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1.  Introduction

The big data from micro blogging sites attracts many 
communities to explore the hidden content to get 
valuable information out of it. Sentiment analysis is one 
such research area which concentrates on identifying 
subjective information from a given piece of text. 
Opinions that are expressed in social media serve as a 
major input for detecting public outlook across various 
areas such as buying products, predicting the share 
market and movie reviews. Such web generated contents 
play a major role in mining user sentiments for customer 
relationship management and public opinion tracking. 
Sentiment analysis is basically a natural language 
processing technique that uses computational linguistics 
and text mining to identify the polarity of the text as 
positive, negative and neutral. Sentiment analysis is 
defined as the automated knowledge discovery technique 
which identifies the hidden patterns in reviews, blogs and 
tweets1.

In recent days, companies have started to use sentiment 

analysis as part of their research. Apart from the data 
received from social networking sites, companies create 
their own web sites to gather review about their products. 
Mining these reviews, they are able to build better 
customer relationship and also create recommendation 
systems with the help of the positive and negative feedback 
from customers. Another advantage of sentiment analysis 
is that the companies are able to develop their marketing 
strategies by predicting public attitude towards their 
product. Numerous companies have already developed 
tools that crawl online information and summarize that 
information in graphical representation of the recent 
trends2.

Sentiment analysis is broadly classified into three 
categories namely, document level, sentence level and 
aspect based. The goal of document level sentiment 
classification is determining the overall sentiment of 
a given review document3. Sentence level4 analysis 
focuses on categorizing the text at the level of subjective 
and objective nature. Aspect based5 approach is more 
pinpointed as it splits the entire document into various 
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aspects (entities) and sentiment analysis is carried out on 
each entity to find out the overall polarity.

A detailed study6 has been carried out on the various 
techniques for sentiment analysis. The study reviewed 
the recent work that has been carried out with various 
techniques. It also discussed about some of the feature 
selection methods and related fields to sentiment 
analysis. A detailed survey7 on the various applications 
and challenges in sentiment analysis is presented. In 8 has 
written a survey that covers the latest trends in sentiment 
analysis. The works discussed above deals with sentiment 
analysis from the evolution to the multimodal sentiment 
analysis.

Rest of this paper is divided into various sections. 
Section 2 briefs some of the common sentiment analysis 
tasks, section 3 gives an overview of sentiment analysis 
across various domains, section 4 discusses the various 
challenges in this field and section 5 concludes the 
research.

2.   Common Sentiment Analysis 
Tasks

The various tasks involved in sentiment analysis are 
subjectivity detection, feature selection in sentiment 
classification and sentiment classification.

2.1 Subjectivity Detection
Subjectivity detection is the process of identifying the 
subjective sentences. Sentences can be classified as 
subjective sentence and objective sentence. Subjectivity 
indicates that the text contains/bears opinion content 
whereas objectivity indicates that the text is without 
opinion content. For example, “This movie is superb.” is 
a subjective sentence since it has an opinion as it talks 
about the movie and the writer’s feeling about the same. 
“Fruits are good for health” is the sentence that is a fact, 
general information rather than an opinion or a view of 
some individual and hence its objective. Sentence level 
sentiment analysis deals with the process of subjectivity 
detection. Various approaches like bootstrapping9,10, 
Conditional random fields11, Viterbi algorithm12 are used 
for subjectivity detection. SVM (sequential minimal 
optimization algorithm with poly kernel) is used for 
classification13. Objective words from SentiWordNet are 
used to improve the sentiment classification.

2.2 Features for Sentiment Classification
Feature engineering is one of the basic and most 
important steps in sentiment classification. The English 
sentences should be converted into feature vector in order 
to perform sentiment classification. The most commonly 
used features are Term presence and frequency14, 
n-gram15,16, Negation, Adjectives, Adverb-Adjective 
combination, Gini index17. Feature selection methods are 
divided into two categories they are Lexicon-based and 
Statistical based. Some of the statistical feature selection 
methods are Point-wise Mutual Information (PMI)18,19 
Chi-square20 and Latent Semantic Indexing (LSI).

2.3 Sentiment Classification
The sentiment classification techniques are broadly 
classified into three categories as Machine learning 
methods, lexicon based approach and Hybrid approach. 
Machine learning approach deals with the machine 
learning algorithms to solve the sentiment analysis 
problem. Machine learning techniques are broadly 
classified as Supervised21,22 and Unsupervised23,24 

algorithms. Machine learning algorithms are widely used 
for sentiment analysis problems, some of them are Naïve 
Bayes classifier25, Support Vector Machine (SVM)26–28, 
Neural network29, Conditional random fields (CRF)30–32 
and Rule based classifier33,34. Some of the approaches in 
Lexicon based approach are Dictionary based35,36 and 
Corpus based37,38. Hybrid approach is in its early stage and 
not much work has been done in the topic.

3.   Study of Sentiment Analysis 
Application Across Various 
Domains

Sentiment analysis is a hot research topic and various 
works has been done in various domains. Few of them 
are interpreting public sentiment variation39, classifying 
customer reviews as positive and negative, detecting 
internet hotspots40, and predicting stock market behavior. 

3.1 Movie Reviews
Sentiment analysis has been extensively carried out 
for Movie review. The analysis has greater impact on 
the success of the movie as in recent days people watch 
movies that have got good reviews. The data is taken 
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from benchmark datasets like, IMDB, rottentomatoes.
com. Few of the works that are carried out in this domain 
shows positive results41–45.

3.2 Product Reviews
Sentiment analysis is mostly used by the marketing 
companies to increase the sales of their products. 
Sentiment analysis has been carried out for many products 
like iPhone, cameras, hardware components, printers 
and scanners. Apart from just products, many works are 
carried out for restaurant reviews. Various aspects of the 
restaurant like food, services have been reviewed. The 
data for review is mainly taken from social networking 
sites like twitter, Face book and from other review sites 
created by the respective companies46–49.

3.3 Stock Market
Sentiment analysis is more useful in the stock market to 
predict the performance of shares. The data is collected 
from Yahoo Finance discussion board and other 
networking sites. In general, the shares are categorized 
into five categories and weights are assigned to them 
accordingly. The five categories are (2) for “Strong Buy”, 
(1) for “Buy”, (0) for “Hold”, (-1) for “Sell”, (-2) for “Strong 
sell”50

. 

3.4 Crime Analysis
A preliminary work51 has been carried out in predicting 
crime with sentiment analysis techniques. In the research 
work, the author has carried out spacio temporal mining 
to identify the crimes that are happening in various fields. 
Linguistic analysis and statistical topic modeling is used 
to automatically identify discussion topics across a major 
city in the United States, and then incorporated them in 
the crime prediction model.

3.5 Disaster Recovery
A number of works has been carried out in analyzing 
the mood of the people during crisis and disasters. Few 
of the works include, analyzing how social networking 
sites are used during disasters. Such analyses are helpful 
in reaching out people in need and help them. Voluntary 
organizations can read the data and render help to people 
who are in need. Some of the disasters that are analyzed 
are earthquakes, typhoons52.

4.  Challenges

Sentiment analysis is a growing field; still there are many 
research challenges that need to be addressed. Some of 
the open challenges in text mining are summarized as 
follows.
•	 Negation53 is very important because negation 

changes the text polarity. Negation terms affect the 
contextual polarity of words but the presence of a 
negation word in a sentence does not mean that 
all of the words conveying sentiments are inverted. 
Negation is not only conveyed by common negation 
words (not, never, no) but also by other lexical units.

•	 Another major hurdle is the handling of anaphora 
resolution. Anaphora means referring to same 
meaning but with different phrases. This problem 
mainly occurs while grouping the entities in aspect 
based sentiment analysis. For example, “battery 
life” and “power usage” refer to the same aspect of a 
phone, sentiments about both of these aspects should 
be combined in order to produce accurate results.

•	 Word arrangement in a sentence plays a vital role in 
identifying the subjective nature of the text. Word 
order is important in deciding the polarity of a text. 
In a given piece of text, if the words order changes, 
the polarity of the text gets affected.

•	 Implicit	 sentiment	 and	 Sarcasm: Without the 
presence of any sentiment bearing words, sentences 
may have an implicit sentiment. For example, “How 
can you do this?” In this sentence, none of the words 
express negative opinion, but the meaning of the 
sentence is negative. Thus identifying semantics is 
very important in semantic analysis. 

•	 Spam	 Detection: Anyone from any location can 
express their views in social media without disclosing 
their true identity. By this way, many fake reviews are 
written in order to promote the sales of the product. 
Such an activity is called opinion spamming. 
Apart from individuals, there are also commercial 
companies that are into this business spreading fake 
information. It is a challenging task to identify such 
opinion spams to extract the exact sentiment. 

•	 Conjunctions: Presence of conjunctions in a 
sentence changes the entire meaning of the sentence. 
For example: “The restaurant was very nice, but 
the service was poor”. This sentence is split into 
two parts. When we analyze the first part, we get a 
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positive sentiment. But the presence of the other 
words reverses the entire meaning of the sentence. 
So conjunctions should be considered for sentiment 
analysis. 

•	 Co-reference resolution is one of the biggest research 
challenges. This has to be done in both aspect level 
and entity level. This is more applicable in places 
where comparative texts are used. The reference 
between the sentences must be effectively resolved 
in order to produce better analysis. For example, 
consider the following opinionated text, “Comparing 
Nikon’s Cool pix to its main competitor the Canon, 
it takes excellent photos and is quite compact”. In the 
above sentence, the pronoun “it” refers to ‘Nikon Cool 
pix’. If this co-reference is not identified correctly, 
sentiment analysis cannot be carried out effectively54.

•	 Domain adaptation is another important aspect of 
sentiment analysis. Most of the available sentiment 
lexicons are general-purpose; though these are 
general-purpose, it is important that to study the 
ways for adapting to a specific domain. In this regard, 
there are three main issues. First is the same entity 
term that has different polarity in different domains. 
The next issue is assigning a strength marker for each 
and every sentiment word. Third is the difference in 
vocabularies across different domains which make 
sentiment analysis a domain dependent application.

5.  Conclusion and Future work

This paper has presented a brief survey on various aspects 
of sentiment analysis. Naïve Bayes classifier and Support 
vector machines are the most commonly used methods 
for sentiment classification. Most of the researches 
concentrate on English language and they can be extended 
to other languages to understand the regional trend. In 
sentiment classification, machine learning and Lexicon 
based approach are the most widely used approaches but 
hybrid approach needs to be explored further for better 
results. Since sentiment analysis is a domain dependent 
problem, there are only a few domains in which work has 
been carried out and there are a quiet lot of domains that 
need to be explored.
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