
Making a Formal Case for the Development of
Components of Modern Enterprise Information

Systems
Alexander Ryndin* and Sergey Sapegin

Voronezh State Technical University, Voronezh, Russia;
alexandr.ryndin@icloud.com, svsapegin@mail.ru

Abstract

Background: The article covers the specifics of streamlining the design of software components for modern in-
formation systems, proposes a multiple-path integration approach intended for obtaining optimal and suboptimal
solutions in multidimensional problems. Methods: The article proposes an approach to establishing a smooth pipe-
line for the development of software components within enterprise Information Systems (IS) based on the principles
of Service-Oriented Architecture (SOA) that intend to reduce the complexity of the IS components themselves and
the way they communicate with each other. To come up with the most practical solutions, the authors have used
multiple-path integration methods that can help provide solutions to multidimensional problems within a reason-
able time. Findings: The proposed formalization of the task to design an IS component serves as a base for studying
the characteristics of the life cycles of different IS components, strategies and approaches to their design and develop-
ment, as well as the general IS structure by means of various strategies of interaction between the existing software
components and the ones being designed. Improvements/Application: The proposed approach can be used as a tool
for building large-scale information systems in order to reduce the time and resources spent on the project. The ar-
ticle suggests a use case for this approach involving the building of IS components for telecommunication companies.

*Author for correspondence

1.  Introduction
Given the today’s level of advancements in technology
and methodology, software development is a complicated,
creative task that is generally nontrivial and often leads
to unpredicted results. That is why for decades, there has
been a significant interest towards establishing an efficient
software development pipeline.

The problems associated with establishing smooth
software development pipelines, designing efficient soft-
ware components and choosing the right project solutions
are among the most crucial in the software industry1.

Indian Journal of Science and Technology, Vol 9(47), DOI: 10.17485/ijst/2016/v9i47/109080, December 2016

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

Despite the numerous attempts to formalize software
design and development, in practice the high level of
problem ambiguity and the complexity of the solutions at
hand results in only about 29% of IT-projects fitting into
their deadlines and budgets2. Even the stats show that the
key reason for derailed projects is their complexity.

Brooks1 made the earliest, most widely known
attempts at understanding the specific experience in the
design and development of IS software components. In
general, there are several generations of approaches to the
design and development of software components, namely
the following:

Keywords: Enterprise IS, Multiple-path Integration, Software Development

Making a Formal Case for the Development of Components of Modern Enterprise Information Systems

Indian Journal of Science and TechnologyVol 9 (47) | December 2016 | www.indjst.org2

1.	 The generation of structural development, which
heralded the emergence of CASE tools and the use
of the Waterfall model as the fundamental one3.

2.	 The generation of Object-Oriented Programming
(OOP), accompanied by the adoption of the spiral
model, adaptive development processes, UML and
OOP patterns4–6.

3.	 The generation shaped by the Agile Manifesto,
whose underlying concept is about the maximum
agility in following the customer’s interests and
any changes in them, aiming to focus the custom-
er’s attention on the product quality7–9.

4.	 The SEMAT initiative that bridges the practical
gap between various software methodologies by
enabling development teams to choose the tools
that have the biggest relevance to the project’s
scope10.

In the course of shaping these software development
approaches, a new paradigm of designing and imple-
menting components has emerged, with its key principles
aggregated in the following groups:

1.	� Maximization of quality in terms of functional-
ity. This includes iterative development practices,
close collaboration with the customer (or cus-
tomer’s representative) and aggressive testing (to
the extent of adopting Test-Driven Development
(TDD)).

2.	� Minimization of the cost of change, both through
the use of flexible object-oriented architectures
and the introduction of parameters to system
configurations, and through the adherence to
coding standards and popular architectural pat-
terns (such as MVC) in order to simplify the
reading of source code.

3.	� Minimization of development time, through a
partial code generation, use of frameworks and
general-purpose libraries, functional code re-use
and the development and application of typical
project solutions and patterns.

It is easy to see that generally speaking, these groups
of principles contradict one another, so the fundamen-
tal task in front of any developer is to find a reasonable
compromise in the extent to which the aforementioned
principles are to be implemented. Yet the growing com-
plexity of the designed software systems makes this task
increasingly harder, and the solutions to this task —
increasingly less certain, dependent in large part on the
expertise of the people making project-related decisions,
which gets reflected on the software’s performance in
the long run. According to SEMAT visionaries, in case
the software industry maintains the existing trends, the
mankind should brace for a disaster in the form of global
software degradation by 2025 at the latest.

2.  Concepts
Within their study of the issues related to building modern
software systems, the authors have conducted the sam-
pling analysis of software development projects realized
in various industries, involving a range of technologies,
over the last 10 years. The sampling criterion required
that the developed products are still used today (with
due account for modifications which however should not
have affected more than half of the original source code).
A separate research was applied to a group of projects that
were supposed to automate some processes in a certain
industry at the launch of the developed software, which
later underwent a significant upgrade or completely
replaced with a similar product in the subsequent years.
The project analysis has revealed the following tendencies
clearly identified to a varied degree in almost every proj-
ect from the studied group:

1.	� Excessive spending on equipment and platform
products attributable to the volatility of require-
ments arising in the process of the development
of mathware and software within the enterprise
computing infrastructure;

2.	� Excessive labor input into the development of
software components used for solving short-
term tasks;

Alexander Ryndin and Sergey Sapegin

Indian Journal of Science and Technology 3Vol 9 (47) | December 2016 | www.indjst.org

3.	� Excessive efforts into integrating software prod-
ucts from different vendors and development
teams;

4.	� Unnecessary abundance of features in the
implemented software systems, the lack of deep
integration between their components;

5.	� Misaligned user experience caused by an incon-
sistent IS growth strategy.

Our analysis shows that the above-listed examples of
excess are for the most cases associated with the attempts
at improving the efficiency of the software environment,
achieving a certain level of performance of its compo-
nents (functionality, agility, feasibility) without taking
into account their underlying systemic relations and the
rate at which the system evolves. Therefore, it makes a
good sense to consider the process of building software
components in terms of the general information systems
development strategy, in view of the influence caused by
structural aspects of the particular IS.

Let’s take a look at building a software component for
an information system based on the Service-Oriented
Architecture (SOA)11,12. The development path for the
information system itself can be formulated as a sequence
of procedures aimed at the continuous improvement of
the existing and the implementation of new IT services. It
has to be noted that in real life, there are complex, multi-
layer relations between the existing and new services
within an IS which determine their mutual influence.
In its turn, the design, implementation and exploitation
of each IT service can be carried out using various tech-
niques making use of different structures and approaches,
depending on the nature of the service, the utilized tech-
nologies, methods, the scale of the service, user capacity,
etc.

The strategy that is to be adopted for the development
of the components of an enterprise IS must work towards
achieving the maximum economic benefits from using a
particular component (service). The authors propose to
formalize this task in the form of the following expres-
sion:

∫ →
T+T

F(t))f(S(t);
T

0

0

max
,			 (1)

where S(t) is a set of requirements for the IS compo-
nent, F(t) is the implemented functionality, T is the time
of the actual usage of this component as part of the sys-
tem, T0 is the starting time of the usage of the component,
f is the function assessing the adequacy of the compo-
nent’s functionality F(t) with regards to the actual
requirements S(t), []0,1∈f . With this in view, execu-

tion strategies can comprise the following basic concepts:
1.	� Statement of software requirements S(t) in the

way that makes them easier to implement. This
task can be accomplished through the procedures
of business modeling, requirements management
and written specifications, which are part of the
majority of modern software engineering meth-
odologies. In terms of client-to-vendor relations,
the methods for stating the most practical set of
requirements can be broken down to the follow-
ing groups:

–– the use of a range of methods and tools for
structuring the stipulated requirements and
preventing their uncontrolled “evolution”
within the project scope (iterative review
of requirements, prototyping, gathering
non-formal data on the project’s structure,
establishing the mechanism for changing
the requirements, preparing documents that
record the requirements at a certain level).

–– streamlining the implementation strategy
(prioritizing requirements and arranging
them by the time and effort needed to imple-
ment them, by their having user dependencies,
etc.);

Making a Formal Case for the Development of Components of Modern Enterprise Information Systems

Indian Journal of Science and TechnologyVol 9 (47) | December 2016 | www.indjst.org4

–– preparing counter-offers (exploring the
possibilities for implementing certain require-
ments by means of components and solutions
the developers already have in their toolkit,
making suggestions as to the reorganization
of inessential business processes in order to
simplify automation).

2.	� Maximization of the concerned component’s
functionality F(t) by the time the developed
component starts being used. The component’s
features should be designed with a view to an
up-to-date set of requirements S(t) and the
anticipated changes in them, besides the exist-
ing development technologies and developers’
skills should also be taken into account. The
problem of creating a component with a set of
features F(t) that closely match the current set
of requirements S(t) is in fact the problem of
setting up an environment for an effective team-
based software development. This problem has
been widely addressed in the literature over
the last few decades. It is worth noting that the
majority of strategies proposed for solving this
problem are based on empirical data. It is gener-
ally considered a difficult task to design and use
mathematical models for organizing a smooth
software development process, and here are the
main reasons:
–– high significance and unpredictability of the

human factor;
–– inefficiency of formal approaches to setting

up the collaboration within small teams;
–– heavy reliance of the outcome on the emerging

development technology and methodology.

3.	� Maximization of the time frame [T0,T0+T] within
which the developed component is being used.
The useful life of a component is determined by
the following factors:

–– carefully elaborated requirements reducing
the chance of the S(t) set changing in the

future and, consequently, extending the time
interval T during which the component is
being used;

–– use of programming methodology that is
open to changes (object-oriented approach,
agile architecture, etc.);

–– predetermined maintenance and support
strategy, as well as a plan for the component
revision during its operation (managing user
requirements, documenting solutions and
technology, taking into account the human
factor).

The following macro-system indicators can be used
to rate the performance of the system architecture as a
whole:

-	� the degree of diversity of technologies and meth-
ods used throughout the system;

-	� the degree of integration of system components;
-	� the degree of functional redundancy;
-	� the degree of inconsistency between the system

functions.

1.	� One of the possible indicators of the diversity of
technologies and methods used for implement-
ing the components of an enterprise IS could be
the entropy of the decision tree for each com-
ponent. Systems with low-entropy decisions are
highly “monolithic,” with a relatively strictly
fixed set of technologies available for applica-
tion. On the one hand, this contributes to a more
coherent and consistent structure of the enter-
prise IS, while on the other hand it increases
the risk of the components falling short of user
requirements, which can result in a consider-
able shortening of the useful life of the system.
Conversely, high entropy can both indicate a well-
designed architecture open to changes and signal
the inconsistency of the system components, the
lack of unified standards and, consequently, lead
to an exponential rise of the cost of development
for each new component.

Alexander Ryndin and Sergey Sapegin

Indian Journal of Science and Technology 5Vol 9 (47) | December 2016 | www.indjst.org

2.	� To measure the degree to which the system com-
ponents are integrated, it is possible to use the
following indicators:

- average number of relations between the system
components:

nCÑ
n

i
iñð ∑

=

=
1 ,				 (2)

where, iÑ is the number of relations the component i

has with other components;
- average number of components that take part in the

implementation of a particular business process:

mBB
m

j
jñð ∑

=

=
1 , 				 (3)

where, jB is the number of the system components

that take part in the business process j;

In addition to calculating averages, it is sometimes

useful to evaluate the distribution dynamics of iÑ and

jB in order to identify bottlenecks in the system, as well

as set the goals for the refactoring of the IS and the re-
engineering of the business processes.

3.	� The degree of functional redundancy is an indi-
cation of the percentage of unused features in the
system. Depending on the system architecture
and the purpose of the assessment, the following
criteria can be used for that assessment:

-	� the proportion of interfaces that are not used
for maintaining business processes (in relevant
architectures);

-	� the proportion of procedures and functions that
are not used for IS operation (including those

that have been “temporarily” switched off at the
final stage of functional tuning);

-	� the proportion of processes implemented in the
EIS that are nevertheless keep running without
interacting with other IS components.

4.	� The degree of inconsistency between different
business functions of the system indicates the
dissimilarities in the way various system business
processes are implemented, the inconsistency of
data and behavior logic of the system compo-

nents. Let us assume that iV is the i-th identified

fact of inconsistency between the implementa-
tions of the same function within two different

system processes. Let us define)(iVf as the

function measuring the degree of importance of

the inconsistency detected in the i-th fact, iV . In

that case, the problem of the integration and re-
engineering of the IS can be formalized as

min)(
1

→∑
=

n

i
iVf

, 				 (4)

where, n is the total number of detected inconsisten-
cies in the system. Under favorable circumstances, it is
recommended to strive for a complete elimination of the
detected inconsistencies, yet in some cases the process of
integrating various applications into a single enterprise IS
does not allow for the total elimination of inconsistencies,
which would significantly exceed the budget or simply
prove unpractical for cost reasons. At any rate, the deci-
sion on each identified inconsistency, as well as the

)(iVf measurement, will rely entirely on the input by

the experts who work on the development of the architec-
ture and the integration of different components under
one EIS.

The general best practices for the development and
effective operation of an EIS are not limited to designing

Making a Formal Case for the Development of Components of Modern Enterprise Information Systems

Indian Journal of Science and TechnologyVol 9 (47) | December 2016 | www.indjst.org6

a static architecture with the required agility and perfor-
mance, but also concerns the identification of the best
path for developing the enterprise IS and making the EIS
stay on that path.

The task of developing a software component can gen-
erally be expressed in the following words. Suppose there

is the set of requirements iS for the component, with its

parts expressed through the following formula:

()() ()() ()tDuseri,techi,i S+SÑ+tB++StA+=S ⋅⋅ 11
	

						 (5)

where i,techS represents the technologies used to

enable the component (including the technologies used

to interact with other system components);
useri,S repre-

sents the user requirements for the component;
() ()tB,tA are multipliers determining the rate of

changes introduced within the component during its use-
ful time; C is the factor of consistency of requirements

for the component set out by the different users of the
component within the enterprise IS; ()tDS is a set of

requirements stipulating the compatibility of various fea-
tures inside the component (the conditions for the
multipliers () ()tB,tA). Therefore, the general task of

developing a software component can be described as

meeting, within a limited time frame, a set of require-

ments xS that is as close as possible to a certain ultimate

(ideal) set of requirements idealS . Generally speaking, it

is impossible to achieve a full compliance with idealS dur-

ing development because of the following reasons13:

1.	 The software component must be completed
within a limited period.

2.	 The requirements for the software component to
be developed are often set out by a whole group (or
even several groups), and not by a single user, so
each group member can put forward requirements
which are hard to align with the requirements of
other group members.

3.	 The requirements for the software component can
change with time, from both the user side and the
side of the software with which it interacts.

4.	 In many cases, the assessment of the feasibility of
all user requirements is done without taking into
account the subjective nature of this process, i.e.
the skills of the developers working on the soft-
ware component.

3.  Results and Discussion
Based on the suggested concept, the problem of achieving
the maximum cumulative effect from the use of a particu-
lar software component in a system can be expressed as

∫ →
T+T

F(t))f(S(t);
T

0

0

max
,		 (6)

where, S(t) is the set of requirements, F(t) is the set of
implemented features, T is the useful life of the compo-
nent, T0 is the moment when the component started being
used, f is a function reflecting the correspondence between
the component features F(t) and the actual requirements
S(t), f ∈[0,1]. The simplest interpretation of the f func-
tion is the following expression

| |S(t)
F(t))D(S(t),=f

, 			 (7)

where, D is the cardinality of the symmetric difference
between the sets S(t) and F(t) at the moment of time t; |S(t)|
is the cardinality of the set S(t). Experience has shown that

Alexander Ryndin and Sergey Sapegin

Indian Journal of Science and Technology 7Vol 9 (47) | December 2016 | www.indjst.org

the dependence diagram for the distance between the sets
S(t) and F(t) (i.e. the degree of correspondence between
the component features and requirements) turns into an
S-curve, so long as the development process is vigorous
(task-oriented). The reason for this is that at the begin-
ning of the development cycle, resources are dedicated
not so much to implementing functions, as to building
the architecture of the software tool. Therefore, the varia-
tions of the f function that are closer to statistical data
should be looked for amongst the family of S-functions of
varied curvature. Figure 1 shows a sketchy diagram of the
f function reflecting the most common life cycle of such
component.

A component life cycle ends when the component is
taken out of service. The main reasons for taking a soft-
ware component out of service are:

1.	 Reaching a certain critical threshold of the mini-
mum number of features in use (the component is
in fact rendered useless under new circumstances);

2.	 The component being incompatible with the
actual architecture (in case there is a change in the
operation system, data model, service interaction
environment, standards, etc.);

3.	 Replacing the component with a new version or
delegating all of its features to other components
put into operation.

The need to consider systemic relations and the
mutual influence of a number of uncertainties in the
course of making reasonable decisions leads to the emer-
gence of models, in which looking for a precise solution
is not the most efficient approach, since in the process
of searching for the optimal solution you might lose the
ability to analyze an entire group of dominant decision
options. It is, however, possible to expand the potential of
the systems approach to the design and development of
software components if you agree to measure the metric
value of the rationality of your choice of solutions using
an information characteristic, namely the entropy of the
multiple-path integration that determines the degree of
diversity of the numerous paths for integration. In the
dynamically evolving and changing structure of rational
decisions, it is the entropy that often is the only indicator
that serves as a suitable ground for choosing a solution
that will ensure the optimal development of complex soft-
ware packages under the conditions of uncertainty.

f

1

T0 TK t T1

x

1 2 3 4

Figure 1.  Component life cycle.

Making a Formal Case for the Development of Components of Modern Enterprise Information Systems

Indian Journal of Science and TechnologyVol 9 (47) | December 2016 | www.indjst.org8

Let us present the process of building a software pack-
age as a design path consisting of a series of
multiple-criteria choice tasks, where the outcome of each
choice affects the route of the further system growth. In
the course of designing the enterprise IS, the choice is
made among the items of vector gW


, each of which, in

its turn, contains a set of components making up the sys-

tem. The choice items gg W=w 1, will in general define

the implementation choice:

S)w,,w,,w,(w=S Gg2l ∈......1 ,		 (8)

and are described by a vector of parameters Wgf .

When switching between the implementations

gg Ww 1,∈ , the components of vector Wgf are to be

changed discretely.
The decision on choosing the best possible design

path (based on their complexity) and the technology
stack for its implementation, given the multiple existing
options of the IS architecture and of the integration prin-
ciples, is made based on the aggregate value of all the

technical and economic indicators)I=(iFi 1, . The

chosen design path is supposed to ensure that the soft-
ware will be designed with a focus on the planned
performance characteristics: reliability, efficiency, func-
tional richness, etc. The software performance
characteristics form a subset IIá ∈ that determines the

choice of the variables in the design process.
To outline the principles of the multiple-path integra-

tion, let us explore the nature of the task of complex
systems design. The rational synthesis task is generally
about choosing the best option Ss ∈ , where S is a gen-

eral set comprising various items. The choice s is made

via a step-by-step crossing off of options that do not sat-
isfy the given requirements, i.e. it is made through limiting
the diversity expressing the relations between two sub-
sets, whereby the diversity of one of them is reduced by
applying certain limitations. The currently known direct
search methods intended to reduce the diversity of the S

set can help find a solution within an adequate time frame
only for synthesis problems limited by the determinacy of
the relation between the parameters of system options

and the requirements ()I=iFi 1, , as well as by the clear-

ness of the requirements for the system operation
environment, which has an analytically defined criterion
for evaluating the overall system efficiency.

The most effective instrument for measuring the gen-
eral degree of diversity of the options bound by probability
relationships is the entropy, such as the one for a subset of
options á that can be expressed using the following for-

mula:
∑−

N

=n

α
n

α
n PP=H(α

1
lg)

			 (9)

and has a range of intrinsic properties:
It is symmetric with respect to the coordinates of vec-

tor
áp , i.e. it does not depend on the relative positions

of á
np ;

It peaks in vector
áp with coordinates

N1,/1 =nN,=pá
n ∀ , i.e. when all options are

equal;
It attains its minimum in vector

áp with coordinates

vn=p=p α
n

α
v ≠∀0,1, , i.e. when there is only

one integration path left suitable for implementation.

Alexander Ryndin and Sergey Sapegin

Indian Journal of Science and Technology 9Vol 9 (47) | December 2016 | www.indjst.org

In addition to that, one must observe the principles
of local and multiple-path integration, utmost reliability
and adequacy.

4.  Conclusion
The present-day practices of software development rarely
involve building and using any standards of software com-
ponents development within a particular project. Under
these circumstances, the development standardization is
mostly aimed at building a set of typical solutions used by
programmers in certain cases. Among the reasons for the
common neglect of standardization are such factors as the
diversity of problems to be solved, the specific nature of
different industries and the human factor. On the other
hand, in case of an initially highly uncertain set of user
requirements, or when development, testing or deploy-
ment needs to be expedited or paralleled, it is possible to
achieve a positive effect in terms of both time and perfor-
mance by building and using local development standards
for each project. A key role here is played by the relations
between the components and the estimated useful time of
each component.

As a use case, let us review the task of building a
CAD system for creating data transmission networks that
would help design metropolitan multi-service communi-
cation networks. The construction of modern high-speed
communication networks and the installation of neces-
sary equipment are expensive in terms of both costs and
time, so when designing a data transmission network,
engineers extensively use numerous methods for simulat-
ing and modeling networks, as well as for predicting the
increase in their traffic load over time and the operation
patterns of various equipment in a certain environment.
For this reason, one of the most important requirement
for the data transmission network CAD system is the
availability of effective integration mechanisms maintain-
ing the exchange of data between other design tools, as
well as an open architecture that allows importing into
the CAD system of different algorithms of simulating
various pieces of equipment, consumers of data services,
channels, etc. The overall structure of the CAD system is

fairly transparent in this case, but the success in stream-
lining its development and implementation relies heavily
on the procedure of component development and the
corresponding design philosophy. The situation was ana-
lyzed based on the acquired general list of components
to be developed, the evaluation of labor intensity of each
component, and the assessment of the volume of imple-
mented user requirements, including the aforementioned
uncertainty factor. Based on the results of analysis of the
user requirements, a component dependency matrix has
been built. Then, using the gathered data and the prede-
termined set of common development approaches (rapid
development, architecture design methods, development
intended to create a reusable component), the approxi-
mate life cycle profiles was calculated for each component.
The most streamlined paths for designing the components
and the recommended standards were determined based
on the principles of multiple-path integration. Up to two
independent paths were considered for each component.
The streamlining of the system development plan allowed
us to clearly identify the following groups of components:

1.	� Key components with a low degree of uncer-
tainty. In general, the recommendation for such
components was to elaborate them with as much
details as possible.

2.	� Key components with a high degree of uncer-
tainty. In this case, the most optimal strategy
has been the concept of “disposable design” that
intends to quickly deploy the initial “stub” ver-
sion to test any dependent components, followed
by a detailed development of an advanced ver-
sion of that component adjusted for the newly
identified user requirements.

3.	� Non-key components. Their implementation
standard is directly determined by their degree
of uncertainty – the higher this degree, the more
details should be factored into the component.

Time-wise, it was easy to spot the signs of risk miti-
gation strategies: the components with the least certain

Making a Formal Case for the Development of Components of Modern Enterprise Information Systems

Indian Journal of Science and TechnologyVol 9 (47) | December 2016 | www.indjst.org10

requirements tended to migrate towards the beginning of
the development process.

Thus, the use of multiple-path integration methods for
a comprehensive evaluation of the possible paths for the
evolution of enterprise information ecosystems, as well as
for choosing the most reasonable software design meth-
odology within the scope of the enterprise IS, is one of
the ways to ensure the organization’s competitive growth
in today’s reality.

5.  References
1.	 Brooks FP. The mythical man-month: essays on software

engineering. 2nd Edition. Addison-Wesley Professional;
1995.

2.	 Lynch J. Chaos report. Standish Group [Internet]. 2015.
Available from: http://blog.standishgroup.com/post/50.

3.	 Telnov Yu. Intelligent information systems in economics.
Study guide. Moscow: Sinteg; 1998.

4.	 Yakobson A, Buch G, Rambo G. Unified software develop-
ment process. Saint Petersburg: Piter; 2002.

5.	 Kruchten Ph. The rational unified process: An introduc-
tion. 3rd Edition. Addison-Wesley Professional; 2003.

6.	 Booch G, Rumbaugh J, Jacobson I. The unified model-
ing language user guide. 2nd Edition, Addison-Wesley
Professional; 2005.

7.	 Ryndin A, Khaustovich A, Dolgikh D, Mugalyov A, Sapegin
S. Design of enterprise information systems. Voronezh,
Kvarta; 2003.

8.	 Beck K, Beedle M, van Bennekum A, Cockburn A,
Cunningham W, Fowler M. Manifesto for Agile Software
Development; 2001.

9.	 Rubin KS. Essential scrum: A practical guide to the most
popular agile process (Addison-Wesley Signature Series
(Cohn)), Addison-Wesley Professional; 2012.

10.	 Bieberstein N, Laird RG, Jones K, Mitra T. Executing SOA:
A practical guide for the Service-Oriented Architect. IBM
Press; 2008.

11.	 Jacobson I, Ng P-W, McMahon PE, Spence I, Lidman S. The
essence of software engineering: Applying the SEMAT ker-
nel. Addison-Wesley Professional; 2013.

12.	 Erl T. Service-Oriented Architecture (SOA): Concepts,
technology, and design. Prentice Hall; 2005.

13.	 King W. ITIL for beginners: Simple and easy beginners guide
to understanding and starting with ITIL Implementation in
your organization; 2016.

