
Abstract
Objective: The objective of this work is to design a Reduced Instruction Set Computing (RISC) processor with Canonic
Signed Digit (CSD) recoding. Methods: The incorporation of the CSD recording reduces the number of non-zero bits in
the constant word length coefficient. The processor has a dedicated processing unit for the manipulation of floating point
numbers. It uses CSD recoded number for the execution of the arithmetic operations such as multiplication. This novel
technique reduces the switching activity and in turn resulting in reduction in the power consumed by the processor.
Findings: The simulation was carried out using XILINX 14.3 and CADENCE NCLAUNCH. The RISC processor was synthesized
with and without the CSD recoding. Although there is a slight increase in the area overhead, the use of ternary number
representation in the processor design brought in a power reduction of 56.23%. Conclusions: The CSD recoding was found
to be effective in terms of power consumption, making the RISC processor power efficient.

Keywords: CSD Recoding, Floating Point Number, Power Reduction, RISC Processor

1. Introduction
The advancement in the Si technology and the
reduction in the cost of integrated circuits have resulted in
wide spread use of RISC processors in all fields. The RISC
processor as the name suggests executes the instructions
in lesser machine cycles in comparison with Complex
Instruction Set Computer (CISC) processor. The highly
optimized and simple sets of instructions are the added
advantages of the RISC processor. The RISC processor
usually follows the Harvard architecture, i.e., the instruc-
tion and the data stream are separated. Thus the alterations
made in the memory, doesn’t affect the execution of the
instruction. Some of the features of the RISC processor
include: uniform format of the instruction which makes
the decoding process easier. The RISC processor also has
higher throughput per cycle. The RISC processor con-
sumes lesser hardware in terms of number of transistors.
This work enhances the advantages of the RISC processor
with the incorporation of CSD recoding. The CSD coding
is a signed digit coding technique. It finds application in

low power, area efficient and high speed signal process-
ing systems1. CSD is a ternary number system with digit
set {1, 0, ī}, Where ī represents -1. The CSD recoding has
two important properties: 1. Number of non-zero digits is
minimal; this property reduces the number of addition in
the arithmetic operation. The reduction in the number of
adders reduces the area and power consumed by the pro-
cessor as a whole. 2. No two adjacent digits are non-zero;
thus the hamming weight of the number is reduced2, 7.

R. Hashemian proposes a Binary Signed (BS)
number system. The CSD is presented as a special case of
BS numbering. The BS system is observed to be an effi-
cient number system as it doesn’t add extra sign bit to the
number. A bit 1 in the ith position contributes 2i to the
number and similarly a -1 in the ith position adds a 2i to
the number3.

B. Phillips et al. in their work on minimal weight
digit conversion deals with a recoding scheme which is
intended to reduce the hamming weight of the number.
The hamming weight stands for the number of 1’s in the
number4.

*Author for correspondence

Indian Journal of Science and Technology, Vol 8(19), DOI: 10.17485/ijst/2015/v8i19/76865, August 2015
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Canonic Signed Digit Recoding based
RISC Processor Design

Ajintha Elsa Abraham∗, N. R. Sangeetha and P. Reena Monica

SENSE Department, VIT University, Chennai Campus, Chennai - 600127,
Tamil Nadu, India; ajintha.elsa2013@vit.ac.in, sangeetha.nr2013@vit.ac.in, reenamonica@vit.ac.in

Canonic Signed Digit Recoding based RISC Processor Design

Indian Journal of Science and Technology2 Vol 8 (19) | August 2015 | www.indjst.org

Floating point numbers are omnipresent in the
computer systems. Therefore its representation and
manipulation is an inevitable task. IEEE 754 is the widely
accepted standard for the floating point number repre-
sentation. The single precision IEEE 754 representation
occupies 32 bits. The format has a sign bit, 8 bit exponent
and 23 bit mantissa. The IEEE 754 representation is offi-
cially known as binary 32. The sign bit tells whether the
number is a positive or negative number. The exponent is
an 8 bit signed integer from -128 to 1275.

2. Architecture of RISC Processor
The RISC processor presented in the work has the
following blocks: instruction fetch unit, instruction mem-
ory, decoder, Arithmetic and Logical Unit (ALU), general
purpose registers, data memory, flag, program counter.
Figure 1 shows the architecture of the proposed processor.

2.1 Module Description
The various blocks and their functionalities are discussed
in detail in the following sections:

2.1.1 Instruction Fetch Unit
The instruction fetch unit procures a 16 bit instruction.
The instruction format is shown in Figure 2. Opcode is
the 4 bit data which determines the operation to be per-
formed such as addition, multiplication etc. The F bit
determines whether the number is floating point or fixed
point. F = 0 means that the number is fixed point and oth-
erwise it is floating point operand. So according to the
F bit, the operands are handled by either fixed point

unit or floating point unit. Rd stands for the destination
register, i.e., the location at which the computed results
have to be stored. The Rs and Rt stands for the source reg-
isters from where the ALU acquires the data to carry out
necessary computation.

2.1.2 Instruction Register
The instruction register accumulates the data acquired
by the instruction fetch unit, and stores it in a sequen-
tial format. The PC points towards that location of the
instruction register whose content is to be executed. After
the execution of each instruction the PC increments,
and points towards the next location of the instruction
register and the next instruction gets executed.

2.1.3 Instruction Decoder
The instruction decoder unit decodes the data that is
available in the instruction register. This module instructs
the ALU to perform the requisite task. It directs the ALU
to acquire data for the arithmetic operation and shows
the location of the results to be stored. The instruction
fetch unit, instruction register and the decoder unit form
the control unit which performs the wholesome control-
ling operation. The FSM that governs the control unit is
shown in Figure 3.

Figure 1. RISC processor architecture.

Figure 2. 16 bit instruction.

Figure 3. State Diagram of the control unit.

Ajintha Elsa Abraham, N. R. Sangeetha and P. Reena Monica

Indian Journal of Science and Technology 3Vol 8 (19) | August 2015 | www.indjst.org

2.1.4 ALU
The ALU performs the arithmetic and logical operations
as directed by the decoder unit. The ALU has two units
in it: fixed point arithmetic unit and floating point arith-
metic unit. The 12th bit of the instruction determines if
the data is to be operated by the floating point unit or the
fixed point unit.

2.1.4.1 Floating Point Arithmetic Unit
Floating point arithmetic unit is incorporated to
manipulate the floating point data that is input to the sys-
tem. The floating point arithmetic unit takes in two sets of
data: the integer part and fraction part. Both the integer
and the fractional part are each 32 bit data. The inputs
have to be consolidated to form a 32 bit effective oper-
and4. The algorithm for the conversion of the input data
to effective operand is as follows:
Step 1: The sign bit of the integer input is taken as the sign
bit of the effective operand.
Step 2: Binary search algorithm is employed to find out
the occurrence of the first ‘1’ in the integer input. The
position of the first ‘1’ bit is stored in a register named
‘position’.
Step 3: All the bits in the integer input from the position
bit to the end is stored in the effective operand.
Step 4: If there are vacant bits left back in the effective
operand, it is filled with operands from fractional input.

The FPU unit is designed to be in compliance with the
IEEE 754 format. So the effective operand needs to be con-
verted into the format. The IEEE 754 is shown in Figure
4. IEEE754 single precision is encoded in a 32 bit format.
The first bit is the sign bit and the next 8 bits forms the
exponent, the rest of the 23 bits represents the mantissa.
The algorithm for the conversion is as follows:
Step1: Sign bit of the effective operand acts the sign bit for
the IEEE format input.
Step2: The 30th bit to the 8th bit of the effective operand
acts as the mantissa.

Step3: The exponent is calculated by subtracting the
position of the first ‘1’ that occurred in the integer input
explained in the previous algorithm. Then a bias of 127 is
added to the exponent.

The IEEE 754 format input is used for performing
the arithmetic and logical operations. Floating point
multiplication block diagram representation5 is shown in
Figure 5.

The sign bits of the two inputs are XOR ed to get the
sign bit of the product. The exponent of the two num-
bers represents the already biased value. Hence it doesn’t
represent the original exponent value. Thus the exponent
needs to be subtracted once otherwise the bias 127 gets
added twice.

Let Ea and Eb be the exponents of the two operands.
The exponent of the resulting product will be:

E = Ea + Eb –127

 The mantissa part of the multiplicand is taken as it is
and the mantissa of the multiplier is converted into CSD.
The CSD recoded data will have lesser number of 1s hence
the number of shift and add operations get reduced. This
can further reduce the power consumed by the proces-
sor. The result gets stored in the destination register as
specified in the instruction.

2.1.4.2 Fixed Point Arithmetic Unit
The block manipulates the fixed point data. The data is
procured from the location specified in the instruc-
tion and the arithmetic and logical operations are done
according to the requirement.

Figure 4. IEEE754 format. Figure 5. Floating point multiplication block diagram.

Canonic Signed Digit Recoding based RISC Processor Design

Indian Journal of Science and Technology4 Vol 8 (19) | August 2015 | www.indjst.org

2.1.5 Data Memory and General Purpose
Register

The data memory consists of 16 bit memory locations
which are used to store the operands. The general pur-
pose registers consists of four sixteen bit locations which
hold the results from the ALU. The flag register consists of
two flags, zero-flag and carry-flag. The zero flag is set to
one when the output of the ALU is 16 bit zero value and
the carry flag is set to one when there is a carry value after
the arithmetic value.

3. CSD Recoding
Algorithm for conversion of a 2’s complement number
into CSD is given below6, 8:

Let ‘a’ be the 2’s complement representation of a binary
number.

A = aw-1 aw-2 a1 a0
Let
 a-1 = 0;
 g-1 = 0;
 aw = aw-1;
For (i=0 to w-1)
 {
 ti = ai ^ai-1 ;
 gi =~(gi-1) ∗ ti;
 ci = (1-2ai+1) gi;
 }
C = CW CW-1 C0

C is the generated CSD number with less number 1’s
and no adjacent non zero digits.

For example, the binary number 1111 when recoded
into CSD it will be 000 ī. Thus the number of non-zero
digits gets drastically reduced and therefore the number of
additions in the arithmetic operations also gets reduced.

In the proposed processor, the CSD recoding unit has
been incorporated into the ALU part. So that, the operand
passes through the CSD recoding unit and then it goes for
the corresponding operation.

4. Simulation Results
The simulation was done using XILINX 14.3 and
CADENCE NCLAUNCH. To estimate the variation in
power by the incorporation of the CSD recoding, the
simulations were performed with and without the CSD
recoding unit.

The arithmetic operations were performed with and
without CSD conversion and the results were noted and
compared.

In Figure 6., the processor procures a 16 bit instruc-
tion, 1000_1100_0000_0001. The decoder unit identifies,
the opcode, destination register, and the source registers.
The opcode 1000 stands for multiplication. Then the ALU
fetches the 16 bit data from the Rs and Rt (source registers)
which are at locations 0000 and 00001 respectively. The
data bits 0001110011011011 and 0000001001101101 are
multiplied and the result is stored at the destination loca-
tion 1100.

Figure 7 shows the multiplication with the CSD
recoding technique. The operands are being converted
into the CSD value and then the multiplication is carried
out. As mentioned earlier, the CSD conversion reduces
the number of nonzero digits in the number; the num-
ber of addition operations involved will be reduced. The
multiplication of the same operands as in the example
above gives the result 1ī10ī0001000ī00ī. So there is a
considerable reduction in number of 1s. Thus the switch-
ing activity reduction achieved which in turn leads to
reduction in power.

Figure 6. Fixed point Multiplication output without CSD
recoding.

Figure 7. Fixed point multiplication output with CSD
recoding.

Ajintha Elsa Abraham, N. R. Sangeetha and P. Reena Monica

Indian Journal of Science and Technology 5Vol 8 (19) | August 2015 | www.indjst.org

Figure 8 shows the floating point multiplication. The
processor takes in two operands a and b. Each operand a
and b has two parts a1, a2 and b1, b2 respectively. a1 and
b1 corresponds to the integer part of the input. a2 and b2
are the fractional parts. o1 and o2 are the operands that
have been converted into IEEE 754 format.

Now the multiplication algorithm is executed using
o1and o2. The product is a 32 bit data with the 31st bit (S)
representing the sign bit, the 8 bits from 30 to 23 repre-
sents the exponent (E) and the final 23 bits represents the
mantissa (M).

 The power consumption of the ALU block with CSD
recoding was found to be lesser than that without CSD
recoding. Even though there was a slight increase in the
area and the timing, it is very menial in comparison with
the amount of the power reduced. Table 1. gives the ALU
performance parameters.

4.1 ASIC Implementation of the Processor
The ASIC implementation of the processor was
accomplished by the CADENCE –ENCOUNTER tool.
The tool first of all does the floor plan and placement
for the design wherein it places the cells in the most

appropriate position. The floor plan and placement are
two critical processes as it determines the overall proces-
sor performance. The effective placement of the cells will
boost the performance in terms of timing area etc. It also
helps in reduction of congestion. Constraints have to be
defined to perform the placement in compliance with the
timing requirements. The clock tree insertion is done by
the tool after the cell placement. The routing is done in
two steps global routing and detailed routing. This further
optimises the placement. Fial step done by the layout tool
is the detailed routing. The design then undergoes Design
Rule Check (DRC) and Layout Versus Schematic (LVS)
before the generation of the GDS II file. Figure 9 shows
the final layout of the 16bit RISC processor obtained
using the CADENCE tool.

Table 2. lists the performance parameters of the RISC
processor. The processor was found to be operating at
11.2MHz frequency. The power consumption was found
to be in the milli-watt range.

Figure 8. Floating point multiplication output with CSD
recoding.

Table 1. ALU performance parameters

Properties With CSD
recoding

Without CSD
recoding

Cell area(um2) 10416 10380
Timing (pS) 56618 56624
Power (mW) 1.185 3.987

Figure 9. Layout of the 16bit RISC processor.

Table 2. Processor performance parameters

Properties Values

Frequency of operation 11.2MHz

Total cell area occupied 31456 um2

Power consumption 10.32048mW

Canonic Signed Digit Recoding based RISC Processor Design

Indian Journal of Science and Technology6 Vol 8 (19) | August 2015 | www.indjst.org

5. Conclusion
The RISC processor with CSD recoding was designed and
implemented. The processor can be given both fixed point
and floating point operands. This makes the processor to
be employed in digital signal processing systems. The
CSD recoding of the multiplier bit in the multiplication
operation could reduce the power consumption by 2mW.
The CSD recoding was found to be effective in terms of
power consumption with a very slight overhead in the area
occupied, making the RISC processor power efficient.

6. References
1. Anjana R, Gandhi K. VHDL implementation of a MIPS

RISC processor. International Journal of Advanced Research
in Computer Science and Software Engineering. 2012
Aug; 2(8):83–8.

2. Ruiz GA, Granda M. Efficient Canonic signed digit
recoding. Microelectronics Journal. 2011; 42(9):1090–7.

3. Karam LJ, Hasan YM, Falkinberg M. Canonic signed digit
FIR filter design. IEEE Conference; Pacific Grove, CA, USA;
2000 Oct 29-Nov 1; vol 2. p. 1653–6.

4. Phillips B, Burgess N. Minimal weight digit set conversions.
IEEE Transactions on Computers. 2004 Jun; 53(6):666–77.

5. Rao VN, Swathi V. Normalization on floating point multi-
plication using verilog HDL. International Journal of VLSI
and Embedded Systems. 2013 Aug; 04:586–91.

6. Harini Sharma D, Ramesh AP. Floating point multiplier
using Canonical Signed Digit. International Journal of
Advanced Research in Electronics and Communication
Engineering (IJARECE). 2013 Nov; 2(11):872–4.

7. Parhi KK. VLSI Digital Signal Processing System 6th ed.
Microelectronic Research Center. 2007.

