
Indian Journal of Science and Technology, Vol 9(21), DOI: 10.17485/ijst/2016/v9i21/92368, June 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1.  Introduction

Generalized Kac Moody algebras (GKM algebras),  
introduced in1 differs from Kac Moody algebras mainly in 
the existence of imaginary simple roots in GKM algebras. 
The basic results on structure and representation theory 
of Kac moody algebras, can be extended to GKM algebras 
also; Root multiplicities  for some extended hyperbolic 
Generalized Kac Moody algebras were computed  
in2.  Root properties and root multiplicities of some 
GKM algebras, extending the GCM of finite, affine and 
hyperbolic types were studied in3-8.

In9-12, closed form root multiplicity formulae for GKM 
algebras were obtained. In13, multiplicities of simple 
imaginary roots for the Borcherds algebra gII9,1 were 
determined. In14,15, the family EB2 was studied. In16, root 
multiplicities for the quasi affine generalized Kac Moody 
algebras QAGGD3

(2) were computed; In12, the dimension 
formula, applied to various classes of graded Lie algebras 
were derived in 17-19. In20, quasi affine Kac Moody algebras, 
belonging to the indefinite class of Kac Moody algebras 

was defined and  the quasi affine algebras QAC2
(1) was 

studied. In21-24, extended hyperbolic type of indefinite Kac 
Moody algebras were introduced, wherein the structure 
of  EHA(1)

1 and EHA(2)
2  were studied.

In this paper quasi affine generalized Kac Moody 
algebras QAGGD3

(2) are defined; the general form of non 
isomorphic, connected Dynkin diagrams associated with 
the symmetrizable GKM algebras QAGGD3

(2) are given; 
We then consider  a specific family QAGGD3

(2)  of GGCM 
of quasi affine type, with one imaginary simple root, 
which are obtained from the affine GCM D3

(2). Finally we 
explicitly compute the root multiplicities in these GKM 
algebras which are obtained as extensions of the affine 
familyD3

(2).

2.  Preliminaries

We recall the basic definitions and  results of  GKM 
algebras in1,11,18,25-27.
Definition 2.11: A Borcherds Cartan matrix (BKM) is a 
real matrix  , 1( )n

ij i jA a ==  satisfying the conditions : i) aij = 0 
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or aij ≤ 0 for all i ε I ii) aij ≤ 0 for i≠j, aij ε Z if aii =2 , iii) aij  
= 0 implies aji = 0.`

We assume that the BKM is symmetrizable.  Let the 
real simple and real imaginary roots be denoted by Ire = 
{i ε I / aii =2 } and Iim = { i ε I / aii ≤ 0}; Let the charge m = 
{ mi ε Z>0 / i ε I } be a collection of positive integers such 
that  mi =1 for all i ε Ire .
The Generalized Kac-Moody algebra g=g(A, m) 
associated with a symmetrizable BKM matrix  A = (aij)
n

ji 1, =  of charge 
 
m = (mi / i ε I}is the Lie algebra generated 

by the elementshi, di, eik, fik,  i ε I ,k=1,…,mi   with the 
following defining relations :
[hi,hj] =[di,dj]=[hi,dj]= 0, [hi,ejl]=aijejl, [hi,fjl]=-aijfjl,
[di,ejl]= δij ejl, [di,fjl]= -δij fjl,[eik,fjl] = δijδkl hi

(1 )(1 )( ) ( ) ( ) ( ) 0 2, ,

[ , ] [ , ] 0 0,( , , 1,..., , 1,..., ).

aij
ija

ik jl ik jl ii

ik jl ik jl ij i j

ad e e ad f f if a i j

e e f f if a i j I k m l m

-- = = = ¹

= = = Î = =

The subalgebra h = (⊕ Chi) ⊕ (⊕ Cdi)is called the 
Cartan subalgebra of g. For each i ε I, we define a linear 
functional αi ε h*, by αi (hj)=aij, αi (dj)=aijδij,i,j εI. αi’s are 
called the simple roots of g.

The  GKM algebra g=g(A, m) has the root space 
decomposition 

, where { /[ , ] ( ) , }.
Q

g g g x g h x h x for all h Ha a
a

a
Î

= Å = Î = Î  

Let .
1

.
n

i
i

Q Z a+
=

+=å  Q has a partial ordering “≤” on h* 
defined by α ≤ β if β - α ∈ Q+, where α, β ∈ Q.

Definition 2.227: In Kac Moody algebras the Dynkin 
diagrams are defined as follows: To every GCM A is 
associated a Dynkin diagram S(A) defined as follows 
: S(A) has n vertices and vertices i and j are connected 
by max {|aij|,|aji|} number of lines if aij. aji ≤ 4 and there 
is an arrow pointing towards I if |aij|>1. If  aij.aji> 4, i and 
j are connected by a bold faced edge, equipped with the 
ordered pair  (|aij|,|aji|) of integers. For GKM algebras, in 
addition we have the following: If aii = 2, ith vertex will be 
denoted by a white circle and if aii = 0, ith vertex will be 
denoted by a crossed circle. If aii = -k, k > 0, ith vertex will 
be denoted by a white circle with –k written  above the 
circle within the parenthesis.

Let P+ ={ λ ε h*/ λ(hi) ≥0 for all i ε I, λ(hi) is a positive 
integer if aii = 2}. Let V be the irreducible highest weight 
module over G with the highest weight λ. Let T be the set 
of all imaginary simple roots counted with multiplicities. 

For F ⊂ T,  we write F ⊥T if λ(hi) = 0 for all αi ε F.  

For J ⊂ Ire, = ( ),J i J JZa ± ±D =D D =D Då  ,

( ) \ . ( ), , ( ) \ .J j i J J JJ Q Q Z Q Q Q Q J Q Qa± ± ± ± ± ± ± ±D =D D = = =å   

Define 
( ) ( )

0
( )

( ), .
J

J J

J
g h g ga

a a ±±
ÎD ÎD

= Å Å = Å    We obtain the triangular 
decomposition :

( ) ( ) ( ) ( )
0 0, whereJ J J Jg g g g g- += Å Å is the Kac Moody 

algebra associated with the GCM AJ = (aij)i,,jεJ.
( ) ( )andJ Jg g- +

represent the direct sum of irreducible highest weight and 
lowest weight modules respectively over ( )

0
Jg ; 

WJ = 〈rj / jεJ〉 be the subgroup of W generated by the 
simple reflections.

Let { }( ) w  W/ w ( )W J Je - + += D D ÌD  . 

Proposition 2.311,28: 
( )

( )

( ) | |

( ( ( ) )J
k J

w W J
F T
l w F k

H V w s Fr r
Î
Ì

+ =

= Å - -

where VJ(µ) denotes the irreducible  highest weight 
module over g0

(J) with highest weight µ ; s(F) denotes the 
sum of elements in F. 
Let the homology space 

(J) ( ) | | 1

( )

( ) | | 1

H  = ( 1) ( ( ( )) )l w F
J

w W J
F T
l w F

V w s Fr r+ +

Î
Ì

+ ³

- - -å ; P(H(J))={α ε 

Q-(J) / dim Hα ≠ 0}with d(i)=dim H )( J
iτ for i=1,2,… Let 

T(J)(τ) = {n=(ni)i≥1/ni εZ≥0,Σ niτi= τ}; Let |n|=Σ ni and 
define the Witt partition function  W(J)(τ) = 

( )
( ) ( )

(| | 1)! ( ) , ( )
!

i

J

n

n T

n d i for Q J
nt

t -

Î

-
Îå Õ . 

Theorem 2.4 9-11: Letα ε Δ-(J) be a root of a 
symmetrizable GKM algebra g. Then dim 

( )

( )

| | ( / )

1 1 (| | 1)!( ) ( / ) ( ) ( )
!

i

J

nJ

d d n T d

ng d W d d d i
d d na

a a a

m a m
Î

-
= =å å å Õ

where μ is the classical Mobius function.
The Kostants formula given in29 was repeatedly used  

to determine the root multiplicities in10,11.

Proposition 2.511, 18:  Suppose that a Borcherds-
Cartan matrix A=(aij) , 1

n
i j=  of charge m

 
= (mi ε Ire/ 

i ε I} satisfies : i)Ire is finite, ii) aij≠0 for all i,j in Iim. 
Let J = Ire and the corresponding decomposition of 
the GKM algebra is  g=g(A, m) = ( ) ( ) ( )

0 .J J Jg g g- +Å Å
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Then the algebra ( ) ( )

( ) ( )
(respectively, )J J

J J
g g g ga a

a a- +- +
ÎD ÎD

= Å = Å is 
isomorphic to the free Lie algebra generated by the space 

* *( ) (respectively, ( ) )i i

im im

m m
J i J i

i I i I
V V V Va aÅ Å

Î Î
= Å - = Å -  where VJ(μ) 

(resp. VJ*(μ)) denotes the irreducible highest weight (resp. 
lowest weight) module over the Kac Moody algebra go(J) 
with highest weight μ (resp. lowest weight -μ).

Under these assumptions, the GKM algebra g=
( ) ( ) ( )

0 .J J Jg g g- +Å Å  is isomorphic to the maximal graded Lie 
algebra with local part ( ) *

0 .JV g VÅ Å

Theorem 2.619,30,31: Let ^(∨0) be the basic representation 
of the affine Kac-Moody algebraAn

(1), and let λ be a weight 
of  ^(∨0). Then, ( )

0
( , )dim( ( )) 1

2
nV p l l

l
æ ö÷çL = - ÷ç ÷çè ø

,where the 
function p(n)(m) are defined by 

n

j

jn
m

n

qq )1(

1

)(

1
 (m)qp

1
0

m)(

∏∑
≥

∞

= −
==

φ

Remark 2.8: The above formula can be restated as 
dim(^(∨0))λ=p(n)(m), where λ=^0-mδ, ^0 is the highest 
weight, δ is the null root and m ∈ Z+

Definition 2.920:Let , 1( )n
ij i jA a ==  , be an indecompos-

able GCM of indefinite type. We define the associated 
Dynkin diagram S(A) to be of Quasi Affine (QA) type if 
S(A) has a proper connected sub diagram of affine type 
with n-1 vertices. The GCM A is of QA type if S(A) is of 
QA type. We then say the Kac-Moody algebra g(A) is of 
QA type. 

Definition2.1016: We say a GGCM 
, 1( )n

ij i jA a ==  is of Qua-
si Affine type if A is of indefinite type and the Dynkin 
diagram associated with A has a connected, proper sub 
diagram of affine type, whose GCM is of order n-1. We 
then say the associated Dynkin diagram and the corre-
sponding GKM algebra to be of quasi affine type.

Remark: The GGCM of extended hyperbolic type 
forms a subclass of  quasi affine type and also, not every 
quasi affine GGCM is of extended hyperbolic type.

3.   Classification of Dynkin 
Diagrams Associated with the 
Class of QAGGD3

(2)

In this section we give the complete classification of 
connected, non isomorphic Dynkin diagrams associated 

with the family of GKM algebras QAGGD3
(2).

Theorem 3.1: (Classification Theorem) : The general 
form of connected non-isomorphic  Dynkin diagrams  
associated GGCM, of quasi affine type QAGGD3

(2) 

are  classified as in  Table 1 and any Dynkin diagram of 
QAGGD3

(2) is one of the types of 1818 Dynkin diagrams 
listed in Table 1.
Proof: Start with the affine Dynkin diagram D3

(2) of Kac 
Moody type; 

We extend this Dynkin diagram by adding a 4th vertex, 
which is connected to either one, two or all the three 
vertices of the affine diagram so that we have the possible 
Dynkin diagrams and the associated GGCM, of quasi 
affine type QAGGD3

(2). 
Here can represent one of the possible 9 edges, 

through which the fourth vertex is connected to the affine 
diagram :

The different exhaustive cases of adding the fourth 
vertex to the base affine diagram are described in Table 1;

Thus we see that there are 1818 types of connected, 
non isomorphic Dynkin diagrams associated with the 
GGCM in the family QAGGA2

(1). The above discussion 
also proves that any Dynkin diagram associated with the 
quasi affine Generalized Generalized Kac Moody algebra 
QAGGD3

(2) will belong to one of the above mentioned 
1818 types (by construction).
Root Multiplicities for the GKM algebras QAGGD3

(2)  
with one Imaginary Simple Root  whose Associated 
GGCM is 0 0

2 2 0
0 1 2 1
0 0 2 2

k a
a

æ ö- - ÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷ç ÷- - ÷ç ÷ç ÷ç ÷ç -è ø

 where k, a are non negative 

integers.
In this section, we compute the root multiplicities 

for the GGCM associated with QAGGD3
(2) with one 

imaginary simple root . Note that the  notations given in 
the earlier section are followed here, for computing the 
root multiplicities.

Consider the GKM algebra g = g(A, m) associated 
with the Borcherds-Cartan matrix, whose GGCM is 

0 0
2 2 0

0 1 2 1
0 0 2 2

k a
a

æ ö- - ÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷ç ÷- - ÷ç ÷ç ÷ç ÷ç -è ø
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The symmetrizable decomposition for GGCM A is 
given by 

1 0 0 0 0 0
0 1 0 0 2 2 0
0 0 1/2 0 0 2 4 2
0 0 0 1 0 0 2 2

k a
a

A

æ öæ ö - - ÷÷çç ÷÷çç ÷÷çç - - ÷÷çç ÷÷çç ÷÷= çç ÷÷ç ÷- -ç ÷ ÷÷çç ÷÷çç ÷÷çç ÷ ÷ç ç -è øè ø

.

This GKM algebra is obtained as an extension of  
D3

(2) of charge m
 
= (s,1,1,1), where k,s are non negative 

integers. Note here that A is a symmetric matrix.
The Index set for the simple roots of g is  I = {1,2,3,4};  

Imaginary simple root = {α1}
Real simple roots = {α2 ,α3 ,α4};  T = {α1, α1,…, α1} 

counted s times.
Since (α1 , α1 ) = -k < 0, the set F can be either empty 

or F = {α1};
W taking  J={2,3,4}, g0 

(J) = g0⊕C h1  where g0= 〈e2, f2,  
e3, f3, e4 , f4〉 ≈ A2

(1)
.and W(J) = {1}.

we have ( )
1 1 1( ) ... ( )J

J JH V Va a= - Å Å -  = (s copies);
( ) ( )
2 3 0;J JH H= = =

 

Hence H(J) = VJ (-α1) ⊕  ... ⊕ VJ(-α1) ( s copies)  where 
VJ (-α1) is the standard representation of D3

(2)   with highest 
weight - α 1. Here, ^0 = -α1 ;

Let  λ = ^0 - m δ ;.
Identifying  -jα1 - l α2– mα3 –nα4  ϵ Q-with (j,l,m,n) 

ϵ Z≥0x Z≥0x Z≥0 x Z≥0, the weights of VJ (-α1) are listed as: 
P(H(J))={(1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1)} where

( ) ( ) ( ) ( )
(1,0,0,0) (1,1,0,0) (1,1,1,0) (1,1,1,1)dim H dim H dim H dim HJ J J J= = = = s.

For a weight λ = (1,l,m,n),dim VJ(-α1)λ= p(2)( - k – 
(λ , λ)) / (2a) ;

For  λ =(1, l, m, n) = α1 + lα2 + mα3 +nα4 , we compute 
(λ, λ) = -k-2al+2l2-4ml+4m2-4mn+2n2;

(- k –(λ , λ)) / (2a) =1/a {(-al+l2+m2-2ml-2mn+n2};
(We choose a such that 1/a {(-al+l2+m2-2ml-2mn+n2} 

is an integer) 

Hence dim VJ(-α1)λ = p(2) (1/a {(-al+l2+m2-2ml-
2mn+n2}) where the function p(2)  are defined by

2 m
2 2

0
1

1 1p (m)q  
( ) (1 )j

m
j

q qf

¥

=
³

= =
-å Õ

   Eqn (3.1)

Hence, dim H )( J
λ  = s . p(2)( - k –(λ , λ)) / (2a) .

We then have  P(H(J)) = {τi / i ≥ 1}, where τ1 = (1,0,0,0), 
τ2 =(1,1,0,0), τ3 = (1,1,0,1), τ4 = (1,1,1,0), etc.

Svery root of  g is of the form (j,l,m,n) for j ≥ 1, l, m, n 
≥ 0, the Witt partition function W(J)(τ) becomes 

( )
( )

(2)( )

( )

( , )(| | 1)!
! 2

i

J

n
J i i

n T

knW s p
n at

t t
t

Î

æ ö- -- ÷ç= ÷ç ÷çè øå Õ
. 

Thus we have proved the following theorem which 
explicitly gives the root multiplicity formula:

Theorem3.2: Let g=g(A, m) be the Quasi affine 
Generalized  Generalized  Kac Moody algebra  associated 
with the Borcherds Cartan matrix A=  0 0

2 2 0
0 1 2 1
0 0 2 2

k a
a

æ ö- - ÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷ç ÷- - ÷ç ÷ç ÷ç ÷ç -è ø

of 

charge m  = (s,1,1,1) where k,s are non negative integers. 
Then for any root α  = -k1 α1 - k2α2-k3α3-k4α4 with ki’s as 
non negative integers,  the root multiplicity of α is given b  

( )

(2)

| ( )

( , )1 (| | 1)!( )
! 2

i

J

n
i i

d n T

knd s p
d n aa t

t t
m

Î

æ ö- -- ÷ç ÷ç ÷çè øå å Õ , where  µ denotes  

the Classical Mobius function and the function p(2) are 
given by equation 3.1 .

Remark 3.3:Here the GKM algebra g is isomorphic to the 
maximal graded  Lie algebra with local part H(J)⊕ (D3

(2) 
+h ) ⊕ H(J)*.

Table 1.    
Extended Dynkin diagram of 
quasi affine type QAGGD3

(2) 

Corresponding GGCM Number of possible, connected 
Dynkin diagrams

When k=0, 1 2 3

1

2

3

0
2 2 0
1 2 1

0 2 2

a a a
b
b
b

-- - -æ ö÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷- - -ç ÷÷ç ÷ç ÷ç ÷ç- -è ø

729 (9x9x9=729) 

When k>0, 1 2 3

1

2

3

2 2 0
1 2 1

0 2 2

k a a a
b
b
b

-æ ö- - - - ÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷ç ÷- - - ÷ç ÷ç ÷ç ÷ç- -è ø

729 (9x9x9=729)

When k>0,



















−
−−−

−−
−−−

2200

121

022

0

2

1

21

b
b

aak 81(9x9=81)
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When k=0, 1 2

1

2

0 0
2 2 0
1 2 1

0 0 2 2

a a
b
b

- -æ ö÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷- - -ç ÷÷ç ÷ç ÷ç ÷ç -è ø

81(9x9=81)

When k>0, 1 3

1

3

0
2 2 0

0 1 2 1
0 2 2

k a a
b

b

æ ö- - - ÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷ç ÷- - ÷ç ÷ç ÷ç ÷ç- -è ø

81(9x9=81)

When k=0, 1 3

1

3

0 0
2 2 0

0 1 2 1
0 2 2

a a
b

b

- -æ ö÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷- -ç ÷÷ç ÷ç ÷ç ÷ç- -è ø

81(9x9=81)

When k=0, 0 0 0
2 2 0

0 1 2 1
0 0 2 2

a
b

-æ ö÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷- -ç ÷÷ç ÷ç ÷ç ÷ç -è ø

9

When k=0, 0 0 0
0 2 2 0

1 2 1
0 0 2 2

a

b

-æ ö÷ç ÷ç ÷ç - ÷ç ÷ç ÷ç ÷- - -ç ÷÷ç ÷ç ÷ç ÷ç -è ø

9

When k>0, 0 0
2 2 0

0 1 2 1
0 0 2 2

k a
b

æ ö- - ÷ç ÷ç ÷ç- - ÷ç ÷ç ÷ç ÷ç ÷- - ÷ç ÷ç ÷ç ÷ç -è ø

9

When k>0, 9

4.  Conclusion

In this work, the  class of quasi affine GKM algebras 
QAGGD3

(2) are defined, the general form of connected, non 
isomporphic associated Dynkin diagrams are classified;  
root multiplicities for  specific classes in QAGGD3

(2)are 
computed; There is further scope for understanding the 
structure and computing the root multiplicities of other 
quasi affine GKM algebras of indefinite type;
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