
Abstract
Background: Multiplication is the basic operation in any signal processing systems and financial applications, all these
applications requires multiplication to be performed in a faster and efficient manner on a silicon chip. Methods: This paper
describes the algorithm and architecture of a BCD parallel multiplier. The design exploits two properties of redundant BCD
codes to speed up its computation. Namely, the redundant BCD excess-3 code (XS-3), and the overloaded BCD representation
(ODDS). In addition to this, number of new techniques are used in order to reduce significantly latency, area and for
implementation on FPGA compared to existing implementations. Findings: Parallel architecture is used for generating
partial products using radix-10 recoding technique for signed-digit of a BCD multiplier having set of digits between the
range [–5, 5] and a positive set of multiplicand multiples coded in XS-3. Use of this encoding has various advantages like,
as XS-3 is a self-complementing code, finding a negative of it is by just complementing the bits of respective number. Also
the redundancy in XS-3 code is utilized for generating multiplicand multiples in a simple, faster and a carry-free way.
Implemented design has three stages. Partial product generation, reduction and final conversion to BCD. For to implement
the design in hardware the partial product reduction architecture is modified here to use a bank of ripple carry adder trees.
ODDS representation uses 4-bit binary encoding technique which is similar to non-redundant BCD code, for this reason
conventional VLSI circuit techniques such as carry-save adders and compression trees can be used effectively to perform
operations on decimal numbers. Conclusion: To show the advantages of the resulted design, RTL model for 8 × 8-digit
and 16 × 16-digits multiplication has been synthesized and implemented in Virtex-5 FPGA device. Results shows that the
multiplier is about 10–15% delay efficient with existing work and about 14–18% area efficient.

Keywords: Excess-3, FPGA, ODDS, Overloaded BCD, Radix-10 Multiplication

1. Introduction

Multiplication of decimal numbers plays a vital role in
many user-oriented applications like finance and com-
mercial and where rounding and conversion of numbers
those inherent to binary representations in floating-
point cannot be tolerated4. This is the cause for decimal
operations to become more popular in the recent years.
The existence of various microprocessors like Fujitsu
Sparc X and IBM power microprocessor6,9 families that
are oriented to mainframes and servers include fully
IEEE 754-2008 Decimal Floating Point Units (DFPUs)
for 16-digit decimal and 32-digit decimal formats.
Also, the standard IEEE 754-2008 for Floating-Point
Arithmetic which includes specifications and format for

decimal multiplication have created a path for decimal
hardware7,10,11 in a significant manner. Again, division
and multiplications are performed by using digit by digit
algorithm in iterative manner because of which it adds
to low performance. The use of aggressive cycle time in
Processors will employ additional constraints on parallel
techniques in order to reduce the latency employed by
parallel design7. Thus, an efficient algorithm is required
to develop a DFPU to perform multiplication and to
have a most regular VLSI layouts which allows pipelining
effectively.

The hardware implementation for BCD is more
widely used as fixed point values than the binary num-
bers for easy conversion between user representation and
the machine. However the use of decimal numbers has

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(19), DOI: 10.17485/ijst/2015/v8i19/77160, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Implementation of Fast Radix-10 BCD
Multiplier in FPGA
H. A. Anil Kumar* and S. Umadevi

School of Electronics Engineering (VLSI Design), VIT Chennai Campus,
Chennai - 600127, Tamil Nadu, India; anilkumar.ha2013@vit.ac.in

Implementation of Fast Radix-10 BCD Multiplier in FPGA

Indian Journal of Science and Technology2 Vol 8 (19) | August 2015 | www.indjst.org

its own disadvantages. Decimal number is represented
using four bit binary number ranging from [0–9], since
the digits from 10 to 15 are left out in BCD it raises the
complications than the binary number system and adds
to the delay and penalties in terms of area required for
arithmetic units.

A variety of designs had been proposed for designing
a BCD multiplier to improve its performance of multi-
plication operation. The carry save format10 used in BCD
multiplication represents a radix-10 operand using a
carry value at its each decimal position. The use of carry-
free accumulation of partial products resulted from BCD
operands requires a series of BCD digit adders10 or a tree
configuration of adders1. The use of decimal signed-digit
representation11,15 relays on digit set of redundant values
{-x,….,0,….,x}, 5 ≤ x ≤ 9, to allow carry free addition. The
available radix-10 with signed-digit and carry save arith-
metics offers improvements in performance. However
this type of VLSI implementation techniques will result
in irregular layouts than the existing binary carry save
adders and compressor trees.

Various redundant BCD codes namely, 4221, 5211 and
4211 can be used in BCD arithmetic as their 4-bit deci-
mal codes satisfy the sum of weights of bits to be equal
to 9, so that all the combinations of a 4-bit number can
be used for a decimal [0–9] number representation. This
property of redundancy can be used to speed up decimal
operations without altering the data path width. Also the
main advantage of using redundant numbers is in get-
ting complement of a number, which is obtained by just
inverting the bits of a 4-bit representation. A disadvan-
tage of such codes is that it is constrained to digit bounds,
due to which obtaining the multiple 3X is not possible in
a carry-free way.

The ODDS (overloaded BCD or overloaded decimal
digit set) representation was proposed to improve the
decimal operation in parallel13,14 and sequential decimal
multiplication. These codes represent the redundant
radix-10 digit Xi ; [0, 15]. The use of ODDS code has vari-
ous advantages in hardware implementation namely: (1)
it allows us to generate simple and complex multiples (3X,
4X, 5X…) and to perform addition in a carry-free way,
(2) Unlike in simple BCD there is no need of additional
hardware to correct the invalid 4-bit combination and
(3) Since digits are represented in binary format, there is
no need for extra hardware other than binary arithmetic
 circuits.

In this paper the algorithm, architecture and FPGA
realization of BCD multiplier which focuses on improving
the multiplication operation using parallel architecture
by utilizing the redundant property of two decimal repre-
sentations: that is, redundant BCD excess-3 (XS-3) code
and the ODDS. The minimal number of digits is used
for recoding of the decimal numbers. The signed-digit
radix-10 digits used here are in the range of {–5,–4,….,
0,…,4,5}. Main issue with this set of digits is obtain-
ing of multiples without long carry propagation. In this
proposal acceleration to the multiplication operation is
given in two steps: Partial Product Generation (PPG) and
Partial Product Reduction (PPR) which are explained in
coming sections.

2. Redundant BCD
Representations

The proposed BCD multiplier uses a redundant number
internally to simplify the implementation and to increase
the speed of operation. The radix-10 ten’s complement
has been used which is described below:

 Z S Zz
n

n

x
x

x

= − × ×
=

−

∑10 10
0

1

 (1)

Where n being number of digits, Zi ; [m - e, 1 - e] is the
ith digit with range from 0 ≤ m ≤ e, and 9 + e ≤ m ≤ 24 – 1
(=15) and Sz is the sign bit. Parameter e is the excess value
which takes the range from 0 (for non-excess) 3, 6.

In this work, signed digit radix-10 is used for a BCD
multiplier to compute the multiplicand multiples. The
main issue with the multiplication (mainly for 3X) is to
avoid the carry propagation for a longer path. The range of
digits obtained after generating multiple 3X is in between
[0, 11] hence maximum carry that is obtained will be of
just one digit. The nine’s complement of a positive decimal
number is given by the equation,

 − + −() ×
=

−

∑10 9 10
0

1
n

i

n

i
iZ (2)

The implementation of the term (9 – Zi) has more
 complexity as the number exceeds 9. So the implemen-
tation can be made simpler by taking excess-3 value of
nine’s complement which is obtained by just taking bit
complement of excess-3. Table 1 shows how to get the
nine’s complement.

H. A. Anil Kumar and S. Umadevi

Indian Journal of Science and Technology 3Vol 8 (19) | August 2015 | www.indjst.org

3. Design Methodology
The design methodology for a p × q-digit BCD multiplier
is shown in Figure 1. This design accepts inputs that is
 conventional decimal such as redundant BCD operands
M, N and produces a BCD product after generating a
partial products array (redundant). The following three
stages of operation has to be performed to obtain the
decimal product: (1) Partial product generation (PPG)
along with generation of multiplicand multiples coded in
excess-3 and recoding of multiplier operand. (2) Partial
Product Reduction (PPR) after recoding of partial

Products to ODDS code and (3) Conversion to
 non-redundant BCD product of p + q digits. The detailed
explanation of design methodology is given in section
3.1, 3.2 and 3.3.

3.1 Decimal Partial Product Generation
A signed-digit radix-10 recoding is used in the proposed
BCD multiplier. This type of design reduces the number

of partial products generated so that the area of the physi-
cal layout required is reduced. Generation of partial
products include recoding of multiplier digit to signed-
digit radix-10, calculation of multiples in excess-3 code
and generation of ODDS partial products. Figure 2
shows architecture for generating partial products. The
 multiplicand digit Yk of a BCD number is recoded in
SD radix-10 recoder to generate a 5-bit one-hot code
 represented by Ybk = {Y1k, Y2k, Y3k, Y4k, Y5k}. The obtained
Ybk is used as a select lines for a 5:1 multiplexer to select a
respective multiplicand multiples {1X, 2X, 3X, 4X, 5X} Ybk
also include 1-bit value called signed bit, which is used to
control the negation of a selected number.

3.1.1 Multiplicand Multiples
Set of multiplicand multiples are generated by coding in
excess-3 format given by NX ; { 1X, 2X, 3X, 4X, 5X } with
digits NXi in the range [–3, 12], defined by [NXi] = NXi + 3,
; [0, 15]. As shown in Figure 3, it takes two steps:

Figure 1. Signed-digit BCD Radix-10 multiplier.

Table 1. Nine’s complement for XS-3 representation

Digit
4-bit

encoding Zi [Wi]

Nine’s complement
4-bit

encoding 9 – Zi 15 – Wi

 0000 –3 0
0001 –2 1
0010 –1 2

. . .

. . .

. . .
1101 10 13
1110 11 14
1111 12 15

1111 12 15
1110 11 14
1101 10 13

. . .

. . .

. . .
0010 – 1 2
0001 – 2 1
0000 – 3 0

Figure 2. Generation of SD radix-10 partial product.

Figure 3. Decimal multiples NX generation.

Implementation of Fast Radix-10 BCD Multiplier in FPGA

Indian Journal of Science and Technology4 Vol 8 (19) | August 2015 | www.indjst.org

•  Digit Mapping of multiplicand digits and
• Assimilation of the carries between adjacent digits.

3.2 Decimal Partial Product Reduction
3.2.1 Existing PPR Tree
Decimal PPR tree is used here to reduce the number of
partial products generated. The obtained partial prod-
ucts in the PPG step are maintained in the form an array
as shown in Figure 4. Where Sk is the sign-bit encoding,
O is the ODDS digit in the range [0, 15], Hk is the ten’s
 complement encoding given by: YSk + {0, 3, 7} and F is the
ODDS digit in range [0, 15]. The high level architecture of
the PPR consists of three parts: (1) A regular binary Carry
save adder tree to compute an estimation of decimal partial
product sum in a binary carry save form (S, C), (2) Sum
correction block to count the carries generated between
digit columns, and (3) A decimal digit 3:2 compressor
which increments the carry-save sum according to the
carries count to obtain the final double-word product (A,
B) where A being represented with excess-6 BCD digits
and B being represented with BCD digits. The PPR tree
can be viewed as adjacent columns of h ODDS digits each,
h being the column height and h ≤ d+1.

Figure 5 shows the high level architecture for existing
PPR unit.

3.2.2 Drawbacks of Existing Design
The presence carry-save adder tree in the existing
 architecture reduces the efficiency of a multiplier. Carry-
save adder trees requires additional logic for correction

of decimal numbers and also need more number of
 interconnections which results in complications for
implementing in FPGA. For fast FPGA implementations
of BCD, carry chain addition requires nearly double the
hardware than that of ripple carry addition. Since the
logic depth of BCD adders also doubled, the delay of
 implementation will increase in proportional amount.

3.2.3 Proposed PPR Tree with Ripple Carry
Adder

In the proposed PPR tree, the partial product reduction
architecture is designed using a ripple carry adder as
shown in Figure 6. The partial products generated are
reduced using a tree of ripple carry adders after aligning.
The number of levels used in the tree is log2(2P) ranging
from 4p + 4-bit to 6p-bit. The resultant of the two operand
is passed to the level down adder and the ripples through
the adder length. Since the carry-ripple chain overlap, sig-
nal bits are propagated as much as 8p bits in addition with

Figure 4. Partial product array.

PP[0] PP[k] PP[h-1]
…. ….

Carry
outputs

Carry
inputs

h:2
Binary CSA

tree
M-bit

counter

x6 Binary (l+2):2 CSA

CSA
block

Whi+1
WhiDecimal

3:2 compressor

Wzi Gi Zi

Ci+1[0]….Ci+1[nco-1]

Ci[0]….Ci[nci-1]

nco

Nco+m

m

Ai Bi

To column i+1 To column i+1 To column i-1

Wg[0]i
Wg[1]i

gi[0]…..g[l-1]

gi+1[0]….gi+1[l-1]

Wg[0]i+1
Wg[1]i+1

log(m+1) Ci Si

l

Wti[0]….wti[l-1]

Figure 5. High level architecture of existing decimal PPR
unit.

BCD carry ripple
adder

BCD carry ripple
adder BCD carry ripple adder

BCD carry ripple adder

BCD carry ripple adderBCD carry ripple adder BCD carry ripple adder

BCD carry ripple adder

log (p)+1 levels

BCD carry ripple adder

PP0[p-1] PP1[p-1] PP0[I] PP1[i] PP0[k] PP1[k] PP0[0] PP1[0]

PP

4p+4 4p+4 4p+4 4p+4 4p+4 4p+4

4p+4 4p+4 4p+4 4p+4 4p+4 4p+4 4p+4 4p+4

4p+8 4p+8 4p+8 4p+8

4p+16

P

4p+2p 4p+2p

8p

Figure 6. Proposed PPR tree for fast BCD multiplication.

H. A. Anil Kumar and S. Umadevi

Indian Journal of Science and Technology 5Vol 8 (19) | August 2015 | www.indjst.org

log2 (2p) levels. Mathematical expression of critical path
for such a design is given by

 tprr = tc–path × 2p + ts–path × (log2(2p) – 1) (3)

Where tc-path is delay for carry chain of 4bits (1digit) and
ts-path is the delay for sum path of 4bits (1digit) BCD adder.
Since the critical path delay only depends on number of
levels and path, the required hardware resources is lowered
and the delay is low, therefore speed has enhanced.

3.3 Final Conversion to BCD
The selected architecture for conversion is a 2d-digit
hybrid parallel prefix or carry-select adder, the BCD qua-
ternary tree adder. The delay of this adder is slightly higher
to the delay of a binary adder of 8d-bits with a similar
topology. The decimal carries are computed using a carry
prefix tree, while two conditional BCD digit sums are
computed out of the critical path using 4-bit digit adders
which implements [Ai]+Bi+0 and [Ai]+Bi+1. These con-
ditional sums correspond to each one of the carry input
values. If the conditional carry out from a digit is one,
the digit adder performs a –6 subtraction. The selection
of the appropriate conditional BCD digit sums is imple-
mented with a final level of 2:1 multiplexers. To design
the carry prefix tree it is required to analyze the signal
arrival profile from the PPR tree, to optimize the area for
the minimum delay adder.

4. FPGA Implementation
All circuits were simulated in Verilog HDL. For most part
of the multiplier it utilizes low level component instantia-
tion. The circuits designed have been implemented on a
Xilinx Virtex-5 FPGA board, device XC5VX50T 1ff1136,
with a speed grade of –1. For synthesis and implemen-
tation, Xilinx ISE 14.1 tool have been used respectively.
Synthesis results in terms of area, utilization of resources
and delay for each N by M decimal multiplier are given
in Table 2.

5. Results and Inference
In a first comparison, the proposed design matches up
with three different decimal multiplication implemen-
tations on FPGAs. Table 3 shows the figures in terms of
area and delay for 16x16 decimal multiplications, as well
as a binary multiplier provided by Xilinx Core generation.

The area is measured in terms of number of NAND gates
used in every logic. For example each adder is consid-
ered to have three NAND gates and each Ex-OR gate is
equivalent to two NAND gates and so on. From Table 2
and Table 3 it can be inferred that, designed multiplier
has lesser area (in terms of number of NAND gates) and
high speed.

6. Conclusion
The combinational parallel BCD multiplier is presented
in this paper with various architectural modifications.
Parallel multiplication yields benefits of implementing
the design in FPGA along with optimization of area and
delay. The improvement of the multiplier purely depends
on the use of recoding techniques like excess-3, ODDS
representation and redundant codes. Which helps in
quick generation of partial products, carry-free computa-
tion of precomputed terms, generating multiples in easier
way just by bit inversion of positive ones. The multiplier
is implemented on Virtex-5 FPGA, with a speed grade of
–1. From this we can conclude that the presented work is
an option for high speed implementation.

7. References
1. Vazquez A, Antelo E, Bruguera JD. Fast Radix-10

 multiplication using redundant BCD codes. IEEE
Transactions on Computers. 2014 Aug; 63(8):1902–14.

Table 2. Synthesis results comparison

N M #LUTs #Slices #FFs F
(MHz)

Delay
(ns)

4 4 634 205 368 421.9 11.8
8 8 2109 668 1111 374.3 16
4 8 1191 380 696 392.2 15.3
8 4 1084 396 609 408.1 12.25

16 16 2868 1123 1786 327.8 24.4
16 16 2680 1012 1692 361.6 22.12

Table 3. Comparison among different architectures
for 16d

Architecture Delay(ns) Area(# NAND)
Binary 40.8 41535

Radix-10 24.4 28925
Radix-10 (proposed) 22.12 25690

Implementation of Fast Radix-10 BCD Multiplier in FPGA

Indian Journal of Science and Technology6 Vol 8 (19) | August 2015 | www.indjst.org

2. Aswal, Perumal MG, Prasanna GNS. On basic financial
decimal operations on binary machines. IEEE Transactions
on Computers. 2012 Aug; 61(8):1084–96.

3. Cowlishaw MF, Schwarz EM, Smith RM, Webb CF. A
 decimal floating-point specification. Proc 15th IEEE Symp
Computer Arithmetic; 2001 Jun. p. 147–54.

4. Cowlishaw MF. Decimal floating-point: Algorism for
 computers. Proc 16th IEEE Symp Comput Arithmetic;
2003 Jul. p. 104–11.

5. Carlough S, Schwarz E. Power6 decimal divide. Proc 18th
IEEE Symp Appl-Specific Syst, Arch, Process; 2007 Jul.
p. 128–33.

6. Carlough S, Mueller S, Collura A, Kroener M. The IBM
zEnterprise-196 decimal floating point accelerator. Proc
20th IEEE Symp Comput Arithmetic; Tubingen 2011 Jul
25-27. p. 139–46.

7. Dadda L. Multioperand parallel decimal adder: A mixed
binary and BCD approach. IEEE Trans Comput. 2007 Oct;
56(10):1320–8.

8. Dadda L, Nannarelli A. A variant of a Radix-10
 combinational multiplier. Proc IEEE Int Symp Circuits
Syst; 2008 May. p. 3370–3.

9. Eisen L, Ward JW, Tast H-W, Mading N, Leenstra J, Mueller
SM, Jacobi C, Preiss J, Schwarz EM, Carlough SR. IBM

POWER6 accelerators: VMX and DFU. IBM J Res Dev.
2007 Nov; 51(6):p. 663–84.

10. Erle MA, Schulte MJ. Decimal multiplication via carry save
addition. Proc IEEE Int Conf Appl-Specific Syst, Arch,
Process; 2003 Jun 24-26. p. 348–58.

11. Erle MA, Schwarz EM, Schulte MJ. Decimal multiplication
with efficient partial product generation. Proc 17th IEEE
Symp Comput Arithmetic; 2005 Jun 27-29. p. 21–8.

12. Faraday Tech. Corp. 90nm UMC L90 standard performance
low-K library (RVT) [Online]. 2004..

13. GorginS, Jaberipur G. A fully redundant decimal adder and
its application in parallel decimal multipliers. Microelectron
J. 2009 Oct; 40(10):1471–81.

14. Han L, Ko S. High speed parallel decimal multiplication
with redundant internal encodings. IEEE Trans. Comput.
2013 May; 62(5):956–68.

15. Kenney RD, Schulte MJ, Erle MA. High-frequency decimal
multiplier. Proc IEEE Int Conf Comput Des VLSI Comput
Process; 2004 Oct 11-13. p. 26–9.

16. Kenney RD, Schulte MJ. High-speed multioperand decimal
adders. IEEE Trans Comput. 2005 Aug; 54(8):953–63.

