Stateful Throttled VM load balancing
algorithm maintains a Userbase Table that has a linear
space complexity. Considering the growing number of
cloud clients, a constant sized hashmap is not feasible
to store the Userbase state information. The size of the
hashmap may pose a limitation to store the entries for the
Userbases. Also, another important aspect to consider
when using hashmap is the load factor of a hashmap. Load

Factor is the ratio of the number of items in a hashmap
to the table size. As the load factor increases, probe
lengths grow longer. In open addressing the performance
degrades badly as the load factor approaches 2/3.

The relationship between probe length (P) and
load factor (L) for linear probing is given in the below
equations.
For a successful search it is
P = (1 + 1 / (1-L)2)/2
and for an unsuccessful search it’s
P = (1 + 1 / (1-L)) / 2

Considering the case when the load factor is 1/2 i.e.,
half of the hashmap is full, a successful search requires
1.5 comparisons and an unsuccessful search requires
2.5 comparisons on an average. When the load factor
increases to 2/3, the corresponding numbers rise to 2.0
and 5.0. Thus the increase in load factor leads to increase
in search time. For a good performance, the load factor
should be below 2/3. However, for a given amount of data,
more memory needs to be allocated to the hashmap for
a lower load factor. There is trade-off between the space
and the time complexity of a hashmap and the optimum
load factor depends on the requirement.

In order to deal with the trade-off between increasing
space complexity and diminishing performance with
increasing load factor, the authors have proposed the
Timestamp based Throttled (TBT) VM load balancing
algorithm. The Stateful Throttled VM load balancing
algorithm is based on the principle of locality of reference.
That is, at a given point of time, cloudlet generation is
concentrated mainly to the same Userbase. The same
principle is used in the case TBT VM load balancing
algorithm, that uses a hashmap with threshold load factor
of 2/3. It stores the timestamp for each entry in Userbase
table and deletes the old entries from the hashmap when
the load factor reaches the threshold value thus reclaiming
space. The algorithm utilizes two the tables to store the
state information:
•	 Userbase Table: Userbase table consists of two

entries <Userbase Id, VM id, Timestamp>. The data
structure used to implement a Userbase Table in
this scenario is a hashmap which stores the key
values <Userbase id, (VM id, timestamp)> such that
the VM id corresponding to the key Userbase id
can be retrieved and updated in the constant time.

Ansuyia Makroo and Deepak Dahiya

Vol 9 (48) | November 2016 | www.indjst.org Indian Journal of Science and Technology 5

An additional entry timestamp is used to store the
instant of time of last access.

The timestamp is entered initially when the entry for
Userbase in stored in the userbase table and updated on
every access to the entry.
•	 VM Status Table: VM state table stores the current

status of the VM i.e., Busy or available. A VM is
available if the load is less than the capacity of the
VM, else it is busy. To implement the VM state table,
the ideal data structure that can be used is hashmap
which stores the key value pairs <VM id, Status>. The
VM status table will be able to retrieve and update the
allocation status for a VM in constant time.

The algorithm for the TBT VM load balancer and the
flowchart is given in Figure 2 and Figure 3 respectively.
When a cloudlet from a userbase comes to a TBT VM load
balancer, it searches the hashmap for its entry. If the entry
is present, then it checks the status of the corresponding
VM in the VM Status Table. If the VM Status Table shows
that the VM is available, then the VM is assigned to the
Userbase cloudlet and timestamp of the corresponding
Userbase entry is updated. However if there is no entry

for the Userbase in hashmap or the entry is present and
the VM is busy, then the throttled algorithm needs to
be run to find the next available VM. After the VM is
allocated to it, the state information is stored in Userbase
table. However in case the load factor of the hashmap is
greater than 2/3 the space reclaiming algorithm needs to
run that deletes the old entries with lesser timestamps.

Calculating the effective VM allocation time to a
request from a given Userbase
The effective allocation time for Timestamp based
Stateful Throttled algorithm is same as Stateful throttled
algorithm.

Effective allocation time = (t1+t2)*(p*k) +
(t1+t3)*(1-p) + (t1+t2+t3)*(p)*(1-k)

Where,
t1 = Time taken for searching an entry of a Userbase in
Userbase hashmap
t2 = Time taken for checking the status of a VM in VM
state list
t3 = Time taken for processing request using Throttled
VM Load balancing algorithm

Figure 2. The algorithm for TBT VM load balancer.

Vol 9 (48) | November 2016 | www.indjst.org Indian Journal of Science and Technology6

Timestamp based Stateful Throttled VM Load Balancing Algorithm for the Cloud

Figure 3. The flow chart for TBT VM load balancer.

t4 = Time taken for deleting old entries from the hashmap
p = Probability of finding an entry for the requesting
Userbase ; p (0<=p<=1)
k = Probability of finding the corresponding VM status as
available in VM state list

The time for deleting and storing the entries in
hashmap is not included in the effective allocation time
because this deletion and storage of entries happens in
the background after the VM has been allocated to the
Userbase.
Let t4 = Time for deleting old entries from the hashmap
t5 = Time for storing entries in a hashmap
m = Probability of finding the hashmap full which triggers
deletion of old entries
Thus,

Storage time of the entries in the hashmap when it is
full = t4 +t5

Storage time of the entries in the hashmap when it is
not full = t5

Hence, effective storage time = m * (t4 +t5) + (1-m) *t5
			 = mt4+ mt5 + t5- mt5
			 = mt4 + t5
Effective storage time, T= mt4 + t5

Consider the case when the size of hashmap is greater
or equal to the number of Userbases. In that case, the
hashmap would never be full i.e., m = 0.
In this case, effective storage time = t5
Also, m ∝ (Size of hashmap -Size of Userbase table)

T∝ (1/(Size of hashmap -Size of Userbase table)
Hence, there is trade-off between the hashmap size

and the effective storage time.

5. Experimental Setup

To develop and deploy the TST load balancing algorithm,
the authors have used the simulator CloudAnalyser.
The approach used for testing is in line with testing of
Stateful throttled algorithm. One of the most popular
social networking sites, Facebook can benefit by moving
to cloud. So we have used the data of Facebook17 for
analysis of the performance and comparative analysis of
the proposed algorithm.

Comparative Analysis: Throttled VM Load Balancer
and Timestamp based Stateful Throttled VM Load
Balancer.

The following parameters are used to analyze the
performance and comparative analysis of the proposed
algorithm:
•	 Overall Average Response Time (in ms).
•	 Overall Average Datacenter processing time (in ms).

We consider the scenario of homogeneous VM which
are distributed across data centers. The numbers of
data centers are increased to study the behaviour of the
proposed algorithm with respect to the Social networking
web application deployed on distributes data centers as
given in Table 1.

Figure 4. Graph showing comparative analysis of overall
average response time.

Ansuyia Makroo and Deepak Dahiya

Vol 9 (48) | November 2016 | www.indjst.org Indian Journal of Science and Technology 7

Figure 5. Graph depicting comparative analysis of the
overall average data center processing time.

The comparative analysis is summarized in Table 1
and Figure 4 , 5 is given:

The comparative analysis shows that the algorithm
behaves in the same manner as Stateful Throttled
Algorithm while taking into consideration limitation
of same. The overall average response time and overall
average datacenter processing time decreases considerably
on increasing the number of spatially distributed data
centers. The authors have observed better overall average

response time and data center processing time for TST
algorithm Throttled than Throttled VM load balancing
algorithm in case of spatially distributed VM.

To conclude, the experimental analysis shows that the
proposed VM load balancing algorithm i.e., TST VM load
balancing algorithm performs better than Throttled VM
load balancing algorithm in terms of in terms of Overall
average response time and Overall average datacenter
processing time for spatially distributed VMs.

6. Conclusion

The emergence of cloud computing as an economic and
viable solution to the computing needs of enterprises is
the reason for its immense popularity. So it is very crucial
for the industry and academia to focus on building more
reliable and robust cloud infrastructures. One such area
that requires focus is the performance unpredictability in
the cloud. A cloud consists of pool of data centers also
known as nodes clubbed into clusters and each node is
virtually partitioned into Virtual Machines (VMs). The
user requests are deployed on the VMs. The user request
should be deployed in such a way that maximise the
resource utilization of the underlying infrastructure

Table 1. Overall comparative results
Scenario (DC with
100 VMs each)

Average Response Time (in ms) Average Data center Processing
time (in ms)

Throttled VM
load balancing

algorithm

Timestamp based
Stateful Throttled

VM load balancing
algorithm

Throttled VM
load balancing

algorithm

Timestamp based
Stateful Throttled

VM load balancing
algorithm

1 Data center (DC) 1,693.08 1,986.13 1378.13 1,768.80
2 Data centers 955.86 888.90 835.36 799.06
3 Data centers 849.17 686.23 583.44 487.32
4 Data centers 663.82 590.67 497.23 394.11
5 Data centers 602.10 489.62 436.45 310.54
6 Data centers 564.65 498.78 399.14 290.65
7 Data centers 542.23 420.79 377.22 280.20
8 Data centers 527.98 490.12 363.11 273.33
9 Data centers 514.70 380.55 350.00 253.78
10 Data centers 500.25 368.05 335.70 249.19
11 Data centers 499.02 320.12 345.89 231.89
12 Data centers 489.78 298.58 340.45 199.54
13 Data centers 489.56 260.48 339.89 164.23
14 Data centers 487.54 198.89 337.25 143.76
15 Data centers 460.89 188.98 331.58 129.56

Vol 9 (48) | November 2016 | www.indjst.org Indian Journal of Science and Technology8

Timestamp based Stateful Throttled VM Load Balancing Algorithm for the Cloud

while ensuring that none of the VMs are over utilised.
This is the task of Load balancing algorithms. This paper
discusses the Timestamp based Throttled VM load
balancing algorithm that improves the existing Throttled
VM Load balancing algorithm by dealing with its space
performance limitations. The TBT VM load balancing
algorithm uses a hashmap with threshold load factor of
2/3. It stores the timestamp for each entry in Userbase
table and deletes the old entries from the hashmap
when the load factor reaches the threshold value thus
reclaiming space. The major contribution of the paper is
that authors have proposed an efficient VM load balancing
algorithm for the cloud. The authors have carried out a
comparative analysis of the proposed algorithm with the
existing algorithms. The salient features of the proposed
algorithm are better Overall Average Response Time and
Overall Average Data center processing time in case of
spatially distributed data centers in cloud. The testing of
the proposed algorithm has been done by deploying the
algorithm on a cloud simulator. So the results may vary
in case of real cloud environment. The results obtained
using simulator serve as a basis for the comparison and
analysis of the proposed work. The authors plan to test
the proposed algorithm on a private cloud environment
set up using Eucalyptus. Secondly, homogeneous VMs
have been assumed to test the proposed algorithm. The
working of the proposed algorithm has not been studied
in case of heterogeneous VMs. The authors plan to test the
proposed work on heterogeneous VMs also. The authors
have not taken into account the fault tolerance in the
data center. However, in future they plan to incorporate
fault tolerance mechanisms in the proposed VM load
balancing algorithm.

7. References
1.	 Mahajan K, Makroo A, Dahiya D. Round robin with server

affinity: A VM load balancing algorithm for cloud based
infrastructure. Journal of Information Processing Systems.
2013; 9(3):379–94.

2.	 Foster I, Zhao Y, Raicu I, Lu S. Cloud computing and grid
computing 360-degree compared. In Grid Computing En-
vironments Workshop; Austin, TX. 2008. p. 1–10.

3.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Kon-
winski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia
M. A view of cloud computing. Communications of the
ACM. 2010 Apr 1; 53(4):50–8.

4.	 Makroo A, Dahiya D. A systematic approach to deal with
noisy neighbour in cloud infrastructure. Indian Journal of
Science and Technology. 2016 May 31; 9(19):1–9.

5.	 Shen Z, Subbiah S, Gu X, Wilkes J. Cloudscale: Elastic re-
source scaling for multi-tenant cloud systems. Proceedings
of the 2nd ACM Symposium on Cloud Computing ACM;
USA. 2011 Oct 26. p. 5.

6.	 Zhang Q, Cheng L, Boutaba R. Cloud computing: State-of-
the-art and research challenges. Journal of Internet Services
and Applications. 2010 May 1; 1(1):7–18.

7.	 Mahajan K, Dahiya D. A cloud based deployment frame-
work for load balancing policies. IEEE 7th International
Conference on Contemporary Computing (IC3); Noida.
2014 Aug 7. p. 565–70.

8.	 Girbea A, Suciu C, Nechifor S, Sisak F. Design and imple-
mentation of a service-oriented architecture for the opti-
mization of industrial applications. IEEE Transactions on
Industrial Informatics. 2014 Feb; 10(1):185–96.

9.	 Buyya R, Yeo CS, Venugopal S. Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as
computing utilities. 10th IEEE International Conference
on High Performance Computing and Communications,
HPCC’08; Dalian. 2008 Sep 25. p. 5–13.

10.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz RH, Kon-
winski A, Lee G, Patterson DA, Rabkin A, Stoica I, Zaharia
M. Above the clouds: A berkeley view of cloud computing
[Technical report]. University of California; 2009. p. 1–12.

11.	 Nuaimi AK, Mohamed N, Nuaimi AM, Al-Jaroodi J. A
survey of load balancing in cloud computing: Challenges
and algorithms. IEEE 2nd Symposium on Network Cloud
Computing and Applications (NCCA); London. 2012 Dec
3. p. 137–42.

12.	 Lee R, Jeng B. Load-balancing tactics in cloud. IEEE Inter-
national Conference on Cyber-Enabled Distributed Com-
puting and Knowledge Discovery (CyberC); Beijing. 2011
Oct 10. p. 447–54.

13.	 Wang L, Von Laszewski G, Younge A, He X, Kunze M, Tao
J, Fu C. Cloud computing: a perspective study. New Gener-
ation Computing. 2010 Apr 1, 28(2), pp. 137-46.

14.	 Wu MY, Shu W, Zhang H. Segmented min-min: A static
mapping algorithm for meta-tasks on heterogeneous com-
puting systems. Heterogeneous Computing Workshop;
Cancun. 2000 May 1. p. 375–85.

15.	 Kliazovich D, Bouvry P, Khan SU. Green Cloud: A pack-
et-level simulator of energy-aware cloud computing
data centers. The Journal of Supercomputing. 2012 Dec;
162(3):1263–83.

16.	 Garg SK, Buyya R. Networkcloudsim: Modelling paral-
lel applications in cloud simulations. IEEE 4th Utility and
Cloud Computing (UCC); Victoria, NSW. 2011. p. 105–13.

17.	 Garg SK. NetworkCloudSim: Modelling parallel appli-
cations in cloud simulations International Conference on
IEEE; Victoria, NSW. 2011 Dec 5. p. 105–13.

