
Indian Journal of Science and Technology, Vol 9(21), DOI: 10.17485/ijst/2016/v9i21/95292, June 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Complex data is growing at a phenomenal rate due to
the e-commerce, internet and social networks. With
the rapid growth of big-data, the need for efficiently
extracting the cloud properties in a reliable or scalable
way is unprecedentedly more. Complex data mining has
become crucial for may cloud vendors to extract relevant
patterns from the huge data sets in order to support their
operations and to take right decisions. Given a set of
transaction T, the goal of association rule mining is to find
all rules having support ≥ minsup threshold, confidence ≥
minconf threshol1.

For association rule mining, our goal is to extract
valuable and storage knowledge from large amounts
of data by using large scale data mining. Those large
volumes of data are huge wealth for any cloud provider
or enterprise. As a result, large set of infrequent patterns
provides decision making for any organizations. Hadoop
is one of the open source distributed framework used
to process the cloud data and its efficiency without
generating decision patterns.

Infrequent rule mining is a method to find the hidden
patterns in complex data and extract inferences on how a
subset of attributes influences the existence of other super
subsets.

Abstract
Background/Objective: With the development of data mining techniques to analyze large amount of complex data has
played an essential role in several areas like cloud computing, medical databases, geographical information retrieval, etc.
The automatic evaluation of cloud patterns is a challenging task due to the large amount of interesting patterns can be
extracted. However, how to find infrequent patterns is still an open issue in cloud computing. Methods: Conventional
approaches are mainly depends on quantitative datasets with support and confidence measures. Due to the large amount
of cloud storage data, it is very difficult to extract the weighted association rules based on the server usage statistics.
Traditional techniques are implemented on the data samples with the same attribute type. Due to this fact, a multi-class
algorithm is proposed to find relevant usage patterns of large complex data. Findings: Proposed approach does not rely on
any probabilistic closure measures and quantitative data. This approach minimizes the database scans and optimizes the
infrequent cloud patterns. Applications/Improvements: Experimental results show that, proposed work generates high
quality cloud patterns compared to traditional quantitative rule mining techniques.

Keywords: Complex Cloud Data, Infrequent Association Rules, Multiclass Attributes

A Multi-Class Based Algorithm for Finding Relevant
Usage Patterns from Infrequent Patterns

of Large Complex Data
Sujatha Kamepalli1*, Rajasekhara Rao Kurra2 and Y. K. Sundara Krishna3

1Krishna University, Machilipatnam, Andhra Pradesh, India;
sujatha101012@gmail.com

2Sri Prakash College of Engineering and Technology, Thuni, Andhra Pradesh, India;
krr_it@yahoo.co.in

3CSE Department, Krishna University, Machilipatnam, Andhra Pradesh, India;
yksk2010@gmail.com

Vol 9 (21) | June 2016 | www.indjst.org Indian Journal of Science and Technology2

A Multi-Class Based Algorithm for Finding Relevant Usage Patterns from Infrequent Patterns of Large Complex Data

All infrequent patterns are not optimal due to the
redundancy in the frequent patterns. Usually, frequent
association rule mining approaches focus on finding
frequent relationship between the attributes. Negative
Association Rule Mining (ARM) works similar to positive
ARM, but in reverse manner. But the problem with the
negative ARM is to consume more memory and time.
The association rule mining challenge can be classified
as categorical and numerical attributes in the dataset.
Most of the traditional2-6 techniques are implemented on
numerical attributes for generating frequent patterns.

Figure 1. Two-Phase ARM process.

ARM is a two phase process as shown in Figure 1.
•	 1) Generating frequent item sets.
•	 2) Quality association rules generation from the

frequent item sets.

Since the first step represents the computational
knowledge extraction, optimal solutions have been
proposed 6-10 to generate patterns on multi-core processors.

Based on the parallel and grid computing constraints
under the cloud environment, a set of data partitioning
and allocation approaches have been proposed in the
literature. Data partitioning and replication are two
major ways to optimize the scalability and availability of
distributed databases. However, partitioning approaches
used to distribute the cloud user workloads in an effective
way and decreases reading latencies. On the other hand,
replication optimizes the chance of data inconsistencies
and also system capabilities. Therefore, the efficient rule
based detection on the cloud data should be used to
eliminate their effects.

Associative classification is one of the major tasks in
knowledge discovery. Existing studies have shown that
associative algorithms are used to handle unstructured
data. The first method used to handle unstructured
data is CBA,which considers the apriori approach to get
association patterns based on class labels. Rule mining

and classification is used to mine relationships between
attributes and class labels.

In the literature, many studies have been introduced to
find rules for large data and construct an association based
classifier such as C45, RIPPER, Multi-class Classification
based on Association Rules (MCAR), CBA, etc. Most
of the research work is to solve single class association
mining. Most of the traditional methods fail to consider
only one class label and ignoring the other classes. At
present, most of the methods identify the optimal rules
based on the interesting measures. In the multiclass
complex data, conventional approache does not find the
optimal rules based on single class interesting measures.
CAN tree, FP tree and CP tree have been implemented in
the literature on quantitative or transactional databases.
These algorithms are divide and conquer and partitioned
based methods are used that divide data into small sets
for mining patterns in transactional database, which
gradually reduce search and memory space. In CP tree
contains frequent and infrequent items at the end of the
frequent sets generation. Since “Can tree” is not stored
the frequencies in descending order, it usually results
poor computation in tree size compared to FP-tree
datastructure. The CP-tree implements the concept of
dynamic tree construction to generate a compact tree at
runtime11. FP-tree is a compact tree structure used to get
frequent items in transacrtion mining. However, it only
handles the frequent items in a dataset and it is a two-
phase solution. CanTree provides a single-phase solution
which maintains complete dataset information suitable
for interactive and incremental mining. However, it suffers
very high mining time due to the canonical concept of its
tree structure11-14.

Figure 2. Traditional Parallel Fp-Tree Mechanism.

Sujatha Kamepalli, Rajasekhara Rao Kurra and Y. K. Sundara Krishna

Vol 9 (21) | June 2016 | www.indjst.org Indian Journal of Science and Technology 3

The compaction achieved in FP-tree is small when
the data is distributed unevenly. Due to this, FP-growth
would require a lot of effort to combine fragment patterns
with no frequent itemsets being found. Parallel FP –tree
has been proposed in based on FP-tree data structure to
mine association rules on multi-processor systems.

This method splits the database in several non-
overlapping sets based on the number of cloud processors
and each processor use FP-tree to exchange information
between the multiple processsors. Balanced Tidset –based
parallel FP-tree technique is used to extract frequent
processor related rules as shown in Figure 2 .

2. Multi-Class Based Infrequent
Mining Algorithm for Large
Complex Dataset

In this proposed approach a real time cloud server is used
for data preparation. The overall workflow is described
in the Figure 3. Cloud server has ‘n’ number of virtual
instances with different types of services. Each cloud
instance, includes instance id, instance name, application
status, network overhead, load balancing, memory usage,
etc. Each cloud provider need to optimize his cloud
services based on the cloud instance properties. In this
work, complex distributed data was prepared using cloud
virtual instance properties.

Figure 3. Proposed Flow Chart.

Cloud complex data has multiple attributes with
different classes and values. Complex data is partitioned
based on the cloud instance properties. Proposed multi-
class based infrequent mining algorithm is used to find
interesting patterns and its relationship within cloud
instances.
Notations:
CSD: Class Based Sub-Datasets
CBM: Class Based Boolean Matrix
PAR:Positive Association Rules
IAR:Infrequent Association Rules

Algorithm Explanation:
In the proposed algorithm, Dataset is initialized and then
data objects are extracted using different class labels.
For each sub dataset in the class based datasets generate
both transactions based boolean and class based boolean
matrices for infrequent association patterns. Afterwards
generate 1-item and m-item candidate sets to each sub
dataset. In the step 5, lift and correlation computations
are performed on the associated items and then positive
and infrequent items are classified . Infrequent items are
inserted into CPTree to generate infrequent association
patterns using the correlation threshold condition.
Finally, infrequent association patterns are generated
from the CPTree.

Algorithm:
Step 1: Extract class based sub-datasets CSD.
Step 2: For each dataset in CSD.

Do
Generate Transaction based Boolean Matrix TBM.
Generate Class based Boolean Matrix CBM1...CBMn

 where n is number of classes.
Done

Step 3: Generate 1 to n items candidate sets CS .
Step 4:

ρmin minimum threshold
PAR ← ∅; IAR ← ∅
scan the database CS and extract 1-item frequent sets

 (f1)
for (m = 2, fm-1 != ∅, m + +)
Do
Rm = Join(fm-1, f1);
Done

Step 5:
For each item i ∈ Rm

Vol 9 (21) | June 2016 | www.indjst.org Indian Journal of Science and Technology4

A Multi-Class Based Algorithm for Finding Relevant Usage Patterns from Infrequent Patterns of Large Complex Data

do
 lfv=lift (D,i)
 if lfv≥ρmin then
fm = fm ∪ {i}
For each items associated with item {i} in D

φ1=getBooleanOccurences(CBM);
φ2....φn+1 =getBooleanOccurences(CBM1...CBMn);

For each class k in φ2....φn+1
Do

σcorr = Correlation(i, φ1, φk)
if σcorr≥ ρmin

then
if conf(φ1, φk) ≥ confmin then
PAR ← PAR ∪ {φ1, φk}

else if conf(φ1, φk) ≥confminand
sup(¬φ1, ¬φk) ≥ρminthen
 IAR ← IAR ∪ {¬φ1, ¬φk }

Insert CPtree(IAR,ρmin)
endif
endif
if σcorr ≤ -ρmin

then
if conf(φ1, ¬φk) ≥ confmin then
IAR ← IAR ∪ {φ1, ¬φk }
Insert CPtree(IAR,ρmin)
endif
if conf(¬φ1, φk) ≥ confmin then
IAR ← IAR ∪ {¬φ1, φk }
Insert CPtree(IAR,ρmin)
endif
endif
Infrequent Rules ← getPatterns(CPtree)

 done
 done

Done
Lift calculates the ratio between the rules support and

confidence of the itemset in the rule consequent based on
the each selected class.

lift = prob(ci / Di) / prob(ci, D) (1)

prob(ci, / D): Probability of occurrence of an item in
samples of ith class .
prob(ci, D): Probability of occurrence of an item in a
dataset of ith class.

Correlation
2 2

1 2 1 2|D | lift(i,) |D | lift(i,)/ |D| lift(i,) lift(i,) i if f f f- -

Correlation formula is used to find the correlation
between the associated items with different class labels.
Here correlation computation is performed using lift
computation between the associated items. Correlation
computation has three different ranges such as negative
,zero and positive. If the computed value is positive,
then the items are highly associated to each other. If the
computed value is negative, items are not associated for
infrequent patterns. If the value is zero, then the items are
not related to each other for pattern generation.

3. Experimental Results

In this experimental study, dynamic data from the cloud
server was used with attributes such as instance id,
load Moodle balancing number, duration, cloud data
size,server status etc. All experiments are performed
with the real time Amazon cloud instances and client
configurations as Intel(R) CPU 2.13GHz, 4 GB RAM,
and the minimum OS platform is Microsoft Windows 7
Professional (SP2).
Sample Data:
Ins_02318,Load_8183,23:21,586,4584,500,205,fail
Ins_02318,Load_8183,11:21,704,9804,300,1532,fail
Ins_02 322,Load_8223,8:55,814,9323,500,6975,success
Ins_02324,Load_8243,17:48,530,37130,500,1414,fail
Ins_02331,Load_8313,19:18,518,58120,500,8986,fail
Ins_02344,Load_8443,11:49,380,30858,200,5617,success
Ins_02339,Load_8393,3:8,771,19776,404,6716,fail
Ins_02337,Load_8373,5:36,385,58968,500,7070,success
Ins_02321,Load_8213,22:13,632,58018,200,3398,success
Ins_02345,Load_8453,3:22,579,44768,500,9425,fail
Ins_02333,Load_8333,23:7,471,65753,500,844,fail
Ins_02345,Load_8453,21:13,645,45029,300,4695,fail
Ins_02345,Load_8453,5:7,564,17987,500,8782,fail
Ins_02335,Load_8353,1:23,808,31945,404,3652,success
Ins_02317,Load_8173,12:16,704,3593,300,353,success
Ins_02334,Load_8343,4:53,561,21533,200,8614,success
Ins_02345,Load_8453,4:12,462,47757,404,8509,success
Ins_023 25,Load_8253,13:46,705,1547,404,1119,success
Ins_02318,Load_8183,17:33,848,27626,200,440,fail
Ins_02310,Load_8103,6:2,794,35446,300,765,success

Sujatha Kamepalli, Rajasekhara Rao Kurra and Y. K. Sundara Krishna

Vol 9 (21) | June 2016 | www.indjst.org Indian Journal of Science and Technology 5

Generated Sample Infrequent Rules
usage <= 889.0 AND appsize >= 173.0 -> appexetime
>= 59.0
appexetime >= 59.0 AND appsize >= 173.0 -> serverstat
!= success
usage >= 250.0 -> serverstat != success
appexetime <= 9947.0 AND appexetime >= 59.0 ->
loadbal != Load_8383
appexetime <= 9947.0 -> usage <= 889.0
appexetime <= 9947.0 -> appsize >= 173.0
appexetime <= 9947.0 AND appexetime >= 59.0 AND
usage <= 889.0 -> serverstat != success
loadbal != Load_8383 AND appexetime >= 59.0 ->
appsize >= 173.0
loadbal != Load_8383 -> usage >= 250.0
serverstat != success -> loadbal != Load_8383
loadbal != Load_8383 -> timestamp != 3:52
appexetime >= 59.0 -> serverstat != success
usage <= 889.0 -> appexetime >= 59.0
usage <= 889.0 AND appsize >= 173.0 AND usage >=
250.0 -> serverstat != success
appexetime >= 59.0 AND appsize >= 173.0 AND usage
>= 250.0 -> serverstat != success
appexetime >= 59.0 AND usage >= 250.0 -> appsize >=
173.0
appexetime <= 9947.0 -> loadbal != Load_8383
serverstat != success AND usage >= 250.0 -> loadbal !=
Load_8383
appexetime >= 59.0 AND usage <= 889.0 -> appsize >=
173.0
loadbal != Load_8383 -> appsize >= 173.0
loadbal != Load_8383 AND appsize >= 173.0 ->
appexetime >= 59.0
usage <= 889.0 -> appsize >= 173.0
appsize >= 173.0 AND usage <= 889.0 -> serverstat !=
success
sage >= 250.0 AND usage <= 889.0 -> appsize >= 173.0
appsize >= 173.0 -> usage <= 889.0
usage <= 889.0 -> loadbal != Load_8383
usage >= 250.0 -> timestamp != 3:52
usage >= 250.0 -> appsize >= 173.0
serverstat != success AND usage <= 889.0 -> appexetime
>= 59.0
appexetime >= 59.0 -> usage >= 250.0
appsize >= 173.0 -> loadbal != Load_8383
appsize >= 173.0 AND usage >= 250.0 -> serverstat !=
success

appexetime <= 9947.0 -> serverstat != success
appexetime >= 59.0 AND appsize >= 173.0 -> serverstat
!= success
usage >= 250.0 AND appexetime >= 59.0 -> appsize >=
173.0
appexetime >= 59.0 -> usage <= 889.0
serverstat != success AND appsize >= 173.0 -> usage <=
889.0
appexetime <= 9947.0 AND usage >= 250.0 -> loadbal
!= Load_8383
appsize >= 173.0 AND usage >= 250.0 -> loadbal !=
Load_8383
appexetime >= 59.0 AND loadbal != Load_8383 ->
serverstat != success
appexetime >= 59.0 -> usage >= 250.0
appexetime >= 59.0 AND appsize >= 173.0 -> serverstat
!= success
loadbal != Load_8383 -> serverstat != success
usage >= 250.0 AND serverstat != success -> appexetime
>= 59.0
appexetime >= 59.0 AND usage >= 250.0 -> serverstat
!= success
serverstat != success -> usage <= 889.0
usage <= 889.0 AND usage >= 250.0 -> serverstat !=
success
loadbal != Load_8383 AND serverstat != success ->
appsize >= 173.0
usage <= 889.0 -> appsize >= 173.0
appexetime >= 59.0 AND usage <= 889.0 -> serverstat
!= success
usage >= 250.0 -> loadbal != Load_8383
usage <= 889.0 AND appsize >= 173.0 -> appexetime
>= 59.0
serverstat != success AND appexetime >= 59.0 -> usage
>= 250.0
appsize >= 173.0 AND loadbal != Load_8383 -> serverstat
!= success
usage <= 889.0 AND usage >= 250.0 -> loadbal !=
Load_8383
appexetime >= 59.0 -> appsize >= 173.0
appexetime >= 59.0 -> appsize >= 173.0
usage >= 250.0 AND appsize >= 173.0 -> appexetime
>= 59.0
appexetime >= 59.0 AND usage >= 250.0 -> serverstat
!= success
usage >= 250.0 -> appexetime >= 59.0
appexetime >= 59.0 AND loadbal != Load_8383 AND

Vol 9 (21) | June 2016 | www.indjst.org Indian Journal of Science and Technology6

A Multi-Class Based Algorithm for Finding Relevant Usage Patterns from Infrequent Patterns of Large Complex Data

usage <= 889.0 -> serverstat != success
appexetime >= 59.0 AND appsize >= 173.0 -> serverstat
!= success
appexetime >= 59.0 -> loadbal != Load_8383
usage <= 889.0 -> loadbal != Load_8383
serverstat != success -> appsize >= 173.0
serverstat != success AND appsize >= 173.0 -> loadbal
!= Load_8383
loadbal != Load_8383 -> serverstat != success
usage <= 889.0 AND appsize >= 173.0 -> serverstat !=
success
appexetime <= 9947.0 AND appsize >= 173.0 ->
serverstat != success
appsize >= 173.0 AND usage <= 889.0 AND appexetime
>= 59.0 -> serverstat != success
appexetime >= 59.0 AND serverstat != success -> appsize
>= 173.0
usage >= 250.0 AND appsize >= 173.0 -> loadbal !=
Load_8383
serverstat != success -> appexetime >= 59.0
loadbal != Load_8383 AND usage <= 889.0 AND usage
>= 250.0 -> serverstat != success
usage >= 250.0 -> appsize >= 173.0
appsize >= 173.0 AND serverstat != success -> appexetime
>= 59.0
usage >= 250.0 AND loadbal != Load_8383 -> appexetime
>= 59.0
appexetime >= 59.0 -> usage <= 889.0
appexetime <= 9947.0 AND appsize >= 173.0

4. Performance Metrics

Table 1, describes the number of cloud instances operated
for infrequent patterns. In this experiment the cloud
instance id,computational time, number of rules and
memory space are computed and listed in the table.

Table 1. Proposed model computation results
Number of
Cloud Instances

Computation
Time(ms)

Rules
Count

Memory
Space(kbytes)

1000-ins 1344 10 4.66
2000-ins 2433 13 5.77
3000-ins 3533 17 7.43
4000-ins 4333 15 8.44
5000-ins 5227 9 1.022
10000-ins 5988 16 1.744

Figure 4, describes the number of cloud instances
operated for infrequent patterns. In this experiment the

number of rules and memory space are compared under
different experiments.

Figure 4. Infrequent Cloud rules and Memory Space.

Figure 5, describes the number of cloud instances
operated for infrequent patterns. In this experiment
the number of cloud instances and computational are
compared under different experiments.

Figure 5. Infrequent Rules Computation Time and Number
of Instances.

Table 2 describes the performance analysis of the
proposed model with the traditional models in terms
of accuracy. As the number of instances size increases
the true positive rate in the proposed model increases
compare to traditional models.

Table 2. Proposed and Traditional models accuracy
comparison
No.of Cloud
Instances

CP-Tree (Ac-
curacy)

Parallel FP-
Tree

Proposed
Model

1000-ins 87.45 93.34 98.79
2000-ins 85.67 89.76 97.67
3000-ins 89.76 91.56 98.18
4000-ins 84.78 89.95 97.98
5000-ins 88.96 92.789 98.19
10000-ins 87.12 91.06 97.89

Sujatha Kamepalli, Rajasekhara Rao Kurra and Y. K. Sundara Krishna

Vol 9 (21) | June 2016 | www.indjst.org Indian Journal of Science and Technology 7

5. Conclusion

In this proposed work, an improved infrequent mining
algorithm was implemented in the real time distributed
cloud data. Proposed approach implemented on the data
samples with the distinct attribute types. This approach
generates high quality cloud usage patterns of large
complex data. Proposed approach does not rely on any
probabilistic closure measures and quantitative data. This
approach minimizes the database scans and optimizes
the infrequent cloud patterns. Experimental results
show that, proposed work generates high quality cloud
patterns compared to traditional quantitative rule mining
techniques.

6. References
1. Shabana Asmi P, Justin Samuel S. An analysis and accuracy

prediction of heart disease with association rule and other
data mining techniques. Journal of Theoretical and Applied
Information Technology. 2015; 79(2):254-60.

2. Cohen, Fast effective rule induction, in the Proceeding of
the 12 International Conference on Machine Learning,
Morgan Kaufmann, San Francisco, 1995, p.115-23.

3. Liu B, Hsu W, Ma Y. Integrating Classification and associ-
ation rule mining. In: KDD ’98, New York, NY, 1998 Aug,
p.12-24.

4. Thabtah F, Cowling P, Peng YH. MMAC: A New Multi-
Class, Multi-Label Associative Classification Approach.
Fourth IEEE International Conference on Data Mining
(ICDM’04). 2015 April; 7(1):34-56.

5. Lai Y, Zhong Zhi S. An efficient data mining framework on
Hadoop using java persistence API, Computer and Infor-
mation Technology, 2010. p. 434-40.

6. Caglierro L, Garza P. Infrequent Weighted Item set Min-
ing using Frequent Pattern Growth. IEEE Transactions on
Knowledge and Data Engineering. 2014; 26(4):1041-4347.

7. Delgado M, Ruiz MD, Sánchez D, Serrano JM. A formal
model for mining fuzzy rules using the RL representation
theory. Information Sciences. 2011; 181(23):5194-5213.

8. Gupta A, Mittal A, Bhattacharya A. Minimally Infrequent
Itemset Mining Using Pattern-Growth Paradigm and Re-
sidual Trees, Proc. Int’l Conf. Management of Data (CO-
MAD), 2011. p. 57-68.

9. Shyamala K. An Analysis on Efficient Resource Allocation
Mechanisms in Cloud Computing. Indian Journal of Sci-
ence and Technology. 2015 May; 8(9):814-21.

10. Sugunadevi P. Efficient Algorithm for Mining High Utility
Itemsets. The International Journal of Science and Tech-
noledge. 2014 May; 2(5):45-49.

11. Luca Cagliero and Paolo Garza. Infrequent Weighted Item-
set Mining using Frequent Pattern Growth. IEEE Transac-
tions on Knowledge and Data Engineering. 2013; 1-14.

12. Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed,
Byeong-Soo Jeong, Young-Koo Lee. CP-Tree: A Tree Struc-
ture for Single-Pass Frequent Pattern Mining. In: Spring-
erVerlag Berlin Heidelberg: 2008. p. 1-6.

13. Leung, CK, Khan QI, Li Z, Hoque T. CanTree: A Canoni-
cal-Order Tree for Incremental Frequent-Pattern Mining.
In: Knowledge and Information Systems. 2007; 11(3):287-
311.

14. Jiawei Han, Jian Pei, Yiwen Yin, Runying Mao. Mining
Frequent Patterns Without Candidate Generation: A Fre-
quent-Pattern Tree Approach. In: Kluwer Academic Pub-
lishers. 2004. p. 53-87.

