
Abstract 
The main purpose of this research is to establish replenishment models and develop optimal replenishment policies for
perishable items taking account of time value of money. This paper follows the Discounted Cash Flow (DCF) approach
to investigate inventory replenishment problem over a fixed planning horizon. We develop model, to establish optimal
solutions with and without backlogging and Show that the total variable cost is minimize and convex by the help of  software.
Numerical examples are to demonstrate the applicability of the proposed models and sensitivity analysis with respect to
the parameters of the system is carried out.
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1. Introduction
Deterioration is a key factor in the study of inventory,
which describes the deteriorating nature of the items;
however, academia has not reached a general opinion on
the definition of the deteriorating items. According to the
definition, deteriorating items can be classified into two
categories. Items that become decayed, damaged, evapo-
rative, or expired through time, like meat, vegetables, fruit,
medicine, flowers, film and so on are in the first category.
The second category refers to the items that lose part or
total value through time because of new technology or the
introduction of alternatives, like computer chips, mobile
phones, fashion and seasonal goods, and so on. Both of
the two categories have the characteristic of short life
cycle. For the first category, the items have a short natu-
ral life cycle. After a specific period (such as durability),
the natural attributes of the items will change and then
lose useable value and economic value, for the second
category, the items have a short market life cycle. After
a period of popularity in the market, the items lose the 

original economic value due to the changes in consumer
preference, product upgrading and other reasons. There
are several kinds of deteriorating rate in the present study,
such as constant deteriorating rate, deteriorating rate is
a linear increasing function of time, deteriorating rate is
two-parameter Weibull distributed, and deteriorating rate
is three-parameter Weibull distributed. Among them, the
constant deteriorating rate is the easiest one and the three-
parameter Weibull distribution deteriorating rate is more
complex. Some studies which belong to the first category
have made extensive study in this factor.

Models mentioned above, the inflation and the time
value of money disregarded. This has happened mostly
because of the belief that the inflation and the time value
of money would not influence the inventory policy vari-
ables to any significant degree. However, owing to Asia,
Russia and Brazil financial crisis, most of the countries
have suffered from large-scale inflation and sharp decline
in the purchasing power of money for last several years.
Therefore, it is important to investigate how inflation and
time value influence in various inventory policies
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2.  Literature Review
All previous reports 1-7 developed inventory models in 
which Demand treated as Constant. In 8-10 Developed 
For Time-Dependent Demand. In 11-14 used inven-
tory level-dependent demand. Chauhan et al.15 discuss 
an inventory model with life time items for power 
demand rate with partial backlogging and variable 
holding cost. Wee and Law66 studied price-dependent 
demand. Among them, ramp type demand is a spe-
cial type of time-dependent demand. Hill34 was the 
first to introduce the ramp type demand to the inven-
tory study. Then Mandal and Pal44 introduced the ramp 
type demand to the inventory study of the deteriorat-
ing items. After that, many researchers have extensively 
studied this type of demand, Deng et al.22, Skouri et 
al.58, Chauhan et al.12, Singh56 established optimal order-
ing policy with time dependent ramp type demand, life 
time and variable rate of deterioration, Kumar et al.41 
proposed fuzzy EOQ models with ramp type demand 
rate, partial backlogging and time dependent deteriora-
tion rate. Although the constant demand assumption 
helps to simplify the problem, it is far from the actual 
situation where demand is always in change. In order 
to make research more practical, many researchers have 
studied other forms of demand. Like time-dependent 
demand has attracted considerable attention. Wang and 
Wang64 developed a model to determine optimal order-
ing policy for deteriorating items under inflation, partial 
backlogging, and time-dependant demand. In addition, 
Papachristos and Skouri51, Chu and Chen16, Khanra 
and Chaudhuri39, Dye et al.25 all conducted research on 
deteriorating items inventory under the premise that 
the demand is time-dependent. In fact, the real situa-
tion is complex and the demand is always affected by 
several factors such as time, inventory level, price, and 
so on. Balkhi and Benkherouf2, Pal et al.49, Hsu et al.36 
combined several of the factors together and considered 
the impact of the combination of the demand, in this 
premise the optimal inventory strategy was discussed, 
Wen et al.67 developed an inventory model in which the 
demand is affected by time and inflation, Panda et al.50 
consider retailers optimal pricing and economic order 
quantity in stock and price sensitive demand environ-
ment. Yadav et al.69 describe application of minimax 
distribution free procedure and Chebyshev inequality 
for backorder discount inventory model with effective 
investment to reduce lead-time and defuzzification by 

signed distance method, Mishra and Singh45 proposed 
Computational approach to an inventory model with 
ramp-type demand and linear deterioration.

According to the study of Wee HM65. The first 
category of deteriorating items refer to the items 
that become decayed, damaged, evaporative, 
expired, invalid, devaluation and so on through 
time. For the second category, constant dete-
riorating rate is the most common one in model 
establishment. Such as Ghare and Schrader26, Shah 
and Jaiswal55, Padmanabhana and Vrat48, Bhunia 
and Maiti4, Chang et al.9, Shah et al.54 established 
an EOQ model for deteriorating items. Lodree 
& Uzochukwu43, developed constant deteriora-
tion rate replenishment policy. Chauhan et al.13 
discuss volume flexibile inventory model for 
unsystematic rate of deterioration with lost sales. 
Chaudhary et al.10 discuss an inventory model with 
time dependent demand and deterioration under 
partial backlogging. In recent research, more and 
more studies have begun to consider the relation-
ship between time and deteriorating rate. In this 
situation there are several scenarios; including 
deteriorating rate is a linear increasing function of 
time Raafat52Goyal and Giri30 made comprehensive 
literature reviews on deteriorating inventory items 
in 1991 and 2001 respectively. Huang and Huang38, 
Liao and Huang42 studied the economic order quan-
tity problem with deteriorating items taking the 
time - value of money into consideration. Chauhan 
et al.14, Kumar et al.40, Singh and Singh57 considered 
Imperfect production process with exponential 
demand rate, Weibull deterioration under inflation, 
Wu et al.68 considered a problem to determine the 
optimal replenishment stock dependent demand 
of the non instantaneous deteriorating item, Soni59 
has discuss Optimal replenishment policies for 
deteriorating items with stock sensitive demand 
under two-level trade credit for limited capacity, 
Duan and Liao24proposed Optimization of replen-
ishment policies for decentralized and centralized 
capacitated supply chains under various demands, 
In addition, Balkhi and Benkherouf1 presented the 
optimal replenishment schedule for the production 
lot size model with deteriorating items, where the 
demand and production are allowed to vary with 
time in an arbitrary way with and without short-
ages, Trippi and Lewin62 adopted a discounted cash 
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The systems of Teng et al.61 was described as follows: 

System 1: �The traditional model starts with an instant 
replenishment and ends with no shortages, it’s 
used by Goswami and Chaudhuri29.

System 2: �It starts with replenishment and ends with 
shortages, which can be seen in Hariga32.

System 3: �It starts with shortages and ends without short-
ages, which was suggested by Goyal et al.31. 

System 4: �It starts and ends with shortages, which was 
first introduced by Teng et al.61. 

Furthermore, they proved that a policy for the possibil-
ity to end the planning horizon with shortages is less 
expensive to operate than a policy without shortages at 
the ending stage. In the described model, the inventory 
replenishment model generated by Chung et al.17 to the 
situation of system 2. (System 2 can be depicted graphi-
cally in Figure 1, which extended by Chung and Lin19 by 
applying the DCF approach to determine the optimal 
number of replenishments for the items.

All the models discussed above have the characteris-
tics of a constant deteriorating rate. While the constant 
rate simplifies the problems, it cannot reflect the real situ-
ation of the deterioration.

We propose and develop a model for time varying 
decaying items and establish optimal replenishments policy 
corresponding to cycle length during the time horizon H, 
consisting of positive and negative inventories periods for 
both with and without shortage to get a more generalize 
results. In addition, we prove that the total variable cost func-
tions are convex. Numerical examples are to demonstrate the 
applicability of the proposed models and sensitivity analysis 
with respect to the parameters of the system carried out.

The develop article organized as follows. Section 1 is 
introductory part and section 2 shows the background of 
past study, the notation and assumptions used through-
out this study is in section 3, the limitations of the models 
are implied through these assumptions. In section 4.1, the 
mathematical models described without shortage in order 
to minimize the total cost in the planning horizon. In sec-
tion 4.2 established an optimal solution procedure to find 
out the optimal number of replenishments and optimal 
total cost. Section 4.3 and section 4.4 appear for numerical 
example to illustrate the model and sensitivity analysis is 
to discuss the effect of various parameters and section 4.5 
show the variability of our model with the classical EOQ 
model. Similarly, in section 5 and its subsection discussed 
with shortage and the conclusion drawn in section 6.

flow (DCF) approach to obtain the present value 
of average inventory costs over an infinite hori-
zon. Dohi et.al23 discussed inventory systems with 
and without backlogging allowed for an infinite 
time span, taking into account time value from a 
viewpoint different from that of Moon and Yun46 
employed the DCF approach to fully recognize the 
time value of money to develop a finite planning 
horizon EOQ model where the planning horizon is 
a random variable. Hariga33 studied the effects of 
the inflation and the time value of money on the 
replenishment policies of items with time continu-
ous non-stationary demand over a finite planning 
horizon. Although all the models mentioned in 
this paragraph consider the inflation and the time 
value of money, they do not consider deteriora-
tion. Combining both factors of deterioration and 
the time value of money, Bose et al.7 first explored 
an inventory model under inflation and time value 
of money for deteriorating items. They extended 
the constant demand to a linear time-dependent. 
Chung et al.17 discussed the inventory replenish-
ment policy over a finite planning horizon for a 
deteriorating item taking account of time value 
and presented a line search technique to decide the 
optimal interval which has positive inventories. 
Hou and Lin35 discussed a cash flow oriented EOQ 
model with deteriorating items under permissible 
delay in payments, Ouyang et.al.47 studied retailer’s 
ordering policy for non-instantaneous deteriorating 
items with quantity discount for stock-dependent 
demand and stochastic backorder rate, Chauhan and 
Singh11 consider ameliorating inventory model with 
weibull deteriorating under the effect of inflation, 
Borgonovo and Peccati5 discussed global sensitiv-
ity analysis in inventory management. Borgonovo 
and Peccati6 consider Finite Change Comparative 
Statics for Risk Coherent Inventories. Chung and 
Gwo20 discussed dynamic pricing, promotion and 
replenishment policies for a deteriorating item 
under permissible delay in payments.

 Teng et al.61 established various inventory replenish-
ment policies to solve the problem of determining the 
timing and the number of replenishments, analytically 
comparing various models, and identified the best alter-
native among them based on minimizing total relevant 
costs. They presented four possible systems for inventory 
replenishment control.
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3. Assumptions and Notations
a)	 The replenishment rate is infinite and the lead time is 

zero.
b)	 A single item considered over a prescribed period of H 

units of time.
c)	 The product demand rate, a units per year, is known 

constant in planning period.
d)	 The production rate is higher than the sum of con-

sumption and deterioration rates. 
e)	 The time varying decaying rate ( )t btq q= +  where 

0 1, 1b q£ < 
is only apply to on-hand inventory.

f)	 m denotes the number of replenishment periods dur-
ing the time horizon H.

g)	 When an inventory system allows shortages, 1m +  
replenishments made during the entire time horizon 
H. The last replenishment made at a time t H=  just 
to replenish any shortages generated in the last cycle.

h)	 Two models analyzed; Model-I in which shortage 
not allows and Model-II in which shortage allow and 
complete backlogging is permitted with a finite short-
age cost C2 per unit per unit time.

i)	 C the unit cost of items, C1 the inventory holding cost 
per unit per unit time and A the ordering cost per 
order.

j)	 CR, total replenishment costs; CP, total purchasing 
costs; CH , total holding costs; Cs, total shortage costs.

k)	 BQ, backorder quantity during shortage and Q, an 
optimal order quant.

Two models are analysed; Model-I in which Shortage is 
not permitted and Model-II in which shortage is permit-
ted and complete backlogged.

4.  Model I: Without Shortages

4.1  Model Formulation
Procurement of the inventory level in system is shown in 
figure-1. For the evolution of the model, we assume that, 
m cycles during the real time horizon H each of length T, 
that T=H/m. Hence, the reorder times over the planning 
horizon H are Tj = jT ( j= 0,1, 2,…..,m). Initially, consider 
the inventory level I (t) during the first replenishment 
cycle. This inventory level is depleted by the effects of 
demand and deterioration rate. So, the variation of I (t) 
with respect to t is demonstrate by the following differen-
tial equation:

	 ( )( )
( )

dI t
bt I t

dt
a q= - - +     0 ≤ t ≤ T� (1)

With the boundary condition I (T) = 0. The solution of (1) 
can be represented by
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Since there are m replenishments in the entire time 
horizon H, 

The present values of the total replenishment costs are 
given by
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The present values of the holding costs during the first 
replenishment cycle are

( )
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3

1 1

1

2 6

RtbT e
H C T T

R R

θθ
α

−+
= + + +

−

  
       

  
( )2 32 2

2 2

1
1

2 6

RT RTb TT Te e
T

R R R

θ θθ
θ

− −+
+ + + + + −

   
  

   
� (5)

Hence, the present values of the total holding costs 
during the entire time horizon H are given as

Figure 1.  Representation of the inventory cycles without 
Shortage.
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The net present total variable cost TC of the system 
during the entire time Horizon H is the sum of the replen-
ishment cost CR, the purchasing cost Cp and holding cost 
CH 
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A mathematical model is derived to obtain the opti-
mal replenishment when TC (m) is minimized. Minimize 
TC (m); such that m > 0.

4.2  Optimal Solution Procedure
Our problem is to determine the optimal value of m that 
minimize the total system cost ( )TC m . The optimization 
technique is used to minimize m as follow 

Step 1: �Since the number of cycle in the planning horizon 
m, is an integer value, start by choosing an integer 
value of m ≥1.

Step 2: �For m=1, take the derivative of TC (m) with respect 
to m and equate the results to zero, the necessary 
conditions for optimality are ( )dTC m dm =0 this 
equation solve for m (which is shown in appendix 
theorem.1)

Step 3: �Using m found in step 2, substitute into equation 
(7) and derive TC (m). 

Step 4: �Repeat step 2 and 3 for all possible m values until 
the minimum TC (m*) is found. The TC (m*) 
constitute the optimal solution that satisfied the 
following conditions:

22 ( ) 0d TC m dm >  For m* and ( ) ( )1TC m TC m+ ≥

Step 5: �For optimal value m*, we can find the optimal-order 

quantity is  
( )22 3

2 32 6

bH H HQ
m m m

θθα
 +     = + +          

  

by using Eq. (2). 

4.3  Numerical Example
The numerical example is derived here to illustrate the 
effect of the general model-I developed in this paper with 
the following data:

The demand parametric value are α=600unit/year, the 
deterioration rate of the on hand inventory per unit time 
is θ =.20, A= $ 120.00, C1=$1.75 per unit per year, C=$2 
per unit, R=0.50, b=0.05, the time horizon H=10 yr. 

By using the solution procedure described in the 
previous section, the computational result are Shown 
in Table-1, from this table, we see that that the optimal 
replenishment number m*=11, the total variable cost TC 
become minimum. During the first replenishment cycle 
order quantity Q*=601.803 and minimum total variable 
cost TC*(m) = 16284.7, then we have the time interval 
between replenishment is T=(H/m) = 10/11=0.901 year

Figure 2.  Representation of convexity of function TC (m).

Table 1

m 1 2 3 5 7 10 11* 13 16 19 22 25
TC(m) 149172 45889.1 28992.7 19850.8 17274.3 16299.5 16284.7* 16487 17136.2 18014 19021.3 20109

 Q 21000 5625 3000 1512 1005.83 669 601.803* 501.138 400.635 333.722 285.969 250.176
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4.4  Sensitivity Analysis
In order to study how the parameters affect the optimal 
solution, we conduct the sensitivity analysis. The change 
in the values of parameters can take place due to uncer-
tainties in any decision making situation. In order to 
examine the implications of these changes, the sensitivity 

analysis will be of great help in decision making. Using 
the numerical example given in the preceding section, the 
sensitivity analysis of various parameters has been done.

Sensitivity analysis with respect to various parameters 
on ordering quantity and total system cost for model 
without shortages.

Table 2

Parameter θ =.20

% Change -50 -40 -30 -20 -10 10 20 30 40 50

TC 15396.2 15571.4 15747.9 15925.6 16104.5 16284.7* 16466.3 16649.1 16833.4 17019.1 17206.2

Q 574.756 580.045 585.394 590.804 596.273 601.803* 607.393 613.043 618.753 624.523 630.353

Parameter b=.050

% Change -50 -40 -30 -20 -10 10 20 30 40 50

TC 16249.6 16256.6 16263.7 16270.7 16277.7 16284.7 16291.7 16298.8 16305.8 16312.8 16319.8

Q 599.925 600.301 600.676 601.052 601.427 601.803 602.179 602.554 602.93 603.306 603.681

Parameter C1=1.75

% Change -50 -40 -30 -20 -10 10 20 30 40 50

TC 12396.7 13174.3 13951.9 14729.5 15507.1 16284.7 17062.3 17839.9 18617.5 19395.1 20172.7

Q 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803

Parameter C=5

% Change -50 -40 -30 -20 -10 10 20 30 40 50

TC 12193.5 13011.7 13830.1 14648.2 15466.5 16284.7 17103.1 17921.2 18739.4 19557.7 20375.9

Q 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803

Parameter A=120

% Change -50 -40 -30 -20 -10 10 20 30 40 50

TC 16121.6 16154.2 16186.8 16219.5 16252.1 16284.7 16317.3 16350.2 16382.6 16415.2 16447.9

Q 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803

Parameter R=.5

% Change -50 -40 -30 -20 -10 10 20 30 40 50

TC 82905.1 52320.2 35891.8 26275.1 20257.5 16284.7 13543.7 11581.2 10131.4 9030.9 8176

Q 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803 601.803

Parameter α=600

% Change -50 -40 -30 -20 -10 10 20 30 40 50

TC 8305.5 9901.3 11497.2 13093 14688.9 16284.7 17880.6 19476.4 21072.2 22668.1 24263.9

Q 300.902 361.082 421.262 481.443 541.623 601.803 661.983 722.164 782.344 842.524 902.705

Parameter H=10

% Change -50 -40 -30 -20 -10 10 20 30 40 50

TC 17578.4 17033.6 16659.3 16425.2 16306.9 16284.7 16343 16469 16652.9 16886.5 17163.4

Q 285.969 346.585 408.435 471.561 536.004 601.803 669 737.635 807.748 879.381 952.573
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Results of the sensitivity analysis are exhibited in 
Table 2.

Effect of changing deteriorating parameter (θ and b) is •	
moderately sensitive for the total system cost (TC) and 
the order quantity (Q).
Effect of changing the unit cost (C), holding cost (C•	 1) 
and ordering cost (A) is also moderately sensitive for 
to the total system cost (TC) but no effect of the order 
quantity (Q).
Effect of changing discount rate parameter (R) is •	
highly sensitive for to the total system cost (TC) but 
no effect on the order quantity (Q).
Effect of changing consumption rate parameter (α) is •	
highly sensitive for to the total system cost (TC) and 
the order quantity (Q).

The main conclusions one can draw from the sensitivity 
analysis are as follows:

The order quantity (Q) is more sensitive to consump-•	
tion rate parameter (α) as compared to deterioration 
rate (θ), while no effect of holding cost (C1) and dis-
count rate parameter (R).
The total system cost (TC) is more sensitive to con-•	
sumption rate parameter (α), the unit cost (C), the 
discount rate parameter (R) and deterioration rate 
(θ) as compared to ordering cost (A) and holding cost 
(C1).

4.5  Special Case (Undiscounted) 
In this section, we explain the important particular case 
R=0, and compare the differences with classical EOQ 
model. When R=0, then the total (undiscounted) variable 
cost, TC (T) is

3 4 2
2
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T2 6 Th
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T
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2

1 1
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6 2 0
2

H
H CT b CT CT

T
T

α θ αθ α+ + + +
− =

        	 (8)

The optimum value of T can be obtained from expres-
sion (8) by using the optimization method. Taking the 
optimum value of T, we can also obtain the optimum-
order quantity by Eq. (2) is

	
2 3

2 T
( )

2 6

T
Q T b

θ
θ α= + + +

 
 
  � (9)

When R=0 and H=1.0, with the same values of different 
parameters as taken in the numerical example of Section 
3.3, Eq. (7) to (9) we get the optimal replenishment cycle 
length, T, order quantity, Q, replenishment cost CR, pur-
chasing cost CP, holding cost CH and total system cost, TC 
as follow:

 * 0.919015T =  ; * 2502.48TC = ; * 609.07  Q = ; 

* 5.75325RC = ; * 1383.89  PC = * 1112.84HC =  

Now, we find that the optimal-order quantity and all 
the relative system costs under classical EOQ model as 
using the same parameter value are as follow:

* ( ) 1701.99TC EOQ = ; * ( ) 286.85Q EOQ = ;  

* ( ) 250.99RC EOQ = ; * ( ) 1200PC EOQ = ;

* ( ) 250.99HC EOQ =

When we compare the values among Q*, CR
*, CP

*, CH
*, 

TC* and Q*(EOQ), CR
*(EOQ), CP

*(EOQ), CH
*(EOQ), 

TC*(EOQ), we notice that Q*> Q*(EOQ), CR
* <CR

*(EOQ), 
CP

* >CP
*(EOQ), CH

* >CH
*(EOQ), TC*> TC*(EOQ)

This phenomenon is due to deterioration rate. So that 
when an inventory system included deterioration, the 
system will increase order quantity to avoid shortage but 
accompany higher purchasing and holding cost, so the 
total system cost is greater than that of the classical EOQ 
model. 
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5. � Model-II: With Shortages Under 
Complete Backlogging

	 ( ) ( )1S t t tα= − ,  1 t t T≤ ≤ � (13)

Since there are m+1 replenishments in the entire time 
horizon H, the present values of the total replenishment 
costs are given by

	
1

0

j
m

RT
R

j
C A e −−

=

= ∑ ( )
( )

/

/ 1

RH m RH

RH m

e e
A

e

−−
=

−
� (14)

Let 1I be the initial inventory level and let 1S be the 
maximum shortage quantity during the first replenish-
ment cycle. Using equations (12) and (13), we get

( )
2

2 31
1 1 1

1
2 6
tI t b tθ

α θ
 

= + + + 
 

( )2 2 2

2

1
1

2 6

bKH K H KH
m mm

θθ
α

+
= + +

 
 
  

	 (15)

	 ( )1 1S T tα= −
H KH
m m

α  = −  
( )1 HK

m
α= − 	 (16)

Because shortages during the first replenishment cycle 
should be backordered during the next replenishment 
cycle and shortages during the last cycle is replenished at 
time mT H=  Therefore, the present values of total pur-
chasing costs during the entire time horizon H  are

1
1 1

1 1

j j
m m

RT RT
P

j j
C C I e S e−− −

= =
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The present values of the holding costs during the first 
replenishment cycle are

( )1

1 1 0

t RtHC C I t e dt−= ∫

( ) ( ) ( )( )1

2
2 2 3 3

1 1 1 10 2 6
t b

C t t t t t t
θθα

 +
 = − + − + −
  

∫
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2
21

2
Rttt b e dtθ θ −  

× − + −  
  

( ) 1
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1
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θθ
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θ θθ
θ

−  +    + + + + + −  
    

Hence the present values of the total holding costs 
during the entire time horizon H are given as

Figure 3.  Pictorial representation of the inventory cycles 
with Shortage.

5.1  Model Formulation
Similarly as previously developed model in section 3, sup-
pose that the planning horizon H is divided into m equal 
parts of length /T H m=  hence, the reorder times over 
the planning horizon H are   (j=0 to m)

j
T j T= . We further 

assume that the period for which there is no-shortage in 
each interval [ j T, (j+1) T] is a fraction of the scheduling 
period T and is equal to (0 1).KT K< < Shortages occur at 
time =( 1) t K j Tj + −   ( 1  )j to m= , Model is illustrated 
in Figure 3. 

First, let us consider the level of inventory ( )I t  at time 
t during the first replenishment cycle, that is 0 .t T≤ ≤  This 
inventory level is depleted by the effects of demand and 
deterioration rate. Therefore, the variation of ( )I t  with 
respect to time is governed by the following differential 
equation:

	 ( ) ( )( )dI t
bt I t

dt
α θ= − − + ,  10 t t≤ ≤ � (10)

As to the level of shortage, ( )S t during the first replenish-
ment cycle may be represented by the following differential 
equation, since demand (backlogging) rate is constant.

	
( )dS t

dt
α= ,  1t t T≤ ≤ � (11)

with the boundary condition 1( ) 0I t = , the solution of 
(10) and (11) can be represented by

( ) ( ) ( )( )
2

2 2 3 3
1 1 1( )

2 6

b
I t t t t t t t

θθα
 +
 = − + − + −
  

          ( )
2

1
2

Tt bθ θ
  

× − + −  
  

10 t t≤ ≤ � (12)
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Now, 1
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Present values of the total shortage costs during the 
first replenishment cycle are

( )1

1
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Hence, the present values of the total shortage costs 
during the entire time horizon H are
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Consequently, the present value of the total variable 
cost of the system during the entire time horizon H is

( ),TC m K R P H SC C C C= + + +

So, the present value of total variable cost during the 
entire time horizon H is

( ),TC m K ( )
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5.2  Optimal Solution Procedure
The present value of total variable cost function TC(m ,K) 
is a function of two variables K and m where K is a con-
tinuous variable and m is a discrete variable. For a given 
value of m, the necessary condition for ( ),TC m K to be 
minimized is ( ), 0dTC m K dK = which gives

( ) ( )
( )

(1 )

2

2

( 1)1
1

,
1 1

HR K
m

HR

HR

HR HR
m m

H R e H K HKC e H
m m mc e H

dTC m K dK
e m e mR

α
α

−

−

−

 
− − − + + 

 −  = − +
   

− + − +   
   

( ) ( )
2 2 2 2 2

2 2
( ) ( )1 1 1

2 218 36

1 1

HR HR

HR HR
m m

H H K b HK H K bc e HK c e H
m mm m

e m e m

θ θ θ θα α− −   + +− + − + +   
   + +

   
− + − +   

   

( )
2 2 2 2 2

2 2
1

( ) ( )1 1 1
1 2 23 6

1

HKR HKR
m m

HR

HR
m

H H K b HK H K bKH e H e
C e m mm m

mR mR
e

θ θ θ θ
α

− −

−

−

        + +− + − + +        −         + +   −    

2 2 2
2

2

2 2 2

( )1
2 6 1

HKR
m HR HKR

m m

HK H K bH e K
m m e He

mRm R R

θ θ−
− −

 ++ +    −   + + + +   
2 2 2 3 3 2

2
2 32 2 3 2 2

2 3 2

( )1
2 6( ) 0

2 2

HKR
m HK H K H K bH e

m m mH H K H K b
m m m m

θ θ θ θ
θ θ θ θ

−  ++ + +   +   + + − =     	
(21)

Furthermore, Theorem 2 in the appendix shows 
that ( ) 22 ,d TC m K dK is positive. So, for a given posi-
tive integer m, the optimum value of K can be obtained 
from Eq. (21) by using the Newton-Raphson method. 
Now we let (m*,K*) denote the optimal solution to 

( ),TC m K and let ( ), ( )m K m denote the optimal solu-
tion to ( ),TC m K when m is given. If m  is the smallest 
integer such that ( ), ( )TC m K m  less than each value of 

( ), ( )TC m K m 

  in the interval 1 10m m m+ ≤ ≤ +

   . Then we 
take ( ), ( )m K m  as the optimal solution to ( ),TC m K . 
Hence ( ), ( ) (m*,K*) .m K m =  using the optimal solution 

Figure 4.  A graphical representation showing the convexity 
of function TC(m,K).
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Table 3

M TC 	 K Q BQ

1 34061.5 0.340757  3097.34  3955.46

3 13377.8 0.540745  1329.13  918.51

4 10783.7 0.566533  995.73  650.2

6 8625.95 0.586718  652.507  413.282

8 7781.37 0.594208  482.445  304.344

13 7083.35 0.6005  290.843  184.385

15 6989.14 0.601511  250.833  159.396

18 6920.66 0.602474  207.884  132.509

20 6903.81 0.602904  186.57  119.129

21* 6901.13* 0.603078*  177.47*  113.406*

22 6901.46 0.603231  169.214  108.21

23 6904.33 0.603366  161.691  103.47

26 6924.77 0.603689  142.66  91.4563

31 6985.12 0.604051  119.258  76.6352

33 7015.26 0.604157  111.913  71.9715

37 7082.3 0.604324  99.6383  64.1637

38 7100.18 0.604359  96.9789  62.4697

39 7118.42 0.604391  94.4577  60.8629

40 7136.99 0.604422  92.0642  59.3368

( )1 HBQ K
m

α= −

Respectively, by Equations. (15) and (16).

5.3 � Numerical Examples and Sensitivity 
Analysis

The numerical example is devised here to illustrate the 
effect of the general model I developed in this paper with 
the following data:

The demand parametric value are α=600unit/year, the 
deterioration rate of the on hand inventory per unit time 
is θ=.20, A= $ 120.00, C1=$1.75 per unit per year, C=$2 
per unit, R=0.50, b=0.05, the time horizon H=10 yr. 

By using the solution procedure described in the 
previous section, the computational result are Shown 
in Table3 From this table ,we see that that the optimal 
replenishment number m*=21 ,the total variable cost TC 
become minimum. During the first replenishment cycle 
order quantity Q* = 177.47 and minimum total variable 
cost TC*(m) = 6901.13 the optimal Values of backorder 
BQ = 113.406, we then have the time interval between 
replenishment is T=(H/m) = 10/21=0.476 year.

5.4  Sensitivity Analysis
Using the numerical example given in the preceding sec-
tion, the sensitivity analysis of various parameters has 
been done. The sensitivity analysis with respect to various 
parameters on order quantity (Q), backorder (BQ) and 
total system cost (TC) for model with shortages. 

procedure described above, we can find the optimal order 
quantity and backorder to be

( )2 2 2

2
1

2 6

bKH K H KH
Q

m mm

θθ
α

+
= + +

 
 
    

Table 4

Parameter θ=.20
% Change -50 -40 -30 -20 -10   10 20 30 40 50

TC 6837.66 6850.55 6863.35 6876.04 6888.64 6901.13 6913.53 6925.83 6938.03 6950.14 6962.16
K 0.616381 0.613672 0.610988 0.608327 0.605691 0.603078 0.600489 0.597922 0.595377 0.592855 0.590355
Q 178.845 178.57 178.295 178.02 177.744 177.47 177.195 176.92 176.645 176.371 176.097

BQ 109.605 110.379 111.146 111.906 112.66 113.406 114.146 114.879 115.606 116.327 117.041
Parameter b=.050
% Change -50 -40 -30 -20 -10   10 20 30 40 50

TC 6900.77 6900.84 6900.92 6900.99 6901.06 6901.13 6901.2 6901.27 6901.35 6901.42 6901.49
K 0.603204 0.603179 0.603154 0.603129 0.603103 0.603078 0.603053 0.603028 0.603003 0.602978 0.602952
Q 177.449 177.453 177.457 177.461 177.465 177.47 177.474 177.478 177.482 177.486 177.491

BQ 113.37 113.377 113.385 113.392 113.399 113.406 113.413 113.421 113.428 113.435 113.442

(Continued)
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Parameter C1=1.75
% Change -50 -40 -30 -20 -10   10 20 30 40 50

TC 6762.84 6790.6 6818.31 6845.96 6873.57 6901.13 6928.65 6956.12 6983.55 7010.95 7038.3
K 0.612136 0.610221 0.60836 0.60655 0.60479 0.603078 0.601412 0.599789 0.598209 0.596669 0.595169
Q 180.217 179.636 179.071 178.522 177.989 177.47 176.964 176.473 175.994 175.527 175.073

BQ 110.818 111.365 111.897 112.414 112.917 113.406 113.882 114.346 114.797 115.237 115.666
Parameter C=2
% Change -50 -40 -30 -20 -10 0 10 20 30 40 50

TC 3749 4383.78 5016.35 5646.75 6275 6901.13 7525.17 8147.14 8767.07 9384.99 10000.9
K 0.662266 0.650217 0.638274 0.626438 0.614707 0.603078 0.591552 0.580125 0.568798 0.557567 0.546433
Q 195.469 191.795 188.16 184.56 180.997 177.47 173.977 170.519 167.094 163.703 160.345

BQ 96.4953 99.9381 103.35 106.732 110.084 113.406 116.7 119.964 123.201 126.409 129.59
Parameter A=120
% Change -50 -40 -30 -20 -10   10 20 30 40 50

TC 6619.45 6675.78 6732.12 6788.46 6844.79 6901.13 6957.47 7013.8 7070.14 7126.48 7182.82
K 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078
Q 177.47 177.47 177.47 177.47 177.47 177.47 177.47 177.47 177.47 177.47 177.47

BQ 113.406 113.406 113.406 113.406 113.406 113.406 113.406 113.406 113.406 113.406 113.406
Parameter R=.5
% Change -50 -40 -30 -20 -10 0 10 20 30 40 50

TC 6326.61 7847.83 8061.52 7796.93 7368.4 6901.13 6444.97 6018.3 5626.11 5267.82 4940.75
K 0.605178 0.615722 0.621061 0.620819 0.614822 0.603078 0.585768 0.563217 0.53587 0.504267 0.469016
Q 178.106 181.305 182.927 182.853 181.032 177.47 172.226 165.409 157.162 147.661 137.098

BQ 112.806 109.794 108.268 108.337 110.051 113.406 118.352 124.795 132.609 141.638 151.71
Parameter α=600
% Change -50 -40 -30 -20 -10   10 20 30 40 50

TC 3732.25 4366.03 4999.8 5633.58 6267.35 6901.13 7534.91 8168.68 8802.46 9436.23 10070
K 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078 0.603078
Q 88.7348 106.482 124.229 141.976 159.723 177.47 195.217 212.964 230.71 248.457 266.204

BQ 56.7031 68.0437 79.3843 90.725 102.066 113.406 124.747 136.087 147.428 158.769 170.109
Parameter H=10
% Change -50 -40 -30 -20 -10   10 20 30 40 50

TC 6639.84 6747.54 6809.32 6847.78 6875.92 6901.13 6927.46 6957.04 6990.9 7029.43 7072.71
K 0.604477 0.604247 0.603992 0.603712 0.603408 0.603078 0.602724 0.602345 0.60194 0.601511 0.601056
Q 87.6235 105.42 123.304 141.274 159.33 177.47 195.691 213.993 232.375 250.833 269.367

BQ 56.5033 67.8435 79.2017 90.5801 101.981 113.406 124.858 136.339 147.851 159.396 170.976
Parameter C2=3
% Change -50 -40 -30 -20 -10   10 20 30 40 50

TC 6937.07 6943.76 6941.24 6932.24 6918.47 6901.13 6881.02 6858.73 6834.69 6809.22 6782.58
K 0.490692 0.524116 0.550291 0.571338 0.588626 0.603078 0.615338 0.625869 0.635012 0.643024 0.650103
Q 143.588 153.625 161.508 167.862 173.091 177.47 181.189 184.387 187.167 189.605 191.761

BQ 145.517 135.967 128.488 122.475 117.535 113.406 109.903 106.895 104.282 101.993 99.9706
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Results are summarized in Table 4
Effect of changing deteriorating parameter (θ) is •	
slightly sensitive for order quantity (Q), backorder 
(BQ) and total system cost (TC).
Effect of changing the unit cost (C), holding cost (C•	 1) 
and ordering cost (A) is moderately sensitive for order 
quantity (Q), backorder (BQ) and total system cost 
(TC).
Effect of changing consumption rate parameter (α) •	
is highly sensitive for order quantity (Q), backorder 
(BQ) and total system cost (TC).
Effect of changing consumption rate parameter (R) •	
is highly sensitive for order quantity (Q), backorder 
(BQ) and total system cost (TC). 

The main conclusions one can draw from the sensitivity 
analysis are as follows:

The order quantity (•	 Q) and backorder (BQ) are more 
sensitive to consumption rate parameter (α), ordering 
cost (A), the unit cost (C), discount rate parameter (R) 
and shortage cost (C2) as compared to deterioration 
rate (h), and carrying cost (C1).
The total system cost (TC) is more sensitive to con-•	
sumption rate parameter (a), the unit cost (C) and 
discount rate parameter (R) as compared to deteriora-
tion rate (h), ordering cost (A), carrying cost (C1) and 
shortage cost (C2).
Order quantity and backorder are more sensitive •	
than the total system cost to changes in the param-
eters of ordering cost (A), carrying cost (C1) and 
shortage cost (C2); this indicates that the cost penalty 
is less for errors in the estimation of these param-
eters. Manager should estimate these parameters 
reasonably instead of estimating these parameters with  
precision.

5.5  Special Case
In this section, we study the important particular case 
R=0, and compare the differences with classical EOQ 
model. When R=0, then the total (undiscounted) variable 
cost, TC (T,K) is
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The optimum value of T can be obtained from expres-
sion by using the numerical method. Taking the optimum 
value of T and K, we can find that the optimum-order 
quantity and Back order by Eq. (15) and (16) as

	
( )2 2 2

1
2 6

b KKT
Q

T
KT

θθ
α

+
= + +

 
 
  

 	 (24)

	 ( )1BQ K Tα= − � (25)

respectively.
When R=0 and H=1.0, with the same values of dif-

ferent parameters as taken in the numerical example of 
Section 3.3, Eqs. (22) to (25) yield that the optimal order 
quantity, Q, Backorder, BQ, replenishment cost, CR, pur-
chasing cost, CP, holding cost, CH ,Shortage Cost, CS and 
total system cost, TC are

 
* 2546.65Q = ;    * 168.349BQ =     * 18.9322RC =

 
* 856.683PC =   

* 1.73174HC =     * 11.1785SC =

 
* 888.525TC =  

Using the same parameter values, we find that the 
optimal-order quantity and all the relative system costs 
under classical EOQ model are follow:

  
* ( ) 360.95Q EOQ = ;     

* ( ) 132.982BQ EOQ = ;

  
* ( ) 199.47RC EOQ = ;  

* ( ) 3000PC EOQ =

  
* ( ) 125.98HC EOQ = ;  

* ( ) 73.50SC EOQ = ;

  
* ( ) 3398.94TC EOQ =

When we compare the values among Q*, CR
*, CP

*, CH
*, 

TC* and Q*(EOQ), CR
*(EOQ), CP

*(EOQ), CH
*(EOQ), 

TC*(EOQ), we observed that Q*> Q*(EOQ), CR
* < 

CR
*(EOQ), CP

* <CP
*(EOQ), CH

* <CH
*(EOQ), BQ*> 

BQ*(EOQ), TC*< TC*(EOQ)
This phenomenon is due to deterioration rate. So that 

when an inventory system incorporates deterioration, the 
system will increase order quantity to for that accompany 
lower holding cost. So that the total system cost is lesser 
than that of the classical EOQ model.
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6.  Conclusions
This model incorporates some realistic features that are 
likely to be associated with the inventory of some kinds of 
goods. First, items deterioration over time is a natural feature 
for goods. Second, occurrence of shortages and backorder 
the quantity in inventory is a natural phenomenon in real 
situations. Third, the DCF approach permits a proper rec-
ognition of the financial implication of the opportunity cost 
in inventory analysis. In keeping with this reality, these fac-
tors are incorporated into the present models.

We have given an analytic formulation of the problem 
on the framework described above and have presented 
an optimal solution procedure to find optimal inven-
tory replenishment policies. From this research results, 
we have also recognize that an inventory policy for per-
ishable items which permit backorders result in smaller 
discounted total cost than a policy which does not permit 
backorders.

Finally, the sensitivity of the solution to changes in 
the values of different parameters has been discussed. It is 
seen that changes in the consumption rate parameter (α), 
the unit cost (C) and unit shortage cost (C2) have signifi-
cant effects on the order quantity. The total system cost is 
sensitive to changes in the consumption rate parameter 
(α), the unit cost (C) and discount rate parameter (R). This 
behavior is different from that of the classical EOQ model. 
This phenomenon is due to the factor of deterioration.
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Theorem 1. TC(m) is convex with respect to m.
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will exist a unique solution that satisfies dTC(m) 0
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= . 

Note: If  R> m
H

 Thus, we have 
2

2

d TC(m) 0
dm

> .This is the 

complete proof.

Theorem 2. When m is given TC(m,K) is convex with 
respect to K.
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Therefore, we get 
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> . This is the complete proof.
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