
Abstract
Background: Multiplication is the basic operation in any signal processing systems and financial applications, all these
applications requires multiplication to be performed in a faster and efficient manner on a silicon chip. Methods: This  paper
describes the algorithm and architecture of a BCD parallel multiplier. The design exploits two properties of  redundant BCD
codes to speed up its computation. Namely, the redundant BCD excess-3 code (XS-3), and the  overloaded BCD  representation
(ODDS). In addition to this, number of new techniques are used in order to reduce significantly  latency, area and for
implementation on FPGA compared to existing implementations. Findings: Parallel architecture is used for  generating
partial products using radix-10 recoding technique for signed-digit of a BCD multiplier having set of digits between the
range [–5, 5] and a positive set of multiplicand multiples coded in XS-3. Use of this encoding has various  advantages like,
as XS-3 is a self-complementing code, finding a negative of it is by just complementing the bits of  respective number. Also
the redundancy in XS-3 code is utilized for generating multiplicand multiples in a simple, faster and a  carry-free way.
Implemented design has three stages. Partial product generation, reduction and final conversion to BCD. For to implement
the design in hardware the partial product reduction architecture is modified here to use a bank of ripple carry adder trees.
ODDS representation uses 4-bit binary encoding technique which is similar to non-redundant BCD code, for this reason
conventional VLSI circuit techniques such as carry-save adders and compression trees can be used effectively to perform
operations on decimal numbers. Conclusion: To show the advantages of the resulted design, RTL model for 8 × 8-digit 
and 16 × 16-digits multiplication has been synthesized and implemented in Virtex-5 FPGA device. Results shows that the
multiplier is about 10–15% delay efficient with existing work and about 14–18% area efficient.
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1. Introduction

Multiplication of decimal numbers plays a vital role in
many user-oriented applications like finance and com-
mercial and where rounding and conversion of numbers
those inherent to binary representations in floating-
point cannot be tolerated4. This is the cause for decimal
operations to become more popular in the recent years.
The existence of various microprocessors like Fujitsu
Sparc X and IBM power microprocessor6,9 families that
are oriented to mainframes and servers include fully
IEEE 754-2008 Decimal Floating Point Units (DFPUs)
for 16-digit decimal and 32-digit decimal formats.
Also, the standard IEEE 754-2008 for Floating-Point
Arithmetic which includes specifications and format for 

decimal multiplication have created a path for decimal
hardware7,10,11 in a significant manner. Again, division
and multiplications are performed by using digit by digit
algorithm in iterative manner because of which it adds
to low performance. The use of aggressive cycle time in
Processors will employ additional constraints on parallel
techniques in order to reduce the latency employed by
parallel design7. Thus, an efficient algorithm is required
to develop a DFPU to perform multiplication and to
have a most regular VLSI layouts which allows  pipelining
effectively.

The hardware implementation for BCD is more
widely used as fixed point values than the binary num-
bers for easy conversion between user representation and
the machine. However the use of decimal numbers has 
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its own disadvantages. Decimal number is represented 
using four bit binary number ranging from [0–9], since 
the digits from 10 to 15 are left out in BCD it raises the 
complications than the binary number system and adds 
to the delay and penalties in terms of area required for 
arithmetic units.

A variety of designs had been proposed for designing 
a BCD multiplier to improve its performance of multi-
plication operation. The carry save format10 used in BCD 
multiplication represents a radix-10 operand using a 
carry value at its each decimal position. The use of carry-
free accumulation of partial products resulted from BCD 
operands requires a series of BCD digit adders10 or a tree 
configuration of adders1. The use of decimal signed-digit 
representation11,15 relays on digit set of redundant values 
{-x,….,0,….,x}, 5 ≤ x ≤ 9, to allow carry free addition. The 
available radix-10 with signed-digit and carry save arith-
metics offers improvements in performance. However 
this type of VLSI implementation techniques will result 
in irregular layouts than the existing binary carry save 
adders and compressor trees.

Various redundant BCD codes namely, 4221, 5211 and 
4211 can be used in BCD arithmetic as their 4-bit deci-
mal codes satisfy the sum of weights of bits to be equal 
to 9, so that all the combinations of a 4-bit number can 
be used for a decimal [0–9] number representation. This 
property of redundancy can be used to speed up decimal 
operations without altering the data path width. Also the 
main advantage of using redundant numbers is in get-
ting complement of a number, which is obtained by just 
inverting the bits of a 4-bit representation. A disadvan-
tage of such codes is that it is constrained to digit bounds, 
due to which obtaining the multiple 3X is not possible in 
a carry-free way.

The ODDS (overloaded BCD or overloaded decimal 
digit set) representation was proposed to improve the 
decimal operation in parallel13,14 and sequential decimal 
multiplication. These codes represent the redundant 
radix-10 digit Xi ; [0, 15]. The use of ODDS code has vari-
ous advantages in hardware implementation namely: (1) 
it allows us to generate simple and complex multiples (3X, 
4X, 5X…) and to perform addition in a carry-free way, 
(2) Unlike in simple BCD there is no need of additional 
hardware to correct the invalid 4-bit combination and 
(3) Since digits are represented in binary format, there is 
no need for extra hardware other than binary arithmetic 
 circuits.

In this paper the algorithm, architecture and FPGA 
realization of BCD multiplier which focuses on improving 
the multiplication operation using parallel architecture 
by utilizing the redundant property of two decimal repre-
sentations: that is, redundant BCD excess-3 (XS-3) code 
and the ODDS. The minimal number of digits is used 
for recoding of the decimal numbers. The signed-digit 
radix-10 digits used here are in the range of {–5,–4,…., 
0,…,4,5}. Main issue with this set of digits is obtain-
ing of multiples without long carry propagation. In this 
proposal acceleration to the multiplication operation is 
given in two steps: Partial Product Generation (PPG) and 
Partial Product Reduction (PPR) which are explained in 
coming sections.

2.  Redundant BCD 
Representations

The proposed BCD multiplier uses a redundant number 
internally to simplify the implementation and to increase 
the speed of operation. The radix-10 ten’s complement 
has been used which is described below:
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Where n being number of digits, Zi ; [m - e, 1 - e] is the 
ith digit with range from 0 ≤ m ≤ e, and 9 + e ≤ m ≤ 24 – 1 
(=15) and Sz is the sign bit. Parameter e is the excess value 
which takes the range from 0 (for non-excess) 3, 6.

In this work, signed digit radix-10 is used for a BCD 
multiplier to compute the multiplicand multiples. The 
main issue with the multiplication (mainly for 3X) is to 
avoid the carry propagation for a longer path. The range of 
digits obtained after generating multiple 3X is in between 
[0, 11] hence maximum carry that is obtained will be of 
just one digit. The nine’s complement of a positive  decimal 
number is given by the equation,
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The implementation of the term (9 – Zi) has more 
 complexity as the number exceeds 9. So the implemen-
tation can be made simpler by taking excess-3 value of 
nine’s complement which is obtained by just taking bit 
complement of excess-3. Table 1 shows how to get the 
nine’s  complement.
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3. Design Methodology
The design methodology for a p × q-digit BCD multiplier 
is shown in Figure 1. This design accepts inputs that is 
 conventional decimal such as redundant BCD operands 
M, N and produces a BCD product after generating a 
partial products array (redundant). The following three 
stages of operation has to be performed to obtain the 
decimal product: (1) Partial product generation (PPG) 
along with generation of multiplicand multiples coded in 
excess-3 and recoding of multiplier operand. (2) Partial 
Product Reduction (PPR) after recoding of partial 

Products to ODDS code and (3) Conversion to 
 non-redundant BCD product of p + q digits. The detailed 
explanation of design methodology is given in section 
3.1, 3.2 and 3.3.

3.1 Decimal Partial Product Generation
A signed-digit radix-10 recoding is used in the  proposed 
BCD multiplier. This type of design reduces the  number 

of partial products generated so that the area of the physi-
cal layout required is reduced. Generation of partial 
products include recoding of multiplier digit to signed-
digit radix-10, calculation of multiples in excess-3 code 
and generation of ODDS partial products. Figure 2 
shows  architecture for generating partial products. The 
 multiplicand digit Yk of a BCD number is recoded in 
SD radix-10 recoder to generate a 5-bit one-hot code 
 represented by Ybk = {Y1k, Y2k, Y3k, Y4k, Y5k}. The obtained 
Ybk is used as a select lines for a 5:1 multiplexer to select a 
respective multiplicand multiples {1X, 2X, 3X, 4X, 5X} Ybk 
also include 1-bit value called signed bit, which is used to 
control the  negation of a selected number.

3.1.1 Multiplicand Multiples 
Set of multiplicand multiples are generated by coding in 
excess-3 format given by NX ; { 1X, 2X, 3X, 4X, 5X } with 
digits NXi in the range [ –3, 12], defined by [NXi] = NXi + 3, 
; [0, 15]. As shown in Figure 3, it takes two steps:

Figure 1. Signed-digit BCD Radix-10 multiplier.

Table 1. Nine’s complement for XS-3 representation

Digit
4-bit

encoding Zi [Wi]

Nine’s complement
4-bit

encoding 9 – Zi 15 – Wi

 0000 –3 0
0001 –2 1
0010 –1 2

. . .

. . .

. . .
1101 10 13
1110 11 14
1111 12 15

1111 12 15
1110 11 14
1101 10 13

. . .

. . .

. . .
0010 – 1 2
0001 – 2 1
0000 – 3 0

Figure 2. Generation of SD radix-10 partial product.

Figure 3. Decimal multiples NX generation.
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•  Digit Mapping of multiplicand digits and
• Assimilation of the carries between adjacent digits.

3.2 Decimal Partial Product Reduction 
3.2.1 Existing PPR Tree
Decimal PPR tree is used here to reduce the number of 
partial products generated. The obtained partial prod-
ucts in the PPG step are maintained in the form an array 
as shown in Figure 4. Where Sk is the sign-bit encoding, 
O is the ODDS digit in the range [0, 15], Hk is the ten’s 
 complement encoding given by: YSk + {0, 3, 7} and F is the 
ODDS digit in range [0, 15]. The high level architecture of 
the PPR consists of three parts: (1) A regular binary Carry 
save adder tree to compute an estimation of decimal partial 
product sum in a binary carry save form (S, C), (2) Sum 
correction block to count the carries  generated between 
digit columns, and (3) A decimal digit 3:2 compressor 
which increments the carry-save sum according to the 
carries count to obtain the final double-word product (A, 
B) where A being represented with excess-6 BCD digits 
and B being represented with BCD digits. The PPR tree 
can be viewed as adjacent columns of h ODDS digits each, 
h being the column height and h ≤ d+1.

Figure 5 shows the high level architecture for existing 
PPR unit.

3.2.2 Drawbacks of Existing Design
The presence carry-save adder tree in the existing 
 architecture reduces the efficiency of a multiplier. Carry-
save adder trees requires additional logic for correction 

of decimal numbers and also need more number of 
 interconnections which results in complications for 
implementing in FPGA. For fast FPGA implementations 
of BCD, carry chain addition requires nearly double the 
hardware than that of ripple carry addition. Since the 
logic depth of BCD adders also doubled, the delay of 
 implementation will increase in proportional amount.

3.2.3  Proposed PPR Tree with Ripple Carry 
Adder

In the proposed PPR tree, the partial product  reduction 
architecture is designed using a ripple carry adder as 
shown in Figure 6. The partial products generated are 
reduced using a tree of ripple carry adders after aligning. 
The number of levels used in the tree is log2(2P) ranging 
from 4p + 4-bit to 6p-bit. The resultant of the two operand 
is passed to the level down adder and the ripples through 
the adder length. Since the carry-ripple chain overlap, sig-
nal bits are propagated as much as 8p bits in addition with 

Figure 4. Partial product array.
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Figure 5. High level architecture of existing decimal PPR 
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Figure 6. Proposed PPR tree for fast BCD multiplication.
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log2 (2p) levels. Mathematical expression of critical path 
for such a design is given by

 tprr = tc–path × 2p + ts–path × (log2(2p) – 1) (3)

Where tc-path is delay for carry chain of 4bits (1digit) and 
ts-path is the delay for sum path of 4bits (1digit) BCD adder. 
Since the critical path delay only depends on number of 
levels and path, the required hardware resources is  lowered 
and the delay is low, therefore speed has enhanced.

3.3 Final Conversion to BCD
The selected architecture for conversion is a 2d-digit 
hybrid parallel prefix or carry-select adder, the BCD qua-
ternary tree adder. The delay of this adder is slightly higher 
to the delay of a binary adder of 8d-bits with a similar 
topology. The decimal carries are computed using a carry 
prefix tree, while two conditional BCD digit sums are 
computed out of the critical path using 4-bit digit adders 
which implements [Ai]+Bi+0 and [Ai]+Bi+1. These con-
ditional sums correspond to each one of the carry input 
values. If the conditional carry out from a digit is one, 
the digit adder performs a –6 subtraction. The selection 
of the appropriate conditional BCD digit sums is imple-
mented with a final level of 2:1 multiplexers. To design 
the carry prefix tree it is required to analyze the signal 
arrival profile from the PPR tree, to optimize the area for 
the minimum delay adder.

4. FPGA Implementation
All circuits were simulated in Verilog HDL. For most part 
of the multiplier it utilizes low level component instantia-
tion. The circuits designed have been implemented on a 
Xilinx Virtex-5 FPGA board, device XC5VX50T 1ff1136, 
with a speed grade of –1. For synthesis and implemen-
tation, Xilinx ISE 14.1 tool have been used respectively. 
Synthesis results in terms of area, utilization of resources 
and delay for each N by M decimal multiplier are given 
in Table 2.

5. Results and Inference
In a first comparison, the proposed design matches up 
with three different decimal multiplication implemen-
tations on FPGAs. Table 3 shows the figures in terms of 
area and delay for 16x16 decimal multiplications, as well 
as a binary multiplier provided by Xilinx Core generation. 

The area is measured in terms of number of NAND gates 
used in every logic. For example each adder is consid-
ered to have three NAND gates and each Ex-OR gate is 
equivalent to two NAND gates and so on. From Table 2 
and Table 3 it can be inferred that, designed multiplier 
has lesser area (in terms of number of NAND gates) and 
high speed.

6. Conclusion
The combinational parallel BCD multiplier is presented 
in this paper with various architectural modifications. 
Parallel multiplication yields benefits of implementing 
the design in FPGA along with optimization of area and 
delay. The improvement of the multiplier purely depends 
on the use of recoding techniques like excess-3, ODDS 
representation and redundant codes. Which helps in 
quick generation of partial products, carry-free computa-
tion of precomputed terms, generating multiples in easier 
way just by bit inversion of positive ones. The multiplier 
is implemented on Virtex-5 FPGA, with a speed grade of 
–1. From this we can conclude that the presented work is 
an option for high speed implementation.
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