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1.  Introduction

Fuzzy differential equations (Fdes) are appropriate in 
the modeling of many real-world phenomena. Using the 
concept of H-derivative defined in1, Kaleva2 developed 
the theory of Fdes.  For detailed study on Fdes and their 
applications we refer to3-12.  Dynamic equations on time 
scales13,14 is an emerging area which unifies effectively 
both differential and difference equations. An example of 
this type can be seen in seasonally breeding populations 
giving rise to new non-overlapping generations. In15, 
the author introduced −∆g derivative and −∆g integral, 
studied the fundamental properties of fuzzy set-valued 
mappings on time scales. In16, the author introduced  
∆SH −derivative and studied the FDEs on time scales. 

Preliminary properties and definitions related to fuzzy 
set-valued mappings, fixed point theorems and calculus 

on time scale are presented in Section 2. In Section 3, 
the properties of −∆g derivative are studied which are 
necessary for later discussion. In Section 4, with the help 
of fixed point theorems in17,18, we establish existence and 
uniqueness criteria for g,1∆ -solution and g,2∆ -solution 
of FDEs on time scales. 

2.  Preliminaries

Denote ]},1  ,0[:{ →= nn uE R  u is fuzzy convex, upper 
semi continuous, normal and support 0][u  is compact.  
For nEwv ∈ ,

)][,]([
1 q  0

sup)  ,( qq
H wvdwvD

≤≤
= ,

Where Hd  is the metric defined in 2. For ,1  0 ≤< q  the 
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level q− set ),(})(/{][ n
k

nq Pqyuyu RR ∈≥∈= where 

)( n
kP R is defined as in 2.  For any nEwv ∈ ,  and ,R∈γ  

,][ ][  ][ qqq wvwv +=+
 

].1 ,0[    ,][  ][ ∈∀=• qvv qq γγ

The partial ordering induced by the set inclusion in 
nE . i.e.  

.E  w   v,],1 ,0[   ,][  ][   n∈∈∀⊆⇔ qwvwv qq≺

The converse of the partial order ≺  is denoted by  � . 

 For any nEvu ∈  , , ∃  a ∋∈   nEw  wvu += , w  is the 
H-difference of u and ν which is denoted  by vuΘ .

Definition 2.1.2 A fuzzy-valued function nETG →:  is 
called Hukuhara differentiable  at a point Tt ∈1  if ∃  a 

nEtG ∈′ )( 1  ∋  the limits exist in nE

.
)(  )(

lim      
)(G  )(

lim    )( 11

0

11

0
1 k

ktGtG
k

tktGtG
kk

−Θ=Θ+=′
++ →→

The element G'(t1) is the Hukuhara derivative of G at 
t1 in the metric space (En, D).

Definition 2.2. 18 An altering distance function 
) ,0[)  ,0[  : ∝→∝χ is defined as

(i)χ  is continuous and χ(t2) ≥ χ(t1) for t2  ≥ t1 .
(ii) χ(t1) = 0 ⇔ t1 = 0. 

Definition 2.3.18 Let Y be a space with metric d1 and g1 : Y 
→ Y be a function. Then g1 is weakly contractive if for any 
altering distance functions χ and φ 

                   .  ,    )),,(()),((     )))(  ),((( 2121121121111 Yxxxxdxxdxgxgd ∈∀−≤ ϕχχ    

Lemma 2.1. 18 If Y is a partial ordered set with partial 
ordering ≤ and Y is complete metric space with metric d1.  
Let g1 : Y → Y  be a mapping, 121221    ),()( xxxgxg ≥∀≥
and satisfying

   )),,(()),((     )))( ),((( 212121111 xxdxxdxgxgd ϕχχ −≤ f o r 
.21 xx ≥ 						      (2.1)

Suppose X satisfies either 
 if a non-decreasing sequence { } N∈mmy  is convergent to 

Yy Î  , then { } NÎ"£ myym     , , or that 1g   is continuous. 
If ∃  Yy Î1  ∋ )( 111 ygy £ , then  1g  has a fixed point.

if a non-increasing sequence  { } NÎmmy  is convergent 

to Yy ∈  , then { } N∈∀≤ myy m     ,  , or that 1g  is 
continuous.  If there exists Yy ∈1  such that )(  111 ygy ≥ , 
then 1g has a fixed point.

Lemma 2.2. 18 Under the assumption of Lemma 2.1, if 
every pair of elements of X  has an upper bound or a lower 
bound, then 1g   has a unique fixed point.  Moreover, if x  
is the fixed point of 1g  , then Xx ∈∀     .)(lim 1 xxg k

k
=

→∝
 

For basic properties, fundamental results and 
notations on time scale we follow14.  

3.  �Differentiability and 
integrability:

Now, we study the results on ∆g− derivative for FSVF on 
time scales which are defined in 15. The ∆g− derivative 
given in Definition 13 in 15 can be equivalently written as

Definition 3.1.  A FSVF nEG →T:  is called 
abledifferenti−∆g  at kT∈1t  if n

g EtG ∈∆ )( 1   if for 
,0 δ<< k such that

1)

                  ),(                                                             
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provided the H-differences 
)(G  ))((  ),(G  ))(( 1111 kttGkttG −Θ+Θ σσ   exists.

The element )( 1tG g∆  is called the −∆g derivative of 
G at .1

kT∈t   We say that G is able,differenti,1 −∆ g  if G  is 
differentiable in form (i) and ∆2, g, ∆3, g, ∆4, g - differentiable  
, G is differentiable  in  (ii),(iii),(iv) forms respectively. 

Remark 3.1. If T = R,  the ∆1, g− differentiability coincides 
with the H- derivative defined in 1. Moreover, the ∆g− 
differentiability coincides with the derivative defined in4.  
It is more general than the differentiability introduced in 
3 which coincides with (i) and (ii), but it doesn’t cover (iii) 
and (iv). 
Example 3.1. Let { }.Nn  NT 22

0  : 0∈== n  Let 
1E→2

0N:G  defined by ,)( 11 uttG •=  1Eu ∈ is a 
triangular fuzzy number then G is ∆1, g− differentiable at 
all 2

0N∈1t . 

( ) .
21

1
  )(G 1 

21

1
)))(G  )(((

)(
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)(
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tGg •
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 Θ+•

+
=Θ•=∆ σ

µ

Example 3.2. Let  1: EG →T  given by ,)0 ,()( 11 utetG p •= −  where 1Eu ∈ is a triangular fuzzy number then G is 
abledifferenti,2 −∆ g  at all kT∈1t .

( ) .)0 ),(()( )0 ,(  )0 ),((
)(

1
)( 1111

1
1 utetputete

t
tG pppg •−=•Θ•= −−−

∆ σσ
µ

Thus, if G is ∆1, g− differentiable or ∆2, g− differentiable 
at kT∈1t  , then G  is ∆g− differentiable as in Definition 
3.1.  However, when G is abledifferenti−∆g  at kT∈1t
as in Definition 3.1, then G  may or may not be ∆1, g or  
∆2, g differentiable which can be verified from the following 
example. 

Example 3.3.  Let 1: EG →T  given by |,|)( tctG •=  
where 1)3 ,2 ,1( Ec ∈= is a triangular fuzzy number. Then 
G  is ∆1, g −differentiable  for  all kT∈t when 0>t and 

),3 ,2 ,1()( ==∆ ctG g  and G  is ∆2, g − differentiable  for all 
kT∈t  when 0<t and ).1- ,2- ,3()( −=−=∆ ctG g  For ,0=t  

neither (i) or (ii) of Definition 3.1. holds.  At ,0=t  the 
H-differences in (iii) of Definition 3.1. exists.  

Let T] ,[ dc  denotes T∩],[ dc .

Definition  3.2.  Let nEdcG →T]  ,[  :  and .],[0 Tdct ∈  The 
point t0 is said to be a switching point for the ∆g− 
differentiable function G, if it satisfies any one of the two 

conditions below,  i.e. for any neighborhood of t0 ∃   
T]  ,[201 dcttt ∈<<  ∋

(I) G is ∆1, g− differentiable on ( ]T01, tt  and  G is ∆2, g− 
differentiable on  T)),([ 20 ttσ ,   i.e. G is non-decreasing on 
( ]T01, tt  and non-increasing on ,)),([ 20 Tttσ           or

(II) G is ∆2, g− differentiable on ( ]T01, tt  and G  is 
 
∆1, g− 

differentiable on T)),([ 20 ttσ , i.e. G is non-increasing on 
( ]T01, tt  and non-decreasing on .)),([ 20 Tttσ

Theorem 3.1. Let nEdcG →T]  ,[  :  be a FSVF and 
.]  ,[0 Tdcs ∈

(i)If S0  is a switching point of type (I) abledifferenti−∆g of  
G, then G  is abledifferenti,4 −∆ g at S0.

(ii)If S0 is a switching point of type (II) abledifferenti−∆g
of G, then G  is ∆3, g−differentiable at S0. 

Proof  If S0  is right-scattered and switching point for G 
of type I, then 

( )

(3.11)                                    )).(G   ))(((
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1
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The limit in (3.10) exists if G  is ∆1, g− differentiable  or  
 ∆4, g− differentiable  and the limit in (3.11) exists if G  is 

 
∆2, 

g− or ∆4, g− differentiable.  Hence G  is ∆4, g− differentiable. 
In a similar way, we can prove (ii).

Definition 3.3. 15   The ∆ g− integral of nEG →T:   on 
,T⊂J  defined level wise by 

,)(:)()()(












∈∆=∆=


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






∆ ∫∫∫ JSgssgssGssG

J
F

J
q

q

J
q

where ),(JS
qF the set of all ∆g− integrable sectors of  

Gqon J. 	
For properties on ∆g− integral, we refer to 15.

4.  FDEs on time scales

Now, we focus our attention on the following nonlinear 
FDE on time scale
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(4.1)                                          ,]  ,[  t,z)z(t   )),(,()( 00 TdctztGtz ∈==∆

  ∆ denotes the ∆g− derivative. Throughout 
nn EEdcG →×T],[:  is a nonlinear function which is rd-

continuous and  ,]  ,[t0 Tdc∈ nEu ∈0 .  Eq. (4.1) is called 
FIVP on time scales. 

Definition 4.1.  Let Crd ([c, σ(d))]T, E
n be the rd-continuous 

fuzzy functions.
(i)A solution z(t) ∈ Crd ([c, σ(d))]T, En ) is called a ∆g− 
differentiable solution for (4.1) if z(t)  is an anti-derivative 
of ))(,( tztG  satisfying (4.1) . 

A solution for (4.1)   is called 
(ii) (1)-solution if it is ∆1, g− differentiable.
(iii) (2)-solution if it is ∆2, g−differentiable.
Consider the partial order on C = Crd ([c, σ(d))]T, E

n ) as
Cg ,g   ),(g )(g 21121121 ∈⇔ ttgg ≺≺  and .]  ,[    1 Tdct ∈∀

Clearly, Crd ([c, σ(d))]T, E
n) ≺  is partial ordered set.

Lemma 4.1. 18  The following results hold on  Crd ([c, 
σ(d))]T, E

n):
(i)If { } Cf mm ⊂∈N  is nondecreasing, with partial ordering 
≺  such that ffm → in C,  then ffm ≺  N∈∀ m  .

(ii)If { } Cf mm ⊂∈N  is nonincreasing, with partial ordering 
≺  such that ffm → in C,  then  N∈∀ m  .

Lemma 4.2. Let G  be rd-continuous. 
(i)A fuzzy function Cz ∈   is called a ∆1, g− differentiable 
solution  to (4.1) iff it satisfies  the integral equation 

(4.2)              .))](  ,[     ,))(,()( 101

1

0

TdctsszsGztz
t

t
σ∈∆+= ∫

(ii)A fuzzy function Cz ∈   is called a ∆2, g− differentiable 
solution  to (4.1) iff it satisfies  the integral equation 

,))(,()1()(
1

0

10 ∫ ∆−+=
t

t
sszsGtzz  ∀  ,))](,[1 Tdct σ∈ 	 (4.3)

                            or

,))(,()1(  )(
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
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t

t
sszsGztz

 
∀ ,))](,[1 Tdct σ∈

 	  (4.4)

Definition 4.2.  A solution for (4.1) is said to be a lower 
solution if the fuzzy function C∈η  satisfies  

.z(0)   ,(d)]  [c,  t)),(  ,()( 01111 ≺≺ ησηη T∈∆ ttGt  

If η  is ∆1, g− differentiable, then η  is said to be a lower 
∆1, g− differentiable and if η  is  ∆2, g−differentiable, then it 

is  lower ∆2, g− differentiable.
A solution for (4.1) is said to be a upper solution if the 

fuzzy function C∈η  satisfies  

.z(0)   ,(d)] [c,  t)),( ,()( 01111 �� ησηη T∈∆ ttFt

If η  is ∆1, g− differentiable (respectively ∆2, g−
differentiable), then η  is said to be a upper ∆1, g− 
differentiable solution (respectively, a upper ∆2, g− 
differentiable solution).

Theorem 4.1. (Local Existence and Uniqueness theorem)
Let nn EEdcG →×T]  ,[:  be rd- continuous. If there 
exists a lower ∆1, g− differentiable solution  η ∈ Crd ([c, 
σ(d))]T, E

n ) for (4.1) and
(i)G is non-decreasing w.r.to second variable, i.e. for 

11 wv �  then ), ,() ,( 1111 wtGvtG �

(ii)For comparable elements G is weakly contractive,  
i.e. for altering distance functions χ  and φ, 

(4.5)             . if  )), ,((  )),((     ))),( ),,((( 1111111111 wvwvDwvDwtGvtGD �ϕχχ −≤

Then a unique ∆1, g− differentiable solution z  exists for 
(4.1) on T(d)]  [c, σ .

Proof Define the operator CCA →:1  by

              .))](,[     t,))(,()]([ 1
0

011

1

TdcsszsGztzA
t

σ∈∆+= ∫

From Lemma 4.1 (i), Cz ∈   is the solution of (4.1), if 
Cz∈  is the fixed point of A1.

Define ,εD  a metric on C by
{ } ,,     ,))0,())(),((sup)  ,( 1111

)](,[

11 CwvseswsvDwvD
dcs

∈= −
∈

ε
σ

ε

T

Where 0>ε  large enough such that .1
)0,(1 <− −

ε
ε Te

This metric is equivalent to metric D, because 
) ,()0  ,()  ,()  w,( 111111 wvDTewvDvD εεε ≤≤ , C.  ,  11 ∈∀ wv  

However, Crd ([c, σ(d))]T, En ), Dε  
is a complete metric 

space. 
From assumption (i) and from Lemma 2.1 we have

                 ),]([))(,())(,()]([
11

0
11110

0
10111 ∫∫ =∆+∆+=
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twAsswsGzssvsGztvA �

whenever 11 wv � and T))]( ,[1 dct σ∈ . Hence the 
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operator A1  is non-decreasing. Now from (ii),

(4.6)             .    )),  ,((     ))) ,( ),  ,((( 11111111 wvwvDwtGvtGD �∀≤ χχ

In a contrary, Assume that 
.      )), ,(G ), ,(() ,( 11111111 wvwtvtGDwvD �∀<  

Since χ  is non-decreasing we have 
.)))  ,(G  ),  ,(((      )),(( 111111 vtutGDwvD χχ ≤  

From (4.6),  ,))),(),,(((     )) ,(( 111111 wtGvtGDwvD χχ =
. 11 wv �∀

From (ii),  0)),(( 11 =wvDϕ  which implies 0),( 11 =wvD
and hence .0))),(  ),,((( 1111 =wtGvtGDχ  From Definition 
2.2., we get 0)),(G  ),,(( 1111 =wtvtGD  which is a 
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By the existence of lower ∆1, g−  differentiable solution and 
Lemma 4.2 (i),
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σηηηηη ∈=∆+∆+= ∫∫ ∆ ≺

Thus . 1ηη A≺  Hence A1 satisfies all hypotheses of 
Lemma 2.1 and Lemma 2.2, and therefore A1  has the 
unique fixed point which itself is the unique ∆1, g− solution 
for (4.1).

Example 4.1. Consider the FIVP    )),( ,()( tztGtz =∆
 

where
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, 

We claim this FIVP has unique solution for T = R   
Clearly

).,(
r1

1
  sup)),(G ),,(( 11211 wvDwtvtGD
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≤

∈R
 

Consider the altering distance function 11)( tt =χ  and 

12

2

1
1

)( t
r

rt
+

=ϕ
, for some R∈r . Then all the assumptions 

in Theorem 4.1 are fulfilled and therefore the FIVP has 
unique solution.

Theorem 4.2. Let nn EEdcG →×T]  ,[:  be rd- continuous. 

If there exists a lower ∆2, g− differentiable solution η ∈ Crd 
([c, σ(d))]T, E

n ), for (4.1).  Let G  be such that:
(i)

( ) ],1 ,0[     ,))(,(][
1

0
0 ∈∀



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



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














∆≥ ∫ qsszsGdiamudiam

qt
q

(ii) G is non-decreasing in the second variable, i.e. if 
11 wv �  then ), ,() ,( 1111 wtGvtG �

(iii)For comparable elements, G  is weakly contractive i.e. 
for altering distance functions χ and φ, satisfying (4.5).

Then a unique ∆2, g− differentiable solution z  exists for 
(4.1) on T(d)] [c, σ .
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Proof Define the operator CCA →:2  by

.))](,[  ,))(,()1()]([ 1012
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TdctsszsGztzA
t

t
σ∈














∆−Θ= ∫

From Lemma 4.2 (ii), z  is a solution of (4.1). Also, 
the operator A2   is non-decreasing for .vu �  In a similar 
way to Theorem 4.1., A2 fulfills all assumptions of Lemma 
2.1. and hence from Lemma 2.2. A2 has the unique ∆2, g− 
solution for (4.1).

Theorem 4.3. Theorems 4.1, 4.2 are also valid if we replace 
the existence of lower ∆1, g− differentiable solution (∆2, g−
differentiable solution) to (4.1) by an upper 

∆1, g−solution ( ∆2, g− solution).

Proof  If η is an upper ∆2, g− differentiable solution for  
(4.1), then

.))](,[     ),(][))(,()()0()( 11
0

1
0

01

11

TdcttAsssGzsst
tt

σηηηηη ∈=∆+∆+= ∫∫ ∆ �

Similarly, If η is an upper ∆2, g− differentiable solution 
for (4.1), we have

.))](,[     )],([))(,()1(      )()1(    )0()( 112
0

0
0

1

11

TdcttAsssFysst
tt

σηηηηη ∈=











∆−Θ












∆−Θ= ∫∫ ∆ �

Thus ηη 1A�  and ηη 2A� .  Hence A1 and A2 satisfies 
all hypotheses of Lemma 2.1 and Lemma 2.2 and therefore 
A1, A2 has a unique solution in C.
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