
Indian Journal of Science and Technology, Vol 9(17), DOI: 10.17485/ijst/2016/v9i17/92728, May 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

SPL is set of product families that share the common
resources and develop products according to need of
particular market requirements. SPL is very common
and effective paradigm to develop families of software by
the reusability of resources from repository. Two major
procedures are utilized to develop SPL namely, domain
engineering and application engineering. The application
engineering process comprises of product development
(product derivation) according to market segments and
requirements. Further, the domain engineering consists
of common and variable features among all products.
The common features are reusable in each product while,
variable features differentiate products. High reusability
of features can be achieved by well manage commonalities
and variability, systematically1.

Feature model is highly used and effective to manage
the variability and commonalities in SPL. This is a tree
structure of common and variable features which consists
of terminal and parent features. Terminal features (leaf
nodes) are used for development of products in which
common features are easy to reuse however, variable
features are even difficult to manage. Rules and constraints
about use of common and variable features are precisely
described in feature model of SPL2. It is compact picture
of all possible products, feature combination, constraints
and relationship among features. Relationship and
constraints among features are described as optional,
alternative and mandatory features. Mandatory features
are significant for all products in SPL. These features can
be crosscutting concerns which are scattered in overall
system and cannot be removed because of tangled in
multiple features3.

Abstract
In Software Product Line (SPL), feature model is highly recommended to manage the commonalities and variability of
features under resource constraints of mandatory, optional and alternative. Features with mandatory constraints and high
in dependency with other features are identified as crosscutting concerns; reduce the reusability of resources. It is important
to find and modularize these concerns at modeling level. With this practice, these concerns do not effect if deletion or
addition is required from entire system. In this paper we have applied Union-find algorithm to find crosscutting concerns
in feature model. We evaluated our approach by applying on an automobile feature model with various dependencies
between features, and found required crosscutting concerns. By this approach, identification of crosscutting concerns
and their modularization made easier. Further, we have also applied genetic algorithm to get optimized feature selection
under cost constraint with high performance. In SPL, as crosscutting concerns are mandatory features with fix cost and
performance, optimization on feature model is necessary under consideration of crosscutting concerns. Our approach
found all possible products according to crosscutting concerns, cost and performance at modeling level of an automobile
feature model. At last, we found all products from minimum to maximum cost with respect to least maximum performance
by using GA optimization technique.

Keywords: Feature Model, Genetic Algorithm, Optimization, Software Product Line, Union-find Algorithm

An Approach for Optimized Feature Selection in
Software Product Lines using Union-Find

and Genetic Algorithms
Asad Abbas, Zhiqiang Wu, Isma Farah Siddiqui and Scott Uk-Jin Lee*

Department of Computer Science and Engineering, Hanyang University, South Korea;
asadabbas@hanyang.ac.kr, hhhwwwuuu@hanyang.ac.kr, isma2012@hanyang.ac.kr, scottlee@hanyang.ac.kr

Vol 9 (17) | May 2016 | www.indjst.org Indian Journal of Science and Technology2

An Approach for Optimized Feature Selection in Software Product Lines using Union-Find and Genetic Algorithms

Crosscutting concerns are hard to decouple and
problematic for the reusability of features, where
complexity of relationship among features is high.
To increase the reusability, it is essential to find the
crosscutting concerns from feature model and modularize
them4. In large feature model, it is difficult and time
consuming task to identify crosscutting concerns and
their dependent feature.

Furthermore, it is also hard to choose best features
within some constraints and user requirements for
product derivation. Identification of crosscutting concerns
at modelling level before development of product is very
important to modularize and get high reusability which
is known as aspect mining process5. The idea behind
this study is to find crosscutting concerns from feature
model, which are mandatory and having constant value,
by using union-find algorithm resulting easy selection of
features. To get best optimized feature selection we used
Genetic Algorithm (GA) under constraints of cost and
performance.

The specific objective of this study is to use union-find
algorithm for the identification of crosscutting concerns
in feature model. Subsequently, we used GA to optimize
feature selection by considering resource constraints and
crosscutting concerns.

The paper is organized as follows. Section 2 is about
related work for searching crosscutting concerns and
optimization techniques, section 3 gives background on
feature model, section 4 identifies crosscutting concerns,
section 5 is about union-find algorithm procedure,
section 6 is about feature combinations with constraint
problems and GA approach for optimization and, finally
section 7 gives conclusion.

2. Related Work

One research1 over feature selection discussed ant colony
optimization in SPL feature model. According to authors,
ant colony optimization technique took more time than
GA. Ant colony optimization technique optimizes good
paths in graph.

Another research5 was on application of k-means
algorithm to calculate attribute values of each method by
data clustering, subsequently, measure the value of each
method with respect to each group using vector space
model.

A study6, identified crosscutting concerns using static

analysis approach by the conversion of attribute values to
vector space model in genetic algorithm and find FAN-IN
values in java program.

In another research7, authors developed new approach
namely GAAM (Graph Algorithm in Aspect Mining), by
the combination of graph algorithm and aspect mining
technique to find the crosscutting concerns. Authors also
introduced GAAM for computation of attribute values,
filtering, grouping and analysis.

Another research8, discussed genetic algorithm of
optimized feature selection under resource constraints.
Authors discussed database case study with constraints
of cost memory, and CPU. Their research described use
of genetic algorithm to select optimized feature for a
product in SPL. Genetic algorithm was applied on large
scale feature model of database and selected optimized
feature selection.

In this paper, for identification of crosscutting
concerns in SPL feature model we have applied union-
find algorithm. Identification of crosscutting concerns
at modeling level reduces the optimization time and
increase the accuracy of optimized feature selection
under constraints and requirements of stakeholder. For
optimized feature selection, we have applied GA under
cost constraint and obtained high performance feature
combination for product derivation.

3. Feature Model Background

Comprehensive analysis and information of feature
model is essential for assets development of the product
line, however, this information is not enough for product
derivation. Information related to binding features such
as timing and relationship to include in specific products
and delivered to stakeholders also the derivation of
components in SPL. Moreover, in product line assets,
some features (bound features) must be provided at
the time of development while, some of them (optional
features) can be provided on the time of installation by the
choice of costumer. Therefore, it is important to optimize
features thoroughly for bounding to products, and such
information is compulsory to provide for the purpose of
component design9.

Three ways can be adopted for the testing of feature
binding, given as: 1) how (approaches), 2) when (timing)
and, 3) what (units) features are bound. When a bounded
feature is specified to a product, for the proper operation

Asad Abbas, Zhiqiang Wu, Isma Farah Siddiqui and Scott Uk-Jin Lee

Vol 9 (17) | May 2016 | www.indjst.org Indian Journal of Science and Technology 3

of features the exiting set of bounded features should be
together. These exiting sets of features called as binding
units (variability and commonalty units) which should
further utilized to identify the points of variation to
achieve composition components easily for feature
bindings. While, the timing units of feature binding
are also influence component design. In case of when
feature (timing), the load table approach can be adopted
for the component design, at the time of installation. It
is therefore, the components need to be design for the
provision of binding features when they are required10.

The terminal features are required to bind for derivation
of new product from feature model by finding their
combination. It can be assumed that the development of
new product is successful if it fulfills all constraints which
are defined by the feature model. The constraints which
are governed by a feature model on terminal features are
“And” (select all), “Or” (select few or all) and “Alternative”
(select only one) groups7. The motivating example used in
this paper is given below in Figure 1.

Figure 1. Automobile feature model.

Figure 1 depicts feature model of automobile where
total number of features are 22 with different constraints
of selection. We defined 3 features as crosscutting ‘Turbo’,
’Speed’ and ‘Crash’. ‘Air Bag’ depends on ‘Crash’, ‘Auto
Break System (ABS)’ and ‘Belt’ depend on ‘Speed’ and
‘Turbo’ depends on ‘Extra Large Turbo (XLT)’.

4. �Identification of Crosscutting
Concerns

Large number of dependencies exist among features in
feature model, resulting reduce reusability of common
and variable feature. In order to manage the variability

of SPL, it is important to eliminate the dependencies
among features. As previously discussed in section I, the
crosscutting concerns are scattered in overall system and
cannot be separated from domain. These concerns impact
and tangle with other non-crosscutting and crosscutting
concerns. Crosscutting variables are commonly found in
feature model span in other features. This crosscutting
problem makes the reusability of features difficult.
Therefore, to cater this problem, we modularize these
concerns separately at modeling level11. In the motivating
example of automobile feature model (Figure 1), the
identification of crosscutting concerns at modelling
level will provide flexibility to modularize separately
for reusability. It is slightly easy to find and locate these
crosscutting concerns accurately in small feature model
but in case of complex feature model it is difficult and
the accuracy is questioned due to the existence of large
number of features.

5. Union-find Algorithm

The utilization of well-organized and effective data
structure sometime depends on efficiency of an
algorithm. An appropriate selection of the data structure
can minimize the execution time of an algorithm. Union-
find algorithm was introduced by Tarjan in 1970s which
makes disjoint sets by union operation12. It tracks elements
in tree and compare with other elements. In our approach
union-find algorithm compare X feature with Y, if X is
called in Y then it declares X is crosscutting.

As an example, set of N elements which are divided
into all possible subsets to retain the connectivity of every
component in a particular subset or based on relationship
among each other. This operation can be done by using
union-find data structure. Let’s consider there are five
persons A, B, C, D and E. A and B are friends, B and C
are friends, D and E are friends. Relation between friends
become:
•	 A has direct relation with B and indirect relation with

C via B.
•	 D has direct relation with E.

Union-find data structure can be used to determine
direct or indirect relation between friends. We can also
find disconnected subsets, here two disconnected subsets
are {A, B, C} and {D, E}.

Vol 9 (17) | May 2016 | www.indjst.org Indian Journal of Science and Technology4

An Approach for Optimized Feature Selection in Software Product Lines using Union-Find and Genetic Algorithms

Two operations are performed here:
•	 Union (A, B) - join two friends A with B.
•	 Find (A, B) – determine the path joining elements A

and B.

The parent node in tree feature model is mostly used
to sustain a number of disjoint sets. If two or more than
two disjoint sets have no common members (no direct
or indirect dependency), their intersection set is empty
i.e. not dependent to each other. Numbers of disjoint sets
keep grouping of some elements, so that each element
is the part of one disjoint set. Two main operations that
union-find algorithm performs13:
•	 Keep track if two elements belong from same set

i.e. they have relationship with each other (FIND
operation).

•	 Combine two sets.

Union-find algorithm works with disjoint set data
structure named as union-find data structure which
maintain partition of finite sets without loss generality.
Disjoint set data structure aims to perform union with
arbitrary sequence and perform operation on two disjoint
sets to get one set. Steps for union-find algorithm:
•	 Set of all possible elements
•	 {S1, S2, . . . ,Sk}
•	 Union command: connect two elements of same

category.
•	 Union(x, y): Function union both sets which

containing x and y.
•	 Find Query: Find the target elements and create new

set for these elements.
•	 Find(x): This function finds the ID of the set x

belongs.

5.1 �Identification of Crosscutting Concerns
using Union-find

Several aspect mining techniques exist to identify
crosscutting concerns from feature model. In complex and
large feature model it is hard to find crosscutting concerns
for aspect modularization. Since, the crosscutting concerns
are spread in whole system and develop relationship with
other features directly or indirectly14. Union-find is an
easy and simple algorithm to find crosscutting concerns.
Union-find algorithm process matches with crosscutting
problems and usable to find crosscutting concerns. In
this study, we adopted terminal features for aspect mining

because non-terminal features will select automatically by
the selection of terminal features.

Algorithm 1. Union-find algorithm for searching
Feature Model
Part I: Merge(a,b)
•	 Input: the number of features and feature model

with F={fi} 1 ≤ i ≤ n RF (Relationship of features)
•	 S’ = x y
•	 x.total<-- get the children number both x and y
•	 y.parent<-- setting the parent of y is x
•	 x.children<-- setting the children of x is y
•	 Output: Union of all disjoint sets

In order to find terminal features, we give input of
initial population of all features in feature model and
determine the relationship between them. We get the
union of all disjoint sets with comparison of terminal
with terminal feature (child node) or terminal with non-
terminal feature (Parent of any terminal node).

Part II: Find_Crosscutting(n)
•	 foreachfeature∈ N do
•	 numParent<-- amount of parents
•	 numChildren<-- amount of children
•	 if numParent>1 and numChildren>1 then NotTer

minalCrosscutting(feature);
•	 else
•	 if (numParent>1 and numChild =0)
•	 or property is mandatory
•	 thenflag<--true
•	 else JugeParentIsCC(feature);
•	 end
•	 end
•	 end
•	 Output: crosscutting features

The description of above pseudo code is given as;
first, terminal feature, if called by any other feature i.e.
dependent on that feature, is considered as crosscutting
concern. Comparison has applied between all features
and found relations among them. Terminal features
(Crosscutting concerns) can be parent of other features but
not with direct relationship, and only need functionality
by any other feature in feature model (dependent). Second,
if non-terminal feature is crosscutting concern then all of
its related features are also crosscutting concerns.

Asad Abbas, Zhiqiang Wu, Isma Farah Siddiqui and Scott Uk-Jin Lee

Vol 9 (17) | May 2016 | www.indjst.org Indian Journal of Science and Technology 5

Part III: NotTerminalCrosscutting(n)

•	 Foreachi∈length of children do
•	 Foreachi∈length of parents do
•	 If ithparent is crosscutting then
•	 This feature is crosscutting

If feature is crosscutting but not terminal feature, set
its children to crosscutting feature and set its children flag
to True. If one of the feature’s parent is crosscutting then
execute this function.

Part IV: Search crosscutting concerns
•	 Input: the number of feature model with N,

relationship for features with Rf={x,y} 	0<=x,y<n
•	 Initial feature model
•	 repeat
•	 		 input relationship
•	 		 Merge(x,y)
•	 until stopping condition
•	 Find Crosscutting (N)
•	 Output: crosscutting features &Mandatory

Crosscutting concerns identified with respect of their
relationships with other feature. It repeats the operation
of find again and again until all existing crosscutting
concerns and their respective dependent features
identified.

6. �Feature Combination with
Constraints Problem

Language of feature model first proposed and formulized
by Kang et al. Feature model comprise the Information
of common and variable features of software product
line. Feature model is hierarchical structure of parent and
node with different relationships and capture the scope
and different level of abstraction of SPL16.

Feature selection in SPL feature model with resource
constraints from stakeholder is a big challenge. Since,
the cost is most common constraint from the customer;
therefore, in this study we discuss the appropriate
selection of features combination under cost constraint
with respect to performance evaluation of the product.
We present a case study of automobile feature model with
constraints and crosscutting concerns.

Example of feature selection: we randomly selected
cost of terminal features from 100$ to 500$ and found
best feature combinations with least high performance. As
cost increased the performance of product also increased.
Crosscutting concerns are already identified by using
union-find algorithm.

6.1 Genetic Algorithm (GA)
GA is stochastic and heuristic approach for global search
optimization which quickly scan large population for best
feature selection. It can quickly optimize big papulation of
resources and get best solutions. With highly constraints
problems GA work very well and effectively. For the best
optimization the developers need to satisfy resource
limitations and specific product feature selection8.

GA procedure cannot directly applied for synthesis
mechanism. Modifications related to objective function
are obligatory in the original algorithm according to
the behavior of feature constraints to avoid impulsive
combination of feature selection. This study describes a
GA formulation to consider the constraints and follow
the algorithm procedure concerning the global best
solution15.

In GA, initial population is generated randomly
such that satisfies all given constraints. In GA, features
of SPL in feature model are connected with each of the
product which can be denoted by either real numbers or
binary strings. The binary strings have advantage over
real number because of simple and easy in operation of
crossover and mutation. All random generated feature
selections are assessed with objective function and
separately checked according to constraints8.

In optimization where constraints exist, the solution
space is limited to restrictions, therefore, GA cannot be
applied directly on data structure. Generally, there are
three methods to formulate genetic algorithm to consider
constraints. First, allow unreasonable elements after
disciplining them by assigning low fitness values, therefore
there is low selection probability of such numbers for the
next features generation. While high fitness values are
ensured high probability for next generation of feature
selection. Second, continuous crossover and mutation
with random feature selection is occurred until the
selection of valid feature combination. Third, by defining
constraints, the crossover and mutation process changes
to keep the feature combination remain inside in the valid
region6.

Vol 9 (17) | May 2016 | www.indjst.org Indian Journal of Science and Technology6

An Approach for Optimized Feature Selection in Software Product Lines using Union-Find and Genetic Algorithms

Crossover operation is formulated to use binary string
rather than of real numbers. It takes two features/parents
from initial population and makes comparison according
to fitness values of the objective function. Subsequently,
mutation operation applies on single bit of the binary
string; if objective function is satisfied then it inverts the
binary string and makes comparison with next generation.
Finally, new valid feature combination is generated from
old feature model15.

7. Initial Population

The initial population presents all combinations of
features in SPL (S⊆2F), while each ‘n’ binary string is
generated to present chromosomes.

Let initial population F={fi}; 1 ≤i≤ n F contains n
features denote feature model

Further, each random binary string and random
generated feature presents features of specific product in
feature model and evaluates according to given objective
function, respectively. The initial population is generated
as input of GA, in which further binary code is used as
chromosome (e.g. 111001011) and all chromosomes are
compared under fitness value.

Figure 2. Genetic algorithm process.

Figure 2 describes the complete process of GA. Third
step (decode chromosomes) is repeated until object
function fulfill.

8. �Genetic Algorithm for
Optimized Feature Selection

GA performs various process to select the features
combination for final product derivation as describe in
Figure 2. Complete procedure is described in Algorithm 2
for optimized feature selection to satisfy object function8.

Algorithm 2. Genetic Algorithm
GA for optimized feature selection
•	 Generate feature model with n resources F
•	 F = {fi}, 1 ≤ i ≤ n, C (Constraints), R (Feature), V(F)

value of features, F(R) feature relationship and Rc
(resource constraints).

•	 Evaluate the fitness f(i) of each feature i in the
feature model.

•	 Set of new features according to fitness of each.
•	 Select two parent p1 and p2
•	 Crossover p1 and p2 to get offspring
•	 Mutation to get new offspring (update set of

features).
•	 Population of new offspring
•	 Use new generated population for a further run of

the algorithm
•	 If the required optimized feature selection satisfied

then stop, otherwise repeat from step 3

Figure 2 shows the complete procedure of GA for
feature optimization in feature model of SPL. We put two
constraints, cost for optimized feature selection.

Our objective function is used to get high performance
feature selection for the specific product within the cost
constraint provided by stakeholders.

1

. .
n

i i
i

S t S C Cost
=

£å
				 (1)

1

n

i i
i

Maximise S P
=
å 					 (2)

	 Si∈{0,1}

Equation (1) determines the sum of cost for all selected

Asad Abbas, Zhiqiang Wu, Isma Farah Siddiqui and Scott Uk-Jin Lee

Vol 9 (17) | May 2016 | www.indjst.org Indian Journal of Science and Technology 7

features under given cost constraints from stakeholder.
Figure 3 depicts that the cost is directly proportional
to the performance of the product which showed that
if the performance of the product will increase with
cost. Further, at one point where both constraints (cost
and performance) will be constant and no further
performance will increase as by increasing cost. In our
experimental results we optimized features within limited
cost with respect to performance. In GA, features are
presented by binary string whereas, value of not selected
and selected features in binary string are represented by 0
and 1, respectively.

S⊆2F ; S denotes all possible combination of features
in feature model

In equation (2) Pi and Si defines the performance of all
n features and selected features, respectively. It calculates
the sum of all features which are selected for specific
product with least maximum performance according to
cost, from F= {fi}. In this study, we used random value of
feature performance to selected best features.

Part 1. chromsomesChange(int min, int max)
•	 foreachi∈[min,max] do
•	 if this bit is not crosscutting then
•	 This bit will be swap
•	 end
•	 end

We applied algorithm according to our own objective
function and consider the crosscutting concerns in

feature model for optimization. Part 1 check crosscutting
concern for each bit in binary string, if any bit which is not
from set of crosscutting then it swaps and check other bits
by changing random chromosomes. Set of crosscutting
concerns is:

CCi={n}; CCi denotes all crosscutting concerns in
feature model. Where 1≤ i ≤n.

Part 2. Mutation(bool parent[])
•	 Num = Generate a random number [0,99]
•	 ifnum is 7 then
•	 Changenum = generate a random number [0,n)
•	 ifchangenum-th bit is crosscutting then
•	 Skip;
•	 else
•	 Change this bit
•	 end
•	 end

The program will generate a random number from 0
to 99. Two scenarios may be occurred, first, the mutation
probability should be less than ‘0.1’ and second the
mutation should be occurred if random number is ‘1’
performed mutation operation and optimizes the best
feature solution.

Figure 3 shows the experimental result for the values of
cost constraints and performance of each product under
domain of SPL. We have selected random values for cost
and performance for each feature. Results determined
product cost is started from 200$ with performance 365.

Figure 3. Derivation of Products in SPL.

Vol 9 (17) | May 2016 | www.indjst.org Indian Journal of Science and Technology8

An Approach for Optimized Feature Selection in Software Product Lines using Union-Find and Genetic Algorithms

The highest cost 340$ and maximum performance of the
product in SPL is 655. Figure 3 shows the comparison
between cost and performance of each product and
depicts Product 1 with null values because there is no
feature selection at cost 100$.

9. Conclusion

Optimization is important for best features combination
for a specific product according to the constraints and
limitation of stakeholders. In this paper, we have discussed
about union-find algorithm for feature model to identify
crosscutting concerns. We have examined that the
searching of crosscutting concerns at modelling level is
beneficial at feature combination for product derivation.
For best feature combination, we used GA optimization
technique and derived all possible products according
to cost and performance for each product. We randomly
selected cost for each feature in feature model and derived
products under cost constraint from stakeholder with
maximum least performance. Our experimental result
shows product’s cost and performance according to cost
constraints of stakeholder.

10. References
1.	 Wang YL, Pang JW. Ant colony optimization for feature

selection in software product lines. Journal of Shanghai Ji-
aotong University (Science). 2014; 19(1):50–8.

2.	 Lee K, Kang KC, Kim M, Park S. Combining feature-ori-
ented analysis and aspect-oriented programming for prod-
uct line asset development. In 10th Software Product Line
Conference, 2006 10th International. IEEE; 2006. p. 10-19.

3.	 Holdschick H. Challenges in the evolution of model-based
software product lines in the automotive domain. In Pro-
ceedings of the 4th International Workshop on Feature-Ori-
ented Software Development. ACM; 2012 Sep. p. 70–73.

4.	 Stoiber R, Meier S, Glinz M. Visualizing product line do-
main variability by aspect-oriented modeling. In 2nd Inter-
national Workshop on Requirements Engineering Visual-
ization IEEE; 2007 Oct. p. 8–13.

5.	 Şerban G, Moldovan GS. A new k-means based clustering
algorithm in aspect mining. In Proceedings of the 8th In-
ternational Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing, IEEE; 2006 Sep. p. 69–74.

6.	 Mhawish M, Gupta M. A new genetic algorithm tool for
clustering-based aspect mining using static analysis and
vector-space model. International Journal of Scientific Re-
search Engineering & Technology. 2015; 4(4):434–40.

7.	 Serban G, Moldovan GS. A graph algorithm for identifica-
tion of crosscutting concerns. Studia Universitatis Babes-
Bolyai, Informatica. 2006; LI(2):53–60.

8.	 Guo J, White J, Wang G, Li J, Wang Y. A genetic algorithm
for optimized feature selection with resource constraints in
software product lines. Journal of Systems and Software.
2011 Dec; 84(12):2208–21.

9.	 Thüm T, Kästner C, Benduhn F, Meinicke J, Saake G, Leich
T. Feature IDE: An extensible framework for feature-orient-
ed software development. Science of Computer Program-
ming; 2014 Jan. p. 70–85.

10.	 Lee J, Kang KC. Feature binding analysis for product line
component development. Software Product-Family Engi-
neering Springer Berlin Heidelberg; 2003 Nov. p. 250–60.

11.	 Tizzei LP, Rubira CM, Lee J. An aspect-based feature model
for architecting component product lines. Software Engi-
neering and Advanced Applications 38th EUROMICRO
Conference. IEEE; 2012 Sep. p. 85–92.

12.	 Wilkinson MH, Roerdink JB. Fast morphological attribute
operations using Tarjan’s union-find algorithm. Mathemat-
ical Morphology and its Applications to Image and Signal
Processing; Springer: US; 2002. p. 311–20.

13.	 Carlinet E, Geraud T. A comparative review of component
tree computation algorithms. IEEE Transactions on Image
Processing. 2014; 23(9):3885–95.

14.	 Abufardeh S, Magel K. Software internationalization: cross-
cutting concerns across the development lifecycle. Inter-
national Conference on New Trends in Information and
Service Science, 2009. NISS’09, IEEE; 2009 Jun. p. 447–50.

15.	 Said Gaena, Mahmoud AM, El-Horbaty ESM. A compara-
tive study of meta-heuristic algorithms for solving quadrat-
ic assignment problem. International Journal of Advanced
Computer Science and Applications. 2014; 5(1):1–6.

16.	 Ajoudanian S, Hosseinabadi SHM. On Formalization of
Extended Feature Model using Promotion Technique in
Z. Indian Journal of Science and Technology, 2015; 8(17):1-
14.

