
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(22), DOI: 10.17485/ijst/2016/v9i22/91978, June 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Offloading Computation for Efficient Mobile Cloud
Computing

Hitika Atre, Karan Razdan and Raj Kumar Sagar

Amity University, Noida, Uttar Pradesh – 201313, India;
hitikaatre@gmail.com , karan.razdi@gmail.com, rksagar@amity.edu

Keywords: Android, AWS, Offloading, Mobile Cloud Computing, Power Consumption

Abstract
Background/Objectives: Mobile and cloud are two of the most used technologies today and it is only a matter of time
before these technologies combine. In this study we try to combine these two. Method/Statistical Analysis: To study the
combination of these two technologies, we offloaded a certain amount of computational work from a mobile device (An
android device in our case) to a cloud server (AWS) and studied the real world performance benefits and battery gains that
we achieved with it. Findings: We found a clear gain in terms of the load on the CPU of the device as well as the battery
life consumption. This could lead to high real world gains in performance. Applications/Improvements: This technology
can be used to create cloud-first mobile applications that not only just store their data on the cloud, but also rely on it for
its computational needs.

1. Introduction
In its most basic form, a cloud offers various resources
such as compute, storage, content delivery, analytics etc.
over the internet. The user does not need to be physically
in possession of these resources. The cloud ‘offers’ these
resources to the end user via an Internet connection. The
maintenance and the upkeep of the provisioned resources
needs to be done by the cloud service provider and the
user just ‘consumes’ these resources. People who do not
have the capital to invest in their own infrastructure at an
early stage can take advantage of this as it is mostly cost
effective and takes away all the maintenance needs of the
organization. Cloud computing has caught the imagina-
tion of millions and has been the IT buzz word for a while
now. There are organizations that were ‘born in the cloud
itself and continue to operate in the same way. Even with
its immense popularity, cloud resources are still majorly
being accessed by desktop computers only. When it comes
to mobile devices, they are still very much limited to their
own hardware for all the compute tasks.

With the progression of wireless network services all
over the world, smart phones have gained a strong user
base. Just like cloud computing, mobile cloud computing
aims at offloading the processing tasks and the storage
tasks of the mobile device, to computational powerhouses
with a large number of computers that performs all these
tasks for the mobile devices1. The result of the computa-
tion is returned to the mobile device through the wireless
network. This can lead to a large amount of savings for
the device in terms of computational power, battery usage
and storage space.

With more and more high-end phones coming out
every year, the average consumer struggles to keep up
with the pace. Applications become heavier and more
taxing on the devices. The high-end devices are able
to cope up with these ever increasing demands but the
average phone struggles to keep up with the high com-
putational needs of these applications. For such devices, a
viable option is to offload their computational needs to a
resource rich cloud server2,3. They can deliver the desired
performance with close to no strain on the CPU. This

Offloading Computation for Efficient Mobile Cloud Computing

Indian Journal of Science and TechnologyVol 9 (22) | June 2016 | www.indjst.org 2

gives more computational power to the system and the
other user applications.

While offloading computation to a cloud server, there
are two important factors to keep in mind. The first factor
is the size of the computation being performed and the
second factor is the amount of data that needs to be sent
and received for the computation to be successful. The
ideal conditions for offloading a task involve a fairly large
amount of computation being performed on the cloud
server and the data that needs to be sent and received
should be relatively small in size. In such a condition, the
offloading of the computation should always be offloaded
to the cloud server. On the other hand, if too much data
needs to be sent to the cloud server to perform a relatively
small computation, the offloading becomes counter-pro-
ductive and should be avoided. When the conditions are
a mix of the both, it depends on how good the internet
conditions are. If a good network connection is available,
the computation can still be offloaded. If not, the offload-
ing may be avoided. This is well depicted by Figure 14. We
should try to be in the region that says “Always Offload”
to be certain of our offloading being beneficial.

2. Related Work
In recent times, there have been a number of studies that
try to tackle MCC. Some of them focus solely on improv-
ing the power consumption, a few of them focus on
improving the overall throughput of the device and some
focus on optimizing both of these at the same time. The
maximum amount of gain on the processor load is around
75% and the on the power consumption is around 56%5.

The efficiency of offloading computational tasks to a
cloud depends upon several factors, most of which are
dynamic in nature6. Due to the dynamic nature of these
properties, the efficiency associated with the cloud setup
also varies over time. Depending on the size of the task
and the amount of bandwidth available, sending data to

the cloud might not actually turn out to be beneficial with
respect to the overall battery consumption. Kumar et. al.4
studied this and came up with the following formula:

Here,

•	 Pc is the power consumption by the mobile when
executing instructions.

•	 Pi is the idle power consumption of the mobile.
•	 Ptr is the power consumption while transmitting

data.
•	 C is the total number of instructions in the given

computation.
•	 S is the time taken by the cloud server to process

instructions.
•	 M is the time taken by the mobile to process the

instructions.
•	 D is the total amount of data to be sent in bytes.
•	 B is the total available network bandwidth.

The first element in the formula calculates the total bat-
tery consumption if the computation has been completely
done on the mobile device. The next two components cal-
culate the power consumption if the whole computation
is sent to the cloud server. The factor takes into account
the power consumption involved in sending the data over
the network. If the result of the above formula comes out
to be greater than 0, we can say that the task of offloading
the computation is actually beneficial and efficient. If the
result is less than 0, the process turns out to be counter-
productive. It can be clearly seen that due to these factors,
not every computation can be efficiently offloaded at a
given time.

If we consider that the speed of the cloud server is a
multiple of the speed of the mobile processor, i.e., S=FxM.
This means that the cloud server is F times faster than the
mobile processor. Replacing that in the equation (1), we
arrive at the equation (2) [4]. For the result to be highly
positive, the value of Pi/F should be a very small one. That
means the value of F should be really large. This straight
away means that the speed of the cloud server should be
several times greater than the mobile processor. Upon

Figure 1. Suitable Conditions for Offloading.

Hitika Atre, Karan Razdan and Raj Kumar Sagar

Indian Journal of Science and Technology 3Vol 9 (22) | June 2016 | www.indjst.org

solving the equation, we come at a realization that the
bandwidth requirement is directly dependent upon the
ratio of the terms D/C. From this, we can conclude that
the offloading process is highly efficient when we have a
large amount of computation that needs to be done and
the data that needs to be transmitted for the computation
is relatively small.7 This scenario will always yield a posi-
tive result for the equation and hence make the offloading
process efficient.

3. Methodology
We developed an Android application for the purpose of
running some tests. The Android application was used
to establish a connection with the Amazon EC2 instance
for compute as well as the Amazon S3 bucket for stor-
age needs. The application comprises of several modules.
These modules include the following.

A. Statistics Module
The statistics module is the backbone of the applica-
tion. It keeps on making a log entry of all the vitals of
the device after every second. This continuous log-
ging helps us come up with the results of executing the
computational tasks on the device and the cloud. The
statistics module gives us 4 important stats that are
the current battery life, the CPU load, amount of free
memory and the network usage of the device. There is a
separate method for calculating each one of these stats.
As we need to continuously keep monitoring these stats,
the whole process is performed on a separate thread than
the main thread. This helps in keeping this task running
even when the main thread is busy with some other work8.

B. SSH Module
The Secure Socket Shell is a protected way of connecting
to a remotely located server with no physical access to it9.
It encrypts the data and sends it through secure channels
in order to maintain the privacy and the integrity of the
data being sent. The connection is not natively supported
by the android sdk. We need to use an external library
called “Jsch” to be able to connect to the remote server.
Jsch provides a robust way of connecting to the server
by giving us a full range of options for authentication,
including but not limited to, Public-Private Key authenti-
cation10. We use the Private Key in order to match it with
the Public Key that is stored in the AWS servers. After the

connection is established, commands can be sent to the
instances through the secure channel.

C. S3 Download/Upload Module
We have a module that can upload the user data to the
bucket and download files from their secure servers using
the application. The application creates a secure channel
to connect to the AWS servers and then starts transmit-
ting the data11. The identity of the mobile device is verified
by the Amazon Cognito Identity Provider. It creates a
cognito pool id which is used together with the bucket
name to authorize the user access.

D. Image Processing on the Phone
Image processing on the phone is done using the OpenCV
library12. The library can be used to perform image
manipulation using many of its built in functions. In par-
ticular, we perform the Canny Edge Detection technique.
The OpenCV library has a built in method for canny edge
detection. We just need to pass the image and the thresh-
old values and the rest is done by the library.

E. Image Processing on the Cloud
A similar image manipulation process is performed
on the EC2 instance using Octave GNU13,14. We use the
octave CLI to execute programs. For image manipulation,
the image package was installed and used to execute the
built in function for canny edge detection. We send the
command to the instance using the SSH connection that
was established using Jsch. We securely send our com-
mand to the server and in a similar way receive the output
from the instance.

The EC2 module is used to execute the instruction
on the server and the same computation is performed
on the device as well. As the most common piece of data
that can be worked upon in a modern device is photos,
we decided to go with an image processing application.
We performed simple image processing on a number of
images. The statistics modules logs all the statistics while
both the functions are underway. These statistics are then
collected as an average of several values.

4. Experiments
Our experiments were carried out on 2 devices, the first
one being a first generation Motorola Moto G. The device

Offloading Computation for Efficient Mobile Cloud Computing

Indian Journal of Science and TechnologyVol 9 (22) | June 2016 | www.indjst.org 4

has a 1.2GHz Quad Core processor, 2070 mAh battery
and Android 5.1.1. The other device was an OnePlus One.
The device has a 2.5GHz Quad Core processor, 3100 mAh
battery and Android 6.0. The first phone was considered
as a modern day low-end device and the second phone
was considered as a high-end device.

Both devices had a stable 3G connection with good
signal strength running at all times. They had a fresh
start before the tests were run. No background applica-
tions were running. A number of tests were carried out
and the average values obtained from them were used.
We provide the application with 3 types of loads, small,
medium and large. Basically, the number of images being
manipulated by the application increases in each load. So,
the application has to do more work in order to finish the
work that has to be done.

We monitored three factors while conducting the
tests; the average battery consumption, the time taken for
the computation and the change in the CPU Load. Once
the average values were calculated, we plotted the graphs
for each of the test cases.

For the first test, we look at the average time taken
for the computation. The cloud server performs its com-
putations on the cloud server as compared to executing
the computation on the phone itself. It can be clearly seen
in the graph that there is a notable difference in the time
taken by both the platforms. As we can see in Figure 2,
even though it is slight, the cloud is clearly seen to have an
edge over its competitor, the mobile device. The difference
between the two increases at a very slow rate and remains
nearly constant for a large distribution of the load. This
was seen for both, the high as well as the low-end device.

	
Figure 2. Computation time for mobile vs cloud.

For the next experiment, we took a look at the rate at
which the application was consuming the battery life of
the device. As the cloud implementation does not put any

kind of load on the device, it was expected that the battery
consumption would be much lower for it. At the same
time, when we increase the amount of load on the appli-
cation, the amount of battery it consumes also goes up.
This is not the case for cloud as the battery consumption
remains fairly linear in its case. From the results obtained
in Figure 3, we could see that in case of a high end phone,
due to the bigger screen, the application takes up a little
more battery life which keeps on increasing when the
amount of load is increased. Similar results are obtained
in Figure 4 and hence we can see that both, the low and
the high-end phones give a similar looking graph but at
the same time, the high-end phone takes up more of the
battery life.

	
Figure 3. Battery Consumption for mobile vs. cloud (Low
End Phone).

	
Figure 4. Battery Consumption for mobile vs. cloud (High
End Phone).

For the last test, we look at the change in the CPU
usage of the device once the computation starts to take
place. Again, as the cloud implementation does not use
much of the CPU horsepower, the expected increase in
the load is not much. As compared to this, when we exe-
cute the code on the phone, it will obviously take up a lot
of CPU horsepower and put the system under a certain
load depending upon the complexity of the computation.

Hitika Atre, Karan Razdan and Raj Kumar Sagar

Indian Journal of Science and Technology 5Vol 9 (22) | June 2016 | www.indjst.org

For a lower end phone, the computation is more taxing
and puts the CPU under a higher load. This can be seen
by the graph in Figure 6 where the CPU load increases
at a rapid rate and takes up more than half of the avail-
able computational power. Similarly, we observe from
Figure 5 that a high-end phone would be under load too
but it would still be less than its low-end counterpart. The
cloud implementation on the other hand sees close to no
impact on the CPU usage as the only thing the application
needs to do is to send a small amount of data to login to
the instance and send it the command that needs to be
executed.

	
Figure 5. CPU Usage for mobile vs. cloud (High End
phones).

	
Figure 6. CPU Usage for mobile vs. cloud (Low End phones).

5. Conclusion and Future Scope
In this paper, we have tried to study the various ben-
efits that can be attained using MCC, through a series of
tests. We saw that in the case where a small amount of
data transfer leads to a large amount of computation, it

is always preferred to offload the computation. We tested
this scenario and got conclusive evidence that MCC
shows a huge advantage over its counterpart. It was clear
that given the right circumstances, the process of offload-
ing the tasks to the cloud can be beneficial for the mobile
device, in terms of battery life as well as available compu-
tational power.

This clearly shows that mobile cloud computing is a
highly viable option that can be widely used in the future.
The benefits of using such a system are clearly visible and
lead to actual real world performance as well as battery
life benefits for the users15,16.

For future work, A system can be built that would
continuously monitor these stats and would make an
informed decision based on the amount of data that needs
to be offloaded. The system can tell us when it’s good to
offload the computation and when it’s better to do it on
the device itself. This can be implemented as a standalone
application or system-wide layer within the operating
system. The methods within an application that can be
offloaded to the cloud can have a special label assigned
to them. When such a method is called, it can check with
the system if the conditions are viable for a cloud offload.
The system would check the payload and the network
bandwidth and accordingly make a decision. This kind of
a system is most feasible on an android operating system
due to the amount of freedom it offers to the developer.
Other operating systems may not allow the same amount
of flexibility.

6. References
1.	 Nielsen Informate Mobile Insights. Mumbai: Vserv:

Smartphone User Persona Report. 2015.
2.	 Wang C. and Li Z. Parametric Analysis for Adaptive

Computation Offloading. ACM SIGPLAN Notices. 2004;
39(6):119-30.

3.	 Wolski R et al. Using Bandwidth Data to Make Computation
Offloading Decisions. Proc. IEEE Int’l Symp. Parallel and
Distributed Processing (IPDPS 08). 2008; p. 1-8.

4.	 Kumar K and Lu YH. Cloud computing for mobile users:
Can offloading computation save energy? IEEE Computer.
2010 April; 43(4):51–56.

5.	 Lai CF, Chao HC, Lai YX, Wan JF. Cloud-assisted real-
time translating for http live streaming. In Proc. Wireless
Communications, IEEE. 2013 June; 20(3).

6.	 Zhan K, Lung C and Srivastava P. A Green Analysis of
Mobile Cloud Computing Applications. 2014; p. 6.

Offloading Computation for Efficient Mobile Cloud Computing

Indian Journal of Science and TechnologyVol 9 (22) | June 2016 | www.indjst.org 6

7.	 Ying-Dar Lin, Edward TH Chu, Yuan-Cheng Lai and
Ting-Jun Huang. Time-and-Energy-Aware Computation
Offloading in Handheld Devices to Coprocessors and
Clouds. IEEE Systems Journal. 1932-8184 © 2013 IEEE.

8.	 Saad S and Nandedkar S. Energy Efficient Mobile Cloud
Computing. International Journal of Computer Science
and Information Technologies. 2014; 56.

9.	 What Is Secure Shell (SSH)? Available from: http://search-
security.techtarget.com/definition/Secure-Shell

10.	 JCraft. JSch. Available from: http://www.jcraft.com/jsch/
examples.

11.	 Murty J. Farnham: O’Reilly: Programming Amazon Web
Services - S3, EC2, SQS, FPS, and SimpleDB. 2008.

12.	 OpenCV documentation index. (n.d.). Available from:
http://docs.opencv.org.

13.	 Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer
T and Epema D. A Performance Analysis of EC2 Cloud
Computing Services for Scientific Computing. Cloud
Computing. 2010; 34:115-31.

14.	 Eaton JW. Bristol, UK: Network Theory: GNU octave: A
high-level language for numerical computations: Octave
version 2.0.17 (stable). 2005.

15.	 Mohammad Saad S and Nandedkar S. Energy Efficient
Mobile Cloud Computing. International Journal of
Computer Science and Information Technologies. 2014; 56.

16.	 Kalpana V, Meena V. Study on Data Storage Correctness
Methods in Mobile Cloud Computing. Indian Journal of
Science and Technology. 2015 Mar; 8(6). Doi: 10.17485/
ijst/2015/v8i6/70094.

