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1.  Introduction

Model Predictive Control (MPC) refers to a control strategy 
in which model of the process to be controlled is used to 
predict the future control inputs and plant responses with 
optimization at regular sequences1. A control algorithm is 
designed to optimize the future output of the plant based 
on these predictions2. MPC improves the performance 
and control of many applications in the process industry 
and has become one of the most widespread control 
strategies for processes with constraints3. MPC has a very 
well grounded theoretical basis and its algorithms are 
designed to control systems with many control variables 
and it deals with the constraints on state and input in 
a very systematic manner. The predicted inputs are 
calculated from the design problem by solving it in real 
time.

Model Predictive Control benefits linear systems 
which attracted many researchers attention4–7. Similarly, 
nonlinear model predictive control is also applied in 
different process industries for many years to control 
complex problems which is the main attraction strategy8–10. 

One of the most classical problems in the field of 

control engineering is the balancing of inverted pendulum 
while the cart moves horizontally. IP is one of the most 
reasonable platforms to test classical and modern control 
techniques11,12. A man’s weight exerts force downward 
while standing on earth against which (exactly opposite) 
he balances himself. By moving the position of the two 
legs he manages to balance himself against the force 
of gravitation. It is a perfect example of the man who 
balances himself on the earth.

The system stabilization will be achieved through 
control techniques via PID and Model Predictive 
Control13. A comparative study and analysis between 
these control techniques will be made in order to suggest 
an optimal method to control the pendulum14.

2.   Model of the Inverted 
Pendulum System

Inverted pendulum is the single input multi output 
systems, which is highly unstable and nonlinear. The 
model of the inverted pendulum is designed and control 
strategies are applied to stabilize the system efficiently and 
robustly.
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Figure 1.   Inverted pendulum.

2.1 Equations of the System
The horizontal motion of the cart is given by summing all 
the horizontal forces,
F ma=        (1)

It can be written according to the figure as:
1 2 Gu bx m x m x− = +        (2)

Where, 
sinGx x l θ= +       (3)

2

2
(sin )G

dx x l
dt

θ= + 
     (4)

Put Equation (3)  in the above mentioned Equation 
(2) to get:

2

1 2 2

sindu m x m x l bx
dt

θ 
= + + + 

 
  

    5)

2

2
(sin ) ( cos )

d d d
dt dt dt

θθ θ=     (6)

applying derivatives so we get,

2
2

2

sin
sin ( ) cos ( )

d
dt

θ θ θ θ θ= − + 

     (7)

Substituting Equation (7) in Equation (5) to get,
2

1 2 2 2cos ( ) sin ( )u m x m x m l m l bxθ θ θ θ= + + − + 

  
  (8)

For the vertical motion of the pendulum the Newton’s 
second law can be written as:

2 2y Gu m g m y− =      (9)

Where,
cosGy l θ=      (10)

and
2cos ( ) sin ( )Gy l lθ θ θ θ= − − 


   (11)

Substitute Equation (11) in above  mentioned 
Equation (9)

2
2 2 cos ( ) sin ( )yu m g m l lθ θ θ θ − = − − 

 
  (12)

moment Iθ=   and torque Ur=

Both the equations are compared and can be expressed 
as:  

sin cosy xu I u I Iθ θ θ− =     
 (13)

Substituting the  values of horizontal force and vertical 
force in Equation (13):

( ) ( )2 2
2 2 2 2 2cos ( ) sin ( ) sin cos ( ) sin ( ) cosm g m l l I m x m l m l bx I Iθ θ θ θ θ θ θ θ θ θ θ   + − − − + − + =   

    

 

 

      (14)
The final equation we get is given by: 

2
2 2 2(I m l ) sin cosm gl m l xθ θ θ+ = −



  (15)

These equations are needed to be linearzied about θ π= , 

the pendulum is π  radians from its position where it 

should be stabilized. 
θ π ϕ= +       (16)

Figure 2.   Cart and pendulum free body diagram.
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ϕ  is the small angle of deflection which should approach 
to zero for the pendulum to be stable ( 0ϕ → ), sinϕ ϕ= , 
cos 1ϕ = . The derivative of ϕ  is zero because the deflection 
is so small (Assume 2ϕ  as zero) and sinθ ϕ= − , cos 1θ = −
. Putting all the required values so we can get the final 
equations as expressed below:

1 2 2( ) ( )u m m x m l bxϕ= + − + 

     (17)

2
2 2 2(I m l ) m lx m glϕ ϕ+ = −          (18)

If we made an assumption under which the centre of 
the mass pendulum is equal to its gravity centre, then I = 
0. The equation becomes as:

l x gϕ ϕ= −          (19)

Now, taking Laplace transform of both Equations (17) 
and (18) respectively.

2 2
1 2 2U(s) ( )s X(s) s ( )m m m ls bsX sϕ( )= + − +     (20)

2 2ls (s) X( ) (s)s s gϕ ϕ= −      (21)
Solving Equation (21) for X(s), we get,

2 2X(s) [(ls ) / s ] (s)g ϕ= +       (22)

Put the specified equation in (20) to get,
2 2 2 2 2 2

1 2 2U(s) (m ) [(ls ) (s) / ] m (s) [( ) (s) / ]m s g s ls bs ls g sϕ ϕ ϕ= + + − + +   

      (23) 
The transfer function of the inverted pendulum 

system is given as:

2 3 2
1 2 2

(s)

U(s) (m )[(ls )]s m [( )]

s
m g ls b ls g

ϕ
=

+ + − + +
    (24)

For friction to be zero i.e. b = 0,

2 2
1 2 2

(s) 1

U(s) (m )[(ls )] mm g ls
ϕ

=
+ + −

     (25)

3.   Model Predictive Control 
Strategy

,    (26)
Where, uk is the input and xk is state 

vector at the kth sampling time sequence. 
A succession of state predictions are created, when the 
model is simulated over N sampling sequences. The 
prediction sequence is stacked into vectors u, x.

     (27)

    (28)
Where, N = 1,2,3…. and and  denotes 

the vectors which is well expressed as input and state at 
the given time interval k + i and the predictions are made 
at the time sequence j. 

,           i=0,1,2….  
      (29)

State vector at the beginning is expressed as:  
.

3.1 Prediction Models and Optimization
The predicted cost is given by:

   (30)

Q is ( positive definite and positive semi-definite), 
where R is only (positive definite) matrix. The predicted 
cost  is the function of input vector  and input to 
the design problem for minimizing the cost is given by 

.
      (31)

Input to the plant is the only initial element of the input 
sequence , which is predicted first is 
. The process in which the predicted cost is minimized, 
by computing  and then implement the initial element 
of predicted input u*. This is a cyclic process repeated 
at each interval k= 0, 1, 2, 3…. This is known as online 
optimization.

3.2 Prediction Equations
The prediction cost function depends on input sequence 
u . So, the predicted quadratic cost can be showed 
as a function of input u.

( ) ( ) 2T T
k kJ k u Hu k f u g= + +

   (32)

H is defined as positive definite matrix and can also be 
positive semi-definite matrix.  F and g are the vector and 
scalar quantities respectively depends on x (k).

( )c cA u k b≤          (33)

Where 
cA  is a constant matrix and cb  is a vector which is 

a function of x (k).
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2MINIMIZE T T
u

c c

u Hu f u
subject A u b

+
→ ≤

   (34) (35)

This type of optimization is known as quadratic 
programming, where positive definite matrix is H. So, the 
equations comprise of function and constraints are linear, 
which is convex functions of the optimization input 
variable u. Shows that it is a convex problem.

If a prediction model that is nonlinear developed 
for the process to be controlled than the optimization 
of the design problem is complex as compared to linear 
model. Due to the nonlinear dependencies of the state 

 on input vector . The predicted cost function 
can be expressed as   and the constraints as 

, which is the non-convex functions of 
input . So, the design optimization problem becomes 
a non-convex nonlinear programming. Given as:

( , )MINIMIZE
u kJ u x       (36)

( , ) 0ksubject g u x→ ≤      (37)

4.  PID Controller 

The inverted pendulum model is implemented and the 
results of the simulation displays that the system model is 
highly unstable in open-loop, as it is evident from the pole-

zero map of the system that one of the poles lies strictly 
inside the unstable region. The step and impulse response 
in the (Figure 3) shows instability in the system due to 
very speedily divergence of the theta. This characteristics 
of the model gives us a response which specify instability 
in the system. The stability plot of the inverted pendulum 
system reveals highly unstable nature of the system as 
the branch of locus recline in the unstable side (left hand 
side) of the imaginary axis due to which for all gain values 
the system is also unstable in closed loop. The locus needs 
to be reshaped for the system so that all the poles of the 
system will lie in the stable region (left half plane). The 
simulation results of the open-loop unstable system is 
shown in the Figure 3 below.

The root locus is shaped by introducing pole of the 
controller to cancel the effect of zeros here available at 
the origin of the locus diagram and those all should be 
in the region which is stable. Zeros of the compensator 
are initiated on the left of the s-plane in stable region to 
tug the locus more in the direction of the stable region 
as shown in the Figure 4. Hence, the PID controller is 
implemented and it will stabilize the system to let fall 
all the roots in the stable region (left s-plane). The poles 
and zeros of the closed loop system shown in the Figure 
4 lies in the stable region (left hand side) and fulfilling the 
stability criteria. The closed loop system is very stable and 
the response of the system is shown in the Figure 4 below:   

Figure 3.   Unstable open-loop inverted pendulum system.
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5.  Simulation and Results 

Simulation results of the inverted pendulum system 
designed and when theta diverges very quickly it displays 
that the system is very unstable. The system becomes 
stable as theta for the model of the system is stabilized 
for a certain value, it is very much apparent from the 

Figure 5. The impulse response of the closed loop inverted 
pendulum system is stable as it again comes to zero and by 
introducing disturbance in the force, all the disturbances 
that are in inverted pendulum model are all rejected and 
system explicitly gives stable response as shown in the 
Figure 5 below:

Figure 4.   Stable closed-loop inverted pendulum system.
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Figure 5.   Response of open-loop and closed-loop PID system.
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Model predictive control is implemented for the 
inverted pendulum system (v, theta and q) are zero at 
the beginning. The result shows that when the force is 
negative the cart moves backward and the angle starts 
tipping forward. When force is applied forward (positive) 
the cart moves in the forward direction the pendulum 
moves backward. 

The pendulum makes the maneuver till 5 seconds 
and then the cart velocity becomes zero. So, it takes (0.1 
seconds) for the system to stabilize itself and gives theta 
and angle rate zero. Model predictive control gives better 
response and performance as the results are compared. 
The steady state error is zero and settling time, rise time is 
less from PID controller.  

6.  Conclusion 

In this paper, a robust predictive controller is successfully 
designed and implemented in MATLAB for the inverted 
pendulum system. The controller developed is more 
fast and produces results which are highly effective as 
compared to other control strategies. The result reveals 
that both the control methods are successful in controlling 
the cart’s position and the angle of inverted pendulum 
system. Based on the simulation results, robust MPC 
gives better performance in controlling and stabilizing of 
the inverted pendulum and is more suitable method for 
controlling of similar unstable systems. 
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