
Indian Journal of Science and Technology, Vol 9(22), DOI: 10.17485/ijst/2016/v9i22/91888, June 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

Cloud computing is a new paradigm for providing on-
demand metered1 computing services over Internet using
different models and layers of abstraction2 to its users.
The metered scalable computing as a service model of
cloud has revolutionised the way enterprises use the IT
infrastructure. Cloud computing is gaining popularity
over classic data centers3 for storing and processing huge
volumes of data. It is an attractive option for enterprises
looking to outsource their entire IT infrastructure to
external data centers, thereby eliminating the upfront
capital infrastructure investment. The increasing
dependency on the cloud gives rise to need formore
dependable and reliable cloud systems. A Cloud comprises
of interconnected data centers called as clusters2 with each

data center resources having multiple virtual3 computing
and storage units called as Virtual machines. These
configurable Virtual Machines are be allocated to the
cloud users over Internet on demand pay per use basis.
Businesses can reap huge benefits from cloud computing
in terms of IT cost saving on initial infrastructure setup
and maintenance, scalability, mobility, Pay-per-use
software licenses and a semblance of infinite resources
availability4to the individual user. However, in traditional
data center the user has more control over the data and
applications over the cloud as complex cloud architecture
details are abstracted from the user. The user applications
and data is at greater risk because the failures5 (hardware
failure, VM congestion, Network congestion) are out
of user control. There is a need to address the research
gaps in the area of fault tolerance6 to achieve reliability7

Abstract
Background/Objectives: Considering the growingdemandfor cloud services for development and deploying of critical
business applications, it is extremely important that cloud provider guarantees a reliable and robust service by providing
fault tolerance mechanisms that enable seamless execution of the business transaction execution even in presence of faulty
components. The objective of this paper is to propose a collaborative fault tolerant mechanism between cloud provider and
cloud client. Methods/Statistical Analysis: The collaborative fault tolerance approach considers collaboration between
the cloud provider and the cloud client to develop a comprehensive fault tolerance solution that can be customised to
suit to the hosted cloud applications needs.The proposed design is based on usage ofPersistent Map based strategy.
Findings: The Persistent Map based strategy saves the state information of execution in the form of P-maps. The P-map is
a persistent hash map that stores the current state of execution of a given task. In the case of failure, it can be used to restart
the process from the last state at which the task failed and resume the application execution from that point as though
no failure occurred.The P-map storage is a crucial element to be considered in the design of the system, that requires
careful analysis and can have a huge impact on the execution of an application. Application/Improvements: The authors
have considered an approach which requires a collaboration between cloud providers and cloud client to design a fault
tolerance mechanism that takes into consideration the complex cloud infrastructure as well behaviour and functionality
of the application in focus.

Keywords: Cloud Computing, Fault Tolerance, Persistent Maps, Recovery System

Intra State Recovery System Design for
Cloud based Applications

Komal Mahajan* and Deepak Dahiya

School of Engineering and Technology, Ansal University, Gurgaon - 122003, Haryana, India;
kom12mahajan@gmail.com, deepakdahiya@ansaluniversity.edu.in

Vol 9 (22) | June 2016 | www.indjst.org Indian Journal of Science and Technology2

Intra State Recovery System Design for Cloud based Applications

and availability for the real time computing on cloud
infrastructure. Fault tolerance is concerned with all
the techniques necessary to enable a system to recover
and function in the event of the hardware or software
failures. In order to minimize the impact of failure, the
system should actively and proactively handle failure
by implementing necessary fault tolerance techniques.
Ideally, the applications should be designed and
developed to handle the failure independently. However,
it is practically inefficient to do so in case of applications
designed to be deployed on a cloud environment because
the high system complexity details of cloud infrastructure
are abstracted from the user. Also, implementing the
generic fault tolerance techniques8 provided by cloud
provider are inefficient as well as they do not focus on the
application behaviour and functionality. Thus there is a
need for a collaborative approach between cloud provider
and the cloud client to develop a comprehensive fault
tolerance solution that can be customised to suit to the
hosted cloud applications needs. In this paper, the authors
have proposed a collaborative fault tolerant mechanism
that preserves the intra state information so that the
system can restart from the last state at the time of failure
thus minimising the chances of data loss.

2. �Motivation and Problem
Definition

Increasing number of companies are adopting the trend
of outsourcing the computing services to the cloud
providers. It has changed the way computing services9
are developed, deployed, scaled, updated, maintained
and paid for. The cloud offers the benefits of on demand
scalable computing resources on pay per use model.
With the growing dependency on infrastructure-less
cloud computing model, there is a need for providing
robust and reliable computing services to support the
growing business. A cloud is a set of data centers. Each
data center is virtually partitioned into number of VMs.
The incoming requests to the cloud are actually deployed
on the VMs. There is a possibility of a VM to fail10 in
such an environment due to multiple reasons like power
failure, hardware corruption, physical damage of the
hardware etc. So we require such a system that responds
to unexpected failures i.e., the system is fault tolerant.

Since there are shortcomings in design and

development of standalone fault tolerant applications
because of abstraction8 provided by cloud. Also, generic
fault tolerance technique do not cater to customised
behaviour and functionality of the applications. So we
need to follow a collaborative approach to design a fault
tolerance technique that takes into account both the cloud
architecture and application behaviour.

This leads us to the following problem definition i.e.,
“To design a collaborative framework for fault

tolerance in cloud based infrastructure to improve
reliability and availability of the applications deployed on
cloud infrastructure”.

3. Related Study

Cloud Computing is an alternative solution for industries
in which computing resources are no longer hosted on
firm’s in-house data centers but out-sourced to a third-
party cloud provider on pay per use basis, accessed over
internet. Given the scalable nature of cloud, it has become
a popular solution for deploying reliable applications.
However, due to dynamic nature of cloud, it is a challenge
to guarantee reliability and availability for the real time
computing. Considering the growing importance of
cloud, it is necessary to focus research on correct and
continuous operation of the applications deployed on
cloud even in the presence of faulty components. A
number of fault tolerance techniques have been proposed
which allow applications to actively or reactively deal with
faults. Based on time at which an action is taken, fault
tolerance techniques are classified into Reactive11 and
Proactive12 techniques. Reactive fault tolerance policies
reduce the impact of failures when the failure effectively
occurs. The Proactive fault tolerance policy is to avoid
recovery from fault, errors and failure by predicting them
and proactively replace the suspected component. Check
pointing/Restart11,12 is a reactive fault tolerance policy in
which a task is restarted at the last checked pointed state
rather than from the beginning, which makes it efficient
for tasks with long execution times. In Replication
based fault tolerance policies, replicated tasks are run on
different resources, for successful execution and getting
the desired result. It can be implemented using tools like
HAProxy, Hadoop and Amazon EC213 etc. The Reactive
fault tolerance policy based on Job Migration migrates
the task to another machine/VM in case of fault. This
technique can be implemented by using HAProxy. Retry

Komal Mahajan and Deepak Dahiya

Vol 9 (22) | June 2016 | www.indjst.org Indian Journal of Science and Technology 3

fault tolerance retries the failed task14 on the same cloud
resource. Task resubmission fault tolerance policy is based
on resubmission of the failed task either to the same or to
a different resource at runtime. User defined exception
handling fault tolerance policy13,15 specifies the required
treatment of a task failure for workflows. A Rescue
workflow fault tolerance technique enables workflow
execution to continue even if it fails till the time it becomes
impossible to move forward without handling the failed
task. Software Rejuvenation is a proactive fault handling
technique that designs the system for periodic reboots.
It restarts the system with clean state. Self Healing16,17,27

is another Proactive Fault tolerance technique in which
multiple instances of an application are executing on
multiple virtual machines which automatically handles
failure of application instances. Proactive Fault Tolerance
can also be achieved using Pre-emptive Migration18 which
relies on a feedback-loop control mechanism where
application is constantly monitored and analyzed.

4. Current Work Limitations

•	 Single Point of Failure: The non-replication based
fault tolerance policies are prone to single point of
failure. Consider the case of Check pointing/Restart
fault tolerance policy which is subjected to single
point of failure in case of VM/machine failure. In that
case, it is necessary to migrate the application to an-
other VM/machine.

•	 Additional cost of operation: To improve the reliability
of system, some approaches are based on incorporat-
ing redundancy in order to improve the reliability of a
system. Some systems are based on space redundancy
which use additional redundant hardware, software
or information components and some may be based
on time redundancy that may duplicate the computa-
tion or a combination of both. These approaches add
to the cost of operation and can be avoided in case of
non-critical business operations.

•	 Missing deadlines for critical job functions: In job
migration, the failed tasks are resubmitted to same
or different resources which will not waste any un-
necessary resources but increase the makespan20 of a
workflow. Such techniques are not beneficial in case
of critical tasks when the success rate of a job is based
on deadlines.

•	 Domino effect: In case uncoordinated checkpoints
are used, the rollback can lead to the Domino effect21
i.e., Cascaded rollback which causes the system to roll

back to too far in the computation.
•	 Overhead of maintaining checkpoints: There is an

additional overhead involved in maintaining multiple
checkpoints. Checkpoints consume storage resources.
The users may put possible useless checkpoints. With
the passage of time, some checkpoints and recovery
information may become useless, and are needed to
be cleaned up from the memory. Hence, garbage col-
lection is necessary to free up the storage consumed
by deletion of such useless recovery information.

•	 Loss of application instance specific data: In case mul-
tiple application instances are running, even if one
application instance fails, it may lead to application
instance data loss.

•	 Migration Overhead: The Job migration overhead22
can be in the form of time and performance impact.
There is migration time and cost involved to assign
individual jobs to anew VM as per an assignment
plan. The job migration can further degrade the per-
formance of the impacted VM as well as it can have
adverse performance impact on the destination VM.

•	 Loss of intra-state information: In case of check
pointing, the system is rolled back to the last consis-
tent state. This leads to loss of intra-state information.

5. Proposed System Design

The proposed system design has been illustrated in the
Figure 1. The Fault Detection Manager component
provides support for detection or prediction of failure in the
nodes. Fault detection manager23 continuously monitors
the system for faults/failures and once detected, it notifies
the Recovery Manager of the failure. RecoveryManager
component handles the failure and is responsible for
resuming the system back to operational state from failure
state. The Recovery Manager coordinates the task of
replication of the failed VM on a new destination VM. For
this, it invokes the functionality of ReplicationManager
which is responsible for handling the replication. The
ReplicationManager uses the LoadBalancer19 to find a
new home VM for the application on the failed VM. The
LoadBalancer component is responsible for finding an
appropriate VM for the application in such a way that the
load of the system remains balanced. The LoadBalancer
can choose the VM based on Round Robin2, equally
balanced, first fit fashion etc., depending on the load
balancing policy it uses. Once the LoadBalancer finds a
new home VM for application, the next phase is to resume
the processing of the application from the point of failure

Vol 9 (22) | June 2016 | www.indjst.org Indian Journal of Science and Technology4

Intra State Recovery System Design for Cloud based Applications

in a seamless manner. The ReplicationManager uses the
latest state details controlled by StateManager to resume
the application processing from the point of failure giving
an illusion of no failure no. 1.

As a case study, we consider a client offering hosted
on cloud, a web based electronic wallet (e-wallet) service.
An e-wallet is a personal virtual wallet, recharged using
debit or credit cards, which allows an individual to
make electronic commerce transactions. The e wallet is
a multitier application with data layer used to store and
retrieve the customer’s data, application layer used to
process the e-wallet transactions, including recharging
the wallet, making e-commerce payments etc. We
consider e-wallet for the case study as there is huge
dependency of the growing customer base on the e-wallet
service and such an application would really benefit by
moving to cloud. By hosting e-wallet service on the cloud,
it can leverage metered services of the scalable, elastic and
reliable infrastructure of cloud. Considering the growing
customer base on the e-wallet service, it is necessary that
application hosted on cloud should offer reliable and
robust services. Given the scale of transaction on the
e-wallet service, a failure in a VM can have a huge impact
on the reliability and availability of the service. Thus it
really important that the fault tolerance is imparted in the
components, so that the service remains up and available
throughout its lifecycle. In order to minimise the impact
of failure on the application, it is necessary that the system

should have failure handling mechanisms to actively
and proactively handle failures. One way to do so is to
impart fault tolerance in the application e-wallet itself.
But given that the cloud environment is very complex
and the underlying details of the application deployment
and system implementation and abstracted from the
user, the approach would be inefficient. Another way to
so, would be to use the generic fault tolerance techniques
provided by cloud provider. But in that case the generic
fault tolerance techniques would not be very efficient to
use either as they cannot be customised to focus on the
application behaviour and functionality. Considering
the given scenario, the best approach would be to use a
collaborative approach between cloud provider and the
cloud client to design a fault tolerance technique that
takes into consideration the complex cloud infrastructure
as well behaviour and functionality of the application
in focus. The authors have proposed a collaborative
fault tolerant mechanism that preserves the intra state
information so that the system can restart from the last
state at the time of failure thus minimising the chances
of data loss.

Failure is a serious issue and cloud customer requires
that cloud provider ensures the application is continuity
available in a seamless manner even in case of failures as
well as guarantee no or minimum loss of computation just
prior to the fault. The fault tolerance techniques23 should
be designed and developed in a manner that they should

Figure 1. Sequence diagram showing the interaction among different
components of a recovery system.

Komal Mahajan and Deepak Dahiya

Vol 9 (22) | June 2016 | www.indjst.org Indian Journal of Science and Technology 5

guarantee the same, especially in the case of large scale
long running critical applications where the downtime,
delays and computation loss can mean huge loss to the
business.

Considering the e-wallet application. One of major
functionality provided by the application providers is
the ability to recharge the wallet with the desired amount
using debit/credit cards or NetBanking. The wallet
recharge would consist of number of sub stages each of
which would involve some sub-functionality. For the
given case study, we consider the following major phases
in the recharge process:
•	 Login.
•	 Enter the amount one wants to recharge and bank de-

tails.
•	 Connect to the bank gateway and make the payment.
•	 Increase the wallet credit with the required amount.

Each of the phase is not atomic and consists of sub-
actions. In the Login Phase, the user enter its credentials
and the application layer checks the authenticity of the
data entered by communication with the data layer. In
the next phase, the user enters the bank card/netbanking
details from which the money is to be transferred into
the personal e-wallet. The next phase is connecting to
the external bank gateway application where it passes the
relevant bank details so as to initiate the transaction. Once
the transaction is successfully completed, the next phase
is to increase the wallet with required amount debited
from user’s bank account. Table 1 provides parameters to
be stored during different phases of a transaction. Let us
take the case that the VM on which the e-wallet app is
hosted fails at the fourth stage when the wallet credit is
supposed to be increased with the desired amount. In case
when the whole transaction is considered atomic and no
checkpoints are maintained, the entire transaction has to
be rolled back to maintain a consistent state. Also when

we maintain checkpoints, if the node and consequently
the task fail before saving checkpoint, the progress will
continue from the last checkpoint. In such a case, if
each phase has a checkpoint, and the processing of all
phases is complete and the node fails before saving the
fourth checkpoint. During recovery, the recovery system
would notice that the last checkpoint24,25,28 at the third
state. Thus, it would continue the processing from the
fourth phase which could in the worst case mean that
fourth phase would be repeated twice leading to wallet
being recharged twice. This could be later noticed during
reconciliation. However there could be a chance that it
could be missed which could lead to losses. In order to
deal with the above problem, we need a collaborative fault
tolerance technique.

The authors has proposed a Persistent Map (P-map)
based strategy that saves the state information of execution
in the form of P-maps. The P-map is persistent hash map
that stores the current state of execution of a given task.
In the case of failure, it can be used to restart the process
from the last state at which the task failed and resume the
application execution from that point as though no failure
occurred. The P- maps are used to store the intra-state
information for introducing fault tolerance in a VM. The
P map structure for the discussed e-wallet application is
given below:

PMap
{
TransactionId,
Stage,
{ ParameterName1: ParameterValue1,

ParameterName2: ParameterValue2, …..n} 	 State
}
// Set of parameters and flags at certain stage of

transaction
In case of P-map based recovery system, the P-map and

Table 1. Snapshot of parameters stored at different stages of a transaction
Stage Description Input Parameters Flags Parameters Stored in P-Map
1 Login Username,Password LoggedIn Username,LoggedInFlag,UserId(-

from the DB)
2 Recharge Informa-

tion
Amount, Card details (CC No.,
Expiry Date, CCV No., Card-

Holder Name), UserId

CreditStatus=0 Amount,UserId,CreditStatus,Card
details(Encrypted)

3 Payment Gateway
Transaction

CreditStatus=1 AmountDebited,CreditStatus

4 Wallet Update CreditStatus,Amount WalletUpdateSta-
tus=1

UserId,WalletAmount,WalletUpdat-
eStatus,CreditStatus

Vol 9 (22) | June 2016 | www.indjst.org Indian Journal of Science and Technology6

Intra State Recovery System Design for Cloud based Applications

its respective storage is a crucial element to be considered
in the design of the system, that requires careful analysis
and can have a huge impact on the execution of an
application. There are a number of P-map architectures
possible based on which the P-maps can be used. The
architectures give below provide a light characterization
of storage schemes using P-maps:
•	 Central P-Map Repository per Node.
•	 Separate Central P-Map Repository with Syncing.
•	 Separate P-Map servers for node groups/cluster.
•	 The P-map architectures are discussed in the follow-

ing sections:

5.1 Central P-Map Repository per Node
In case of the central P-map repository per node, each
node has a separate central repository on the same node.
All the VMs on the node store their P-maps on the central
repository. The data for each transactions on the VM on the
node is stored in the node specific central P-Map repository.
In case of VM fault, we transfer the jobs to the new VM
and P-map data for VM from central P-map repository
to the new VM. In case of central P-map Repository
per node, when a VM fails, the Fault DetectionManager
component notifies the RecoveryManager about the VM
failure. The RecoveryManager coordinates the task of
replication of the failed VM on a new destination VM. For
this, it invokes the functionality of ReplicationManager
which is responsible for replication of the failed VM to a
new Destination VM. The ReplicationManager uses the
LoadBalancer to find a new home VM for the application
on the failed VM. Once the load balancer finds the
new home VM for the application, the next phase is to
resume the processing of the application from the point
of failure in a seamless manner. The ReplicationManager
uses the latest state details provided by the StateManager
to resume the application processing from the point of
failure giving an illusion of no failure. The StateManager
get the state details from the Central P-Map Repository
per Node for the given VM. The replication manager
replicates the job processing on the new VM home and
also transfers the State details on the new Central P-Map
Repository per Node. The RecoveryManager uses the
state information to continue the job process from
the point of failure as though no failure occurred. The
Central P-Map Repository per Node is based on single
node model which is suitable for time critical applications
since P-map contents are be transferred to the dedicated
storage on the same node, thereby eliminating network

overheads in terms of delays and cost. Hence, there are no
network delays involved in storage or retrieval of P-maps
which leads to faster communication. However one major
drawback of the proposed design is that in case the entire
node fails, the fault cannot be resolved as the P-map
resides on the same node.

Figure 2. Representation of central p-map repository per
node.

5.2 �Separate Central P-Map Repository with
Syncing

In case of the Separate central P-map repository per node
architecture, each VM has a dedicated central P-map server
which resides on a separate node. In order to save the P-map
on to dedicated servers, network communication is involved. In
case a VM fault occurs, we transfer the job to the new node. If the
new VM is selected from the same node, then we use the P-map
data on the central P-map repository to restart the job on the
VM from the failed state. If the new VM is selected on a different
node, then first the P-Map repositories are synced using the
communication channel between the node P-Map repositories.
After the P-map data is updated on destination P-map server,
the P-map data is used by the new VM hosting the application
to resume from the state of failure. In case of failure in a Separate
central P-map repository per node architecture, the Fault
DetectionManager component notifies the RecoveryManager
about the VM failure. The RecoveryManager coordinates the
task of replication of the failed VM on a new destination VM.
For this, it invokes the functionality of ReplicationManager
which is responsible for replication of the failed VM to a new
Destination VM. The replication uses the LoadBalancer to find
a new home VM for the application on the failed VM. Once the
LoadBalancer finds a new home VM for application, the next
phase is to resume the processing of the application from the
point of failure in a seamless manner. The ReplicationManager
uses the latest state details provided by StateManager to resume
the application processing from the point of failure giving an

Komal Mahajan and Deepak Dahiya

Vol 9 (22) | June 2016 | www.indjst.org Indian Journal of Science and Technology 7

illusion of no failure. The ReplicationManager notifies the
StateManager of the destination VM. If the destination VM is
on the same node, there is no need to sync the P-map server
contents. The current P-map contents can be used by the new
VM hosting the failed application for Recovery. If the destination
VM is on a separate node, the StateManager initiates a sync of
the contents of the P-map repository of the failed VM with the
new node’s central separate repository. The synced P-map data
can be used by the new VM hosting the application to resume
application processing from the point of failure. The separate
central P-map repository would not only recover VM failure
but also node failure as the central P-map repository resides
on a separate server so it not impacted by corresponding node
failure. However, the additional fault tolerance imparted in the
system with respect to the entire node failure adds to the network
overhead involved in communication between the P-map
repository and the VM processing node. Also, in case of failure
of a single VM, if the destination VM is chosen from different
node, there is an additional overhead of P-map sync. This can be
taken care if Load balancing policies which are responsible for
choosing the destination VM for the failed application are based
on closest VM policy such that the algorithm first attempt to
find an appropriate VM from the same node. If in case, they fail
to find an appropriate VM from the same node, they proceed to
search in the next closest node based on service proximity.

Figure 3. Representation of separate central p-map
repository with syncing.

5.3 �Separate P-Map Servers for Node
Groups/Cluster

In case of the Separate P-Map servers for node groups, a
number of nodes which are in the service proximity are
classified as node groups. Alternatively, we may consider
the existing cluster in the cloud to be a node group. So
as per the given architecture, we do not require separate
dedicated P-map server per node as it is expensive to

maintain the number of servers. So another approach
is to maintain separate P-map repository server per
node group. Since there is trade off between storage and
network communication overhead. So, this could increase
the communication overhead between the VM and the
corresponding P-maps repositories on the shared server.
This architecture would also reduce the communication
overhead involved in P-map repository sync as the
probability that a sync is required would be drastically
reduced as the number of P-Map servers reduces. In
case of failure, in Separate P-Map servers for node
groups/cluster architecture, the FaultDetectionManager
component notifies the RecoveryManager about the VM
failure. The RecoveryManager coordinates the task of
replication of the failed VM on a new destination VM. For
this, it invokes the functionality of ReplicationManager
which is responsible for replication of the failed VM to a
new Destination VM. The ReplicationManager uses the
LoadBalancer to find a new home VM for the application
on the failed VM. Once the LoadBalancer finds the new
home VM for application, the next phase is to resume the
processing of the application from the point of failure in a
seamless manner. The ReplicationManager uses the latest
state details provided bythe StateManager to resume the
application processing from the point of failure giving an
illusion of no failure. The ReplicationManager notifies the
StateManager of the destination VM. If the destination
VM is in the same node group, there is no need to sync
the P-map server contents. The P-map contents can be
used by the new VM hosting the failed application for
Recovery. If the destination VM is on a separate node
group, the StateManager initiates a sync of the contents
of the P-map repository of the failed VM with the new
node group’s repository. The synced P-map data can be
used by the new VM hosting the application to resume
application processing from the point of failure. The
Separate P-Map servers for node groups/cluster not only
recover VM failure but also node and cluster failure as
the central P-map repository resides on a separate server
so it not impacted by corresponding node failure. In case
of failure of a single VM, if the destination VM is chosen
from different node group, there is an additional overhead
of P-map sync. This can be taken care by Load balancing
policies, responsible for choosing the destination VM for
the failed application. If the Load balancing is based on
closest VM policy such that the algorithm first attempts
to find an appropriate VM from the same node group. If
in case, it fails to find an appropriate VM group, which

Vol 9 (22) | June 2016 | www.indjst.org Indian Journal of Science and Technology8

Intra State Recovery System Design for Cloud based Applications

has less probability, it proceeds its search to the next node
group based on service proximity.

6. Conclusion and Future Work

Cloud Computing has favoured a technological
revolution that has accelerated the progress characterized
by innovations in the field of utility computing. Scalable
computing resources are being offered as a service to the
enterprises and end users on pay per use basis making
them dependent on the offered services. Considering
the dependency of critical business application on cloud
services, it is necessary to focus research to find means
and way to increase the reliability and robustness of the
cloud system.

One major aspect that needs immediate attention
from industry as well academic research community is
efficient recovery system that introduce fault tolerance
in the cloud infrastructure. This is because failures are
a critical issue for business process continuity and it is
important that the application continues to process the
transactions with no or minimum loss of computation in
an event of failure. The major contribution of the proposed
work is that the authors have designed a fault tolerant
mechanism that preserves the intra state information in
the form of Persistent maps so that the system can restart
from the last state at the time of failure thus minimising
the chances of data loss. Ideally, the application hosted on
cloud should actively and proactively handle failures but
this may not be the scenario with cloud hosted application
as complex system architecture of cloud is abstracted
from the application designers. Also, the generic fault
tolerance mechanisms provided by the cloud may not be
efficient as they would cater to the business functionality
and behaviour of each of the hosted applications So the

authors have considered an approach which requires a
collaboration between cloud providers and cloud client
to design a fault tolerance mechanism that takes into
consideration the complex cloud infrastructure as well
behaviour and functionality of the application in focus.

The proposed design is based on usage of Persistent
Maps (P-map), a persistent hash map, to save the state
of execution of transaction on cloud applications. In the
case of failure, P-maps can be used to restart the process
from the last state at which the task failed and resume
the application execution from that point as though no
failure occurred. The P-maps are used to store the intra-
state information for introducing fault tolerance in a VM.
The authors have also discussed the respective storage
of P-map in case of P-map based recovery system which
is a crucial element to be considered in the design of
the system. The authors have discussed Central P-map
repository per node, in which each node has a separate
central repository on the same node. All the VMs on the
node store their P-maps on the central repository. The
data for each the transactions on the VM on the node are
stored in the node specific central P-Map repository. The
authors have also discussed the proposed architecture,
Separate central P-map repository per node, in which
each VM has a dedicated central P-map server which
resides on separate node and network communication
is involved in order to save the P-map on to dedicated
servers. Lastly, the authors have discussed another
proposed architecture, Separate P-Map servers for node
groups, in which a number of nodes which are in the
service proximity are classified as node groups and there
is a separate P-map repository sever per node group,
which eliminates the need to have a separate dedicated
P-map server per node as it is expensive to maintain the
number of servers.

Figure 4. Representation of separate p-map servers for node groups/cluster.

Komal Mahajan and Deepak Dahiya

Vol 9 (22) | June 2016 | www.indjst.org Indian Journal of Science and Technology 9

7. References
1.	 Mell P, Grance T. The NIST definition of cloud computing.
2.	 Mahajan K, Makroo A, Dahiya D. Round robin with server

affinity: A VM load balancing algorithm for cloud based
infrastructure. Journal of information processing systems.
2013; 9(3):379–94.

3.	 Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Kon-
winski A, Lee G, Patterson D, Rabkin A, Stoica I, Zaharia
M. A view of cloud computing. Communications of the
ACM. 2010 Apr 1; 53(4):50–8.

4.	 Shen Z, Subbiah S, Gu X, Wilkes J. Cloudscale: Elastic re-
source scaling for multi-tenant cloud systems. Proceedings
of the 2nd ACM Symposium on Cloud Computing; 2011
Oct 26. p. 5.

5.	 Zhang Q, Cheng L, Boutaba R. Cloud computing: State-of-
the-art and research challenges. Journal of Internet Services
and Applications. 2010 May 1; 1(1):7–18.

6.	 Zhao W, Melliar-Smith PM, Moser LE. Fault tolerance mid-
dleware for cloud computing. 2010 IEEE 3rd International
Conference on Cloud Computing (CLOUD); 2010 Jul 5. p.
67–74.

7.	 Birman KP, Van Rennesse R. Reliable distributed com-
puting using the ISIS toolkit. Los Alamitos, CA. CA: IEEE
Computer Society; 1994.

8.	 Jhawar R, Piuri V, Santambrogio M. Fault tolerance man-
agement in cloud computing: A system-level perspective.
IEEE Systems Journal. 2013 Jun; 7(2):288–97.

9.	 Dikaiakos MD, Katsaros D, Mehra P, Pallis G, Vakali A.
Cloud computing: Distributed internet computing for IT
and scientific research. IEEE Internet Computing. 2009
Sep; 13(5):10–3.

10.	 Inoue T, Umeno H, Tanaka S, Yamamoto T, Ohtsuki T. Sys-
tem for recovery from a virtual machine monitor failure
with a continuous guest dispatched to a nonguest mode.
United States patent US 5,437,033; 1995 Jul 25.

11.	 Oldfield RA. Investigating lightweight storage and overlay
networks for fault tolerance. Proceedings of the High Avail-
ability and Performance Computing Workshop; Santa Fe,
NM. 2006 Oct.

12.	 Vallee G, Engelmann C, Tikotekar A, Naughton T, Charoen-
pornwattana K, Leangsuksun C, Scott SL. A framework for
proactive fault tolerance. IEEE Third International Confer-
ence on Availability, Reliability and Security, 2008, ARES
08; 2008 Mar 4. p. 659–64.

13.	 Bala A, Chana I. Fault tolerance-challenges, techniques
and implementation in cloud computing. IJCSI. 2012 Jan;
9(1):288–93.

14.	 Hwang S, Kesselman C. A flexible framework for fault tol-
erance in the grid. Journal of Grid Computing. 2003 Sep 1;
1(3):251–72.

15.	 Juhnke E, Dornemann T, Freisleben B. Fault-tolerant BPEL
workflow execution via cloud-aware recovery policies.
IEEE 35th Euromicro Conference on Software Engineering

and Advanced Applications, 2009, SEAA’09; 2009 Aug 27.
p. 31–8.

16.	 Dai Y, Xiang Y, Zhang G. Self-healing and hybrid diagno-
sis in cloud computing. Cloud Computing. Springer Berlin
Heidelberg; 2009 Dec 1. p. 45–56.

17.	 Krutz RL, Vines RD. Cloud security: A comprehensive
guide to secure cloud computing. Wiley Publishing; 2010
Aug 9.

18.	 Engelmann C, Vallee GR, Naughton T, Scott SL. Proactive
fault tolerance using preemptive migration. 2009 IEEE 17th
Euromicro International Conference on Parallel, Distribut-
ed and Network-based Processing; 2009 Feb 18. p. 252–7.

19.	 Mahajan K, Dahiya D. A cloud based deployment frame-
work for load balancing policies. 2014 IEEE 7th Interna-
tional Conference on Contemporary Computing (IC3);
2014 Aug 7. p. 565–70.

20.	 Wu Z, Ni Z, Gu L, Liu X. A revised discrete particle swarm
optimization for cloud workflow scheduling. 2010 Interna-
tional Conference on Computational Intelligence and Se-
curity (CIS); 2010 Dec 11. p. 184–8.

21.	 Guermouche A, Ropars T, Brunet E, Snir M, Cappello F.
Uncoordinated checkpointing without domino effect for
send-deterministic mpi applications. 2011 IEEE Interna-
tional Parallel and Distributed Processing Symposium (IP-
DPS); 2011 May 16. p. 989–1000.

22.	 Beloglazov A, Buyya R. Energy efficient resource manage-
ment in virtualized cloud data centers. Proceedings of the
2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing; 2010 May 17. p. 826–31. IEEE
Computer Society.

23.	 Jhawar R, Piuri V, Santambrogio M. A comprehensive con-
ceptual system-level approach to fault tolerance in cloud
computing. 2012 IEEE International Systems Conference
(SysCon); 2012 Mar 19. p. 1–5.

24.	 Nicolae B, Cappello F. BlobCR: Efficient checkpoint-restart
for HPC applications on IaaS clouds using virtual disk im-
age snapshots. Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Stor-
age and Analysis; 2011 Nov 12. p. 34.

25.	 Pal AS, Pattnaik BPK. Classification of virtualization envi-
ronment for cloud computing. Indian Journal of Science
and Technology. 2013 Jan; 6(1). DOI: 10.17485/ijst/2013/
v6i1/30572.

26.	 Rajathi A, Saravanan N. A survey on secure storage in cloud
computing. Indian Journal of Science and Technology. 2013
Apr; 6(4). DOI: 10.17485/ijst/2013/v6i4/31871.

27.	 Nagaraju S, Parthiban L. SecAuthn: Provably secure
multi-factor authentication for the cloud computing sys-
tems. Indian Journal of Science and Technology. 2016 Mar;
9(9). DOI: 10.17485/ijst/2016/v9i9/81070.

28.	 Kumari PS, Kamal ARNB. Optimal integrity policy for en-
crypted data in secure storage using cloud computing. In-
dian Journal of Science and Technology. 2016 Mar; 9(11).
DOI: 10.17485/ijst/2016/v9i11/88453.

