
Abstract
Objectives: The aim of this paper is to portray the achievement of new Linux conveyance taking into account Debian
Linux and Xenomai Real-Time structure. Methods/Analysis: This acknowledgment is instigated through the esteemed
requirement of the real-time systems in recent software technologies. The fundamental objective of such conveyance is
to suggest classic Operating Systems (OS) which incorporate Xenomai base. Findings: Xenomai is a real-time evolution
framework co-operating with GNU/Linux operating system providing a ubiquitous, device-agnostic, hard real-time support
to user-area applications coherently integrating into GNU/Linux operating system environment. Generally the Xenomai
technology first aims at aiding application designers depending on traditional RTOS to move effortlessly to a GNU/Linux-
based execution environment, without rewriting their application entirely at no cost. Improvements/Applications:
Porting of Xenomai to Debian based Operating System and evaluation of performance parameters like clock test, latency
on a General Purpose Computer.

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(17), DOI: 10.17485/ijst/2016/v9i17/93109, May 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Implementation of Xenomai Framework in GNU/
Linux Environment to Run Applications in a Real

Time Environment
K. Sripath Roy1* and K. Gowthami2

1Department of ECE, KL University, Vaddeswaram, Guntur - 522502, Andhra Pradesh, India;
koganti_sripathroy@kluniversity.in

2Department of ECM, KL University, Vaddeswaram, Guntur - 522502, Andhra Pradesh, India;
konagowthami93@gmail.com

1. Introduction
Real-time embedded software has been playing a vital
part in the data innovation market. In the RTOS mar-
ket, there have been some prevalent performers with
industry-endorsed benchmarks. Here, we aid to the
expanding significance of real-time Linux develop-
ments as each of it proposes a group of advantages.
Xenomai real-time developments have the major cir-
cumstances to duplicate standard RTOS interfaces,
consistent to non-real-time Linux. Such reception can
be worth-while to the general framework. This paper
demonstrates the significance of using Xenomai along with
Debian for continuous working frameworks and on-going
applications model1.

Keywords: Debian, GNU/Linux, Porting, Real-Time Systems, RTOS, Xenomai

A simpler migration path from conventional RTOS to
GNU/Linux can favour a broad compliance of the latter as
a real-time embedded platform. Taking into account the
determinative similarities between conventional RTOS,
Xenomai innovation directs to an industrious design non-
partisan and non-specific emulation layer taking favourable
circumstances from these comparisons. This emulation
might direct to reduce the disparity between exception-
ally divided RTOS world along with GNU/LINUX world.
Xenomai is about setting aside a few minutes working
framework APIs accessible to Linux-based platforms.
When the objective Linux kernel can’t meet the necessi-
ties with respect to the timing requirements, Xenomai can
likewise supplement it for conveying stringent real-time
guarantees based on authentic co-kernel technology2.

Implementation of Xenomai Framework in GNU/Linux Environment to Run Applications in a Real Time Environment

Indian Journal of Science and TechnologyVol 9 (17) | May 2016 | www.indjst.org 2

Xenomai helps in:

• Constructing, creating and running a real-time
application on Linux.

• Migration of an application from a conventional RTOS
Environment to Linux.

• Ideally running RTOS applications (VxWorks,
pSOS, VRTX, uITRON, POSIX) nearby local Linux
applications.

The main objective is to give real-time abilities in view
of some functionality traded by a theoretical RTOS core.
In generic, Xenomai targets on resilience, adaptability
and practicality rather than attempting to accomplish
most reduced in fact plausible latencies like RTAI does.

2. Xenomai Technology
and Adeos

2.1 Xenomai Technology
2.1.1 Standards
While discussing the standards of Xenomai it is decisive
to have precise view of the architecture. Figure 1 demon-
strates a reliable analysis about the architecture of complete
structure. It resides of assorted distinct conceptual layers,
which presents an excessive resilience3.

On top of hardware Adeos nano kernel is working.
The Hardware Abstraction Layer (HAL) above Adeos is
the architecture-reliant part of Xenomai. While porting
Xenomai to be runnable on another hardware platform,
the HAL has to be acclimated, so that Adeos is made acces-
sible to new design. The significant factor of the system
is the complex RTOS kernel running adjacent to HAL. It
agents a group of collective RTOS assistances, accepted by
most of the systems. The benefits can either be approached
through a Xenomai inherent API or by means of distinct
RTOS-API’s build adjacent to nucleus. These further added
API skins for conventional RTOS make it possible to run
traditional operating system above the Xenomai core4.
Xenomai facilitates users to process their applications in
Kernel as well as in User-Space. Running functions in the
user-space persuades the reliability of the system.

2.1.2 Features
The following are the important features of the Xenomai-
nucleus.

• Multiple processes support:
• Protective scheduling methods.
• 32-bit accumulation preferences.
• Round-robin scheduling processes with equal preference.
• Watchdogs for each thread.
• Five-dimensional state imitation for threads.
• Abutment for superior inheritance.
• Primitive synchrony backing:
• Supports precedence inheritance, application which is

communal to scheduler code.
• Supports time-constrained delay and coercive dele-

tion along waiter’s activation.
• Timer and clock administration:
• Periodic and aperiodic conditions.
• Nucleus obviously switches from periodic jiffies to

time-stamp conflicting values relying against timer
performing mechanism.

• Constrained inferior-case time to start, stop and control
timers.

• Basic allocation of memory:
• Dynamic memory allocation with real-time guaran-

tees.

2.2 ADEOS
The Adaptive Domain Environment for Operating
Systems (ADEOS) is a nano kernel HAL that function
among computer hardware and operating system that
runs on it. It contributes to an extendable and robust envi-
ronment which allows the sharing of hardware resources
amid numerous operating systems. It is a resource con-
structive layer available as Linux kernel patch. Figure 2
describes that it grants several distinct domains to exist
together on same hardware. The domains do not see each
other by themselves, but every domain sees Adeos. The
domains contend each other for the altering of external
and internal events.

2.2.1 Architecture
Adeos implements a sequence of signals. At each instance
when a peripheral sends a signal, the disparate operating
systems running in the machine are excited which in turn
decides whether to handle, neglect, abandon, or abort the
signal5. Signals that are discarded by an OS are passed to
next OS in the chain. Terminated signals are not propagated
to latter satges.

K. Sripath Roy and K. Gowthami

Indian Journal of Science and Technology 3Vol 9 (17) | May 2016 | www.indjst.org

Figure 1. Xenomai architecture.

2.2.2 Adeos Interrupt Pipe
Another basic feature of Adeos is its capability to
export a common API to client domains, which is
autonomous of underlying CPU architecture. Each
domain is adhered to a central data structure called
“event-pipeline” or “I-Pipe”, which offers the possibility
to inform the domains for external interrupts, system
calls pointed by Linux or other system events generated

by kernel code as demonstrated in Figure 3. In order
to dispatch external functions in a computed aspect,
Adeos proposes the feasibility of halting the events.
The I-Pipe propagates interrupts over distinct domains
running on hardware6. As some domains choose to be
the first to accept hardware interrupts, Adeos contrib-
utes the domains to have approach to priority interrupt
dispatching.

Implementation of Xenomai Framework in GNU/Linux Environment to Run Applications in a Real Time Environment

Indian Journal of Science and TechnologyVol 9 (17) | May 2016 | www.indjst.org 4

3. Migration from Xenomai 2 to
Xenomai 3
The following are the issues considered when migrating
from Xenomai 2 to 3.

• Xenomai is about RTOS APIs:
• Dual kernel is not by any means the only approach to

real-time.
• Even real-time may not be required in some conditions.
• Kernel space is antagonistic to external APIs:
• Debugging is complicated.
• Extending APIs inflates the kernel.

• Kernel space is not a location for applications:
• This may bring about inaccurate software designs.

As the continuous PREEMPT_RT exertion conveys
on the short and limited latency guarantee with a single
kernel configuration on preferred hardware platforms for
which this technology is accessible and sophisticated, it
establishes opportunities to continue the applicability of
Xenomai as a relocation tool, so that moving an applica-
tion to such a system does not certainly involve porting
the code over the POSIX API.

Xenomai 3 confiscated this opportunity, by enabling
Xenomai APIs for dual kernel and inherent Linux con-
figurations.

Figure 2. Adeos architecture.

Figure 3. Adeos I-PIPE.

K. Sripath Roy and K. Gowthami

Indian Journal of Science and Technology 5Vol 9 (17) | May 2016 | www.indjst.org

3.1 Xenomai 3 Architecture
Xenomai 3 is the new architecture which can run flawlessly
side-by-side Linux as a co-kernel system like Xenomai 2,
or inherently over mainline Linux kernels.

This new architecture presents two real-time cores
chosen at build time.

3.1.1 Xenomai 3 Dual Kernel Configuration: Cobalt
This dual kernel named Cobalt is assembled into the Linux
kernel as shown in Figure 4, handling all time-detracting
activities like handling interrupts and setting up real-time
threads. The Cobalt core has the greater priority over the
inherent kernel activities. It is a significant modification

of the Xenomai 2.x system. Cobalt implements the RTDM
specification for integrating with real-time device drivers.

3.1.2 Xenomai 3 Single Kernel Configuration
The native Linux version, an embellished implementation
of the experimental Xenomai work, is called Mercury. In
this environment only a standalone employment of the
RTDM specification in a kernel module is necessary, for
integrating the RTDM compliant device drivers with
native kernel as depicted in Figure 5.

This works with the addition of Copperplate interface,
which arbitrates between the real-time API/emulator
your application employs and the latent real-time core.

Figure 4. Xenomai 3 dual kernel.

Implementation of Xenomai Framework in GNU/Linux Environment to Run Applications in a Real Time Environment

Indian Journal of Science and TechnologyVol 9 (17) | May 2016 | www.indjst.org 6

3.1.3 Advantages of Xenomai 3 Compared
to Xenomai 2

• Non-POSIX APIs available in native kernel configu-
ration which can run over a single or dual kernel
configuration inadequately and the same applies for
applications built over them.

• Data transfer between real-time threads happens directly
from user-space, even in multi-process applications.

4. Building Xenomai 3 on x86
Kernel
Xenomai follows a split source model by decoupling the
kernel space abutment from user-space libraries. For this,
kernel and client-space Xenomai segments are individu-
ally accessible under the kernel/ and lib/sub-trees. The
kernel which executes the in-kernel bolster code is seen
as an implicit expansion of Linux kernel. Cobalt kernel

Figure 5. Xenomai 3 single kernel configuration.

K. Sripath Roy and K. Gowthami

Indian Journal of Science and Technology 7Vol 9 (17) | May 2016 | www.indjst.org

is prepared by building it as a component of destination
kernel. To build it on an x86 kernel, we have to configure
the kernel using xconfig/menuconfig and then build using
[ARCH=i386] bzImage modules.

4.1 Essentials: Non-Specific Prerequisites
(Both Cores)
• GCC must have bolster for legacy nuclear builtins

(__sync structure).
• GCC ought to have a (rational/working) support for

TLS ideally, in spite of the fact that this is not compul-
sory if working with – disable-tls.

• On the off chance that you plan to empower the client
space registry support, then CONFIG_FUSE_FS must
be empowered in the objective part running the constant
applications.

4.2 Cobalt-Precise Essentials
• The kernel variant should be 3.10 or better.
• An Intrude on Pipeline (I-pipe) patch must be acces-

sible for your destination kernel. Exclusive patches
from the I-pipe-center arrangement are suitable,
legacy patches from the adeos-ipipe arrangement are
most certainly not.

• A Timestamp Counter (TSC) is required from run-
ning on a x86_32 equipment. Distinct with Xenomai
2.x, TSC-copying utilizing a PIT register is not
accessible7.

5. Results
Various test cases are run using this cobalt core on x86
architecture on Single CPU with 256 MB RAMS like
clocktest, latency8.

5.1 Clocktest
Clocktest is a measure of Xenomai series. For every
CPU, it often produces a time offset, an accumulated
value, the total warps and utmost warp with respect to
microseconds. In this test, we have 3 cases i.e., real-time,
monotonic, host_real-time. Figure 6 presents the output
of clock test.

Default values:
Clock_Realtime = 0, Clock_monotonic = 1, Clock_Host_
Realtime = 42.

5.2 Latency Test
Latency is a timer reference program. In this test we have
several options to print histograms of latencies, dump his-
togram, to know test duration, data lines per header, etc.
Figure 7 presents the output of latency test.

6. Conclusion and Future Work
In this paper, we have discussed the various features
of Xenomai which is integrated with Linux in order to
meet the requirements with respect to response time

Figure 6. Clock-test of Xenomai.

Implementation of Xenomai Framework in GNU/Linux Environment to Run Applications in a Real Time Environment

Indian Journal of Science and TechnologyVol 9 (17) | May 2016 | www.indjst.org 8

constraints9,10. And also Xenomai can supplement it
to deliver inflexible real-time guarantees. Xenomai
extends abutment for hard real-time applications due
to which it can be used in several applications. And also
Xenomai is built on beaglebone board to carry out some
test cases. These tests are further used to run hard-real-
time applications.

7. References
1. Xenomai implementing a RTOS emulation framework

on GNU/Linux. Available from: https://xenomai.org/docu-
mentation/xenomai-2.0/pdf/xenomai.pdf

2. Start here. Introduction to Xenomai. Available from: https://
xenomai.org/start-here/

3. Lal SV, Palaniappan R, Prakash V. Real time nursing man-
agement system for health care industry by using xenomai
kernel. Indian Journal of Science and Technology. 2015
Aug; 8(20):1–10.

4. A quantitative comparison of realtime linux solutions.
Available from: http://citeseerx.ist.psu.edu/viewdoc/downl
oad?doi=10.1.1.136.4601&rep=rep1&type=pdf

5. Life with Adeos. Available from: http://www.xenomai.org/
documentation/branches/v2.0.x

6. Adaptive domain environment for operating systems; 2001.
Available from: http://www.opersys.com/ftp/pub/Adeos/
adeos.pdf

7. Migrating from Xenomai 2.x to 3.x. Available from: https://
xenomai.org/introducing-xenomai-3/

8. Xenomai API reference. Available from: https://xenomai.
org/api-reference.

9. Murikipudi A, Prakash V, Vigneswaran T. Performance
analysis of real time operating system with general purpose
operating system for mobile robotic system. Indian Journal
of Science and Technology. 2015 Aug; 8(18):1–6.

10. Marieska MD, Kistijantoro AI, Subair M. Analysis and bench-
marking performance of real time patch linux and xenomai in
serving a real time application. 2011 International Conference
on Electrical Engineering and Informatics (ICEEI); Bandung.
2011 Jul. p. 1–6.

Figure 7. Latency test of Xenomai.

