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1.  Introduction

The numbers are represented using binary digits 0 or 
1 in computers. This leads to signal quantization and 
analog to digital conversion noise. The finite word 
length arithmetic needed for processing the numbers is 
implemented using two different approaches, depending 
upon the ease of implementation and the accuracy as well 
as dynamic range needed in processing2. The digital IIR 
filter realization increases the pole sensitivity problem4. 
The pole zero locations, filter responses and stability gets 
affectedwhen the filter coefficients are quantized. General 
IIR filter is described by

			   (1)

In Eq. 1  is quantized to  then the new filter 
system function is represented as

			   (2)

This new filter defined in Eq. 2 is different from the 
original . These filters can be compared on various 
aspects like magnitude responses, phase responses, 
or change in their pole zero locations1. MATLAB is a 
powerful tool to investigate these changes and their overall 
effect on the usability of the filter. The total perturbation 

error  is expressed in the form
		  (3)

This Eq. 3 shows the measure of the movement 
of the th pole  to changes in the coefficients  

. It is clear from the expression that the perturbation 
error increases if the term  is very small as 
having inverse relationship. The coefficients  of Eq. 
1 are quantized to coefficients  after the conversion 
of analog filter into digital domain using bilinear 
transformation in MATLAB. Similarly the numerator 
coefficients  can be quantized to coefficients  
and further the sensitivity of zeros to changes in the 
parameters  can also be realized2. To investigate 
the effect of coefficient quantization on filter behavior, 
all the filter coefficients  are represented using the 
same number of integer and fraction bits. The function 
is implemented on MATLAB using rounding operation 
on sign magnitude format. Then the perturbation error 
as given by Eq. 3 is calculated for the IIR filters for direct 
form realization. 

2.  Digital Butterworth Filter

The maximally flat magnitude squared frequency response 
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of analog low pass Butterworth filter is characterized as
			   (4)

The frequency response defined by Eq. 4 is 
converted in digital domain using MATLAB function

. Figure 1(a) to 1(g) shows the 
pole-zero plot for infinite precision, from Figure 1(h) 
to Figure 1(n) for 8-bit precision, Figure 1(o) to Figure 
1(v) for 16 bit precision and Figure 1(w) to Figure 1(ab) 
for 32 bit precision coefficients  for digital low 
pass Butterworth filter from order 1 to 7 respectively.
The variation in pole zero locations are computed up to 
order 7 for direct form realization. In Figure1 when the 
bit precision is small the pole location varies at a greater 
extent as order of the filter increases. 

Table 1.    Perturbation error for digital 
Butterworth filter for 8-bit, 16-bit and 32-bit 
precision
Order 8-bit 16-bit 32-bit
1 0 0 0
2 7.1198e-204 1.0068e-205 3.0902e-211
3 5.1348e-200 1.6073e-202 3.0606e-207
4 2.3916e-192 7.4186e-195 1.1311e-199
5 1.3306e-177 1.6098e-179 3.0112e-184
6 2.5518e-152 7.7717e-155 2.3752e-159
7 1.5882e-144 2.9453e-119 6.3047e-122

When  and  varies from 1 to 7 the total 
perturbation error  calculated for the digital 
Butterworth filter is as shown in Table 1.

3.  Digital Chebyshev Filter

3.1 Digital Chebyshev Type I
Chebyshev Type I filters have a magnitude response that 
ripples in the pass band and monotonic in stop band5. 
The magnitude squared frequency response of analoglow 
passChebyshev type I filter is given as

		  (5)

where  is a constant related to ripples in pass band, 
 is the pass band frequency and  is a 

polynomial in Eq. 5 is defined as
   (6)

In Eq. 5 and Eq. 6 Mis the order of the filter. The 
analog Chebyshev type I low pass filter is converted 
to digital domain using the MATLAB inbuilt function

Figure 1.    Pole and zero plot of digital butterworth filter for infinite, 8-bit, 
16-bit and 32-bit precision, where red circle indicates the zeros and black 
cross indicates the poles of the filter.
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. Figure 2(a) to 2(g) shows 
the pole-zero plot for infinite precision, from Figure 2(h) 
to Figure 2(n) for 8-bit precision, Figure 2(o) to Figure 
2(v) for 16 bit precision and Figure 2(w) to Figure 2(ab) 
for 32 bit precision coefficients  for digital low 
pass Chebyshev type I filter from order 1 to 7 respectively.

In Figure 2(g), Figure 2(m) and Figure 2(n) pole-
zero plots of 8 bit precision shows that the filter becomes 
unstable for higher order and less precision.

When ,  and  is the order that 
varies from 1 to 7, the total perturbation error  is 
calculated for the digital Chebyshev type I filter is as 
shown in Table 2.

Table 2.    Perturbation error for digital chebyshev 
type I filter for 8-bit, 16-bit and 32-bit precision
Order 8-bit 16-bit 32-bit
1 0 0 0
2 5.6597e-205 2.9601e-207 4.2261e-213
3 3.2923e-202 2.2272e-204 1.7908e-209
4 3.4686e-197 1.3062e-199 1.0040e-204
5 4.5975e-187 2.6303e-189 3.5915e-194
6 7.8115e-170 9.1632e-172 1.7811e-176
7 5.9458e-143 1.8493e-146 1.3123e-150

3.2 Digital Chebyshev Type II
The magnitude response of Chebyshev type II filter have 

ripples in stop band and monotonic in pass band5.
The magnitude squared frequency response of analog 

low pass Chebyshev type II filter is given as
			  (7)

where  is a constant related to ripples in stop band, 
 is the stop band frequency and  in Eq. 8 

is a polynomial defined as
         	

						      (8)
Figure 3(a) to Figure 3(g) shows the pole-zero plot for 

infinite precision, from Figure 3(h) to Figure 3(n) for 8-bit 
precision, Figure 3(o) to Figure 3(v) for 16 bit precision 
and Figure 3(w) to Figure 3(ab) for 32 bit precision 
coefficients  for digital low pass Chebyshev type II 
filter from order 1 to 7 respectively. Figure 3(n) indicates 
that the filter obtained is unstable for high order less 
precision.
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Figure 2.    Pole and zero plot of digital chebyshev type i filter for infinite, 
8-bit, 16-bit and 32-bit precision, where red circle indicates the zeros and 
black cross indicates the poles of the filter.
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Table 3.    Perturbation error for digital chebyshev type 
II filter for 8-bit, 16-bit and 32-bit precision
Order 8-bit 16-bit 32-bit
1 0 0 0
2 2.1691e-204 1.0157e-206 2.3236e-211
3 2.1091e-204 1.4724e-206 1.3118e-211
4 2.4246e-204 5.5790e-207 7.1262e-212
5 5.9412e-206 9.3888e-208 1.8022e-213
6 1.6469e-205 6.1471e-208 4.0479e-213
7 4.2324e-206 1.4336e-208 1.7116e-213

When ,  and  is the order that 
varies from 1 to 7, the total perturbation error  is 
calculated for the digital Chebyshev type II filter is as 
shown in Table 3.

4.  Digital Elliptic Filter

The magnitude response of Elliptic filter exhibits 
equiripple characteristics in both pass band and the stop 
band3. The magnitude squared frequency response of 
analog low pass Elliptic filter is given as

			   (9)

Where  is a Jacobian elliptic function of order M 
and  is parameter related to pass band ripple in Eq. 

9. The inbuilt function  
using bilinear transformation converts the analog low 
pass Elliptic filter prototype into digital domain. 

Figure 4 shows the pole-zero plots after quantization 
of digital Elliptic filter denominator coefficients  
with infinite precision from Figure4(a) to Figure 4(g), 
8-bit precision from Figure 4(h) to Figure 4(n), 16-bit 
precision from Figure 4(o) to Figure 4(u) and 32-bit 
precision coefficients from Figure 4(v) to Figure 4(ab). 
In Figure 4(k) to Figure 4(n), Figure 4(r) to 4(u) and 
Figure 4(ab), pole-zero plots shows that the filter becomes 
unstable for higher orders and less precisions.

When , ,  and 
 is the order of the filter that varies from 1 to 7, the 

perturbation error is calculated for each order and 
precisions is as shown in Table 4.

Table 4.    Perturbation error for digital elliptic 
filter for 8-bit, 16-bit and 32-bit precision
Order 8-bit 16-bit 32-bit
1 0 0 0
2 2.6096e-204 4.1908e-207 2.6196e-211
3 6.7338e-204 7.1252e-206 2.0993e-211
4 9.3245e-193 3.355e-195 1.1629e-199
5 5.7828e-163 3.3989e-165 3.5166e-170
6 2.6478e-84 5.5627e-86 1.2764e-90
7 1.2832e+47 7.4982e+44 6.5229e+39
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Figure 3.    Pole and zero plot of digital chebyshev type ii filter for infinite, 8-bit, 
16-bit and 32-bit precision, where red circle indicates the zeros and black cross 
indicates the poles of the filter.
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5.  Comparison

Table 5 shows the average perturbation error of each IIR 
filter for 8-bit, 16-bit and 32-bit precisions.From Table 5 
it is clear that perturbation error decreases as bit precision 
increases from order 2 to 7 for all the digital IIR filter 
above described.

Table 5.    Average perturbation error for digital IIR 
filters for 8-bit, 16-bit and 32-bit precision
Filter 8-bit 16-bit 32-bit
Butterworth 2.2689e-115 4.2076e-120 9.0067e-123
Chebyshev Type I 8.4941e-144 2.6418e-147 1.8748e-151
Chebyshev Type II 9.9560e-205 4.5938e-207 6.3195e-212
Elliptic 1.8331e+46 1.0712e+44 9.3184e+38

The perturbation error is least in Chebyshev Type 
II filter and digital Butterworth filter have the highest 
perturbation error for all bit precisions.Digital Chebyshev 
type I and digital Chebyshev type II filters have 
perturbation error in between the digital Butterworth 
and digital Elliptic filter. From Table 1, Table 2, Table 3 
and Table 4, the perturbation error of digital IIR filters 
increases linearly except for digital Chebyshev type II 
filter. It is clear that from order 2 to 7 the perturbation 
error for Elliptic filter increases rapidly. Whereas the 
perturbation error for order 1 it comes out to be zero 

as from equation 3 it is clear that perturbation error is 
inversely proportional to the difference between the two 
pole lengths.

Results shows that for higher orders direct form 
realization of digital Elliptic filters the pole sensitivity 
problem comes out to be very high whereas for digital 
Chebyshev type II filter it is the least. Thus the direct form 
realization of digital Chebyshev type II filter proves to be 
efficient for higher orders than all other digital IIR filters 
described above and worse for the digital Elliptic filter. 
Also from Figure 1, Figure 2, Figure 3 and Figure 4 it is 
clear that the digital elliptic filter becomes unstable faster 
than the other digital IIR filters due to increase in pole 
sensitivity problem.

6.  Conclusion

Perturbation error is related to order of the filter and 
the bit precision. Increase in bit precision decreases the 
perturbation error and increase in order increases the 
perturbation error. Bit precision also affects the stability 
of the filter. As the bit precision increases the stability of 
the filter also increases. The direct form realization for 
higher orders is not beneficial as it gives a lot of error. The 
digital Elliptic filter gives the highest perturbation error 
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Figure 4.    Pole and zero plot of digital elliptic filter for infinite, 8-bit, 16-bit and 
32-bit precision, where red circle indicates the zeros and black cross indicates the 
poles of the filter.
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than all other digital filters mentioned above for order 
greater than 3, while Chebyshev type II filter gives the 
least perturbation error. Further the quantization effect 
can also be realized for other IIR analog filters for cascade 
and other realizations.

7.  Future Scope

Filters of higher order are preferred over lower order in 
practical applications as the magnitude response of the 
filter approaches towards the ideal magnitude response 
of the filter hence they effectively discriminate between 
the signals at different frequencies. Therefore they can 
be used in biomedical applications where two different 
signals needs to be discriminate like heart beat signals 
from the signals generated due to respiratory process. 
Also it finds application in cellular communication. IIR 
filters are generally used in applications where the phase 
distortion is tolerable. Filters with least perturbation 
error show least effect of finite word length and hence 

find application in the fields such as communication and 
biomedical science. 
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