
*Author for correspondence

Indian Journals of Science and Technology, Vol 9(16), DOI: 10.17485/ijst/2016/v9i16/92298, April 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Continuous Queries for Streaming Data of Mobile
Objects

Hoang Do Thanh Tung*

Institute of Information and Technology, Vietnam Academy of Science and Technology (VAST);
tunghdt@ioit.ac.vn

Keywords: Continuous Query, GPS, Indexing, IPS, Mobile Objects, Streaming Data

Abstract
As a result of the development of streaming data systems, a huge number of continuous queries from users on those systems
should be managed efficiently. Recent proposed methods mostly focus on handling problems of system performance
that can be degraded by overloading server and the bottle neck problem of the wireless network. Specially, continuously
updating reports when objects change positions may consume battery energy of mobile devices significantly. In this paper,
we propose an efficient method to manage continuous queries for streaming data of mobile objects in GPS as well as
Indoor positioning systems. Our idea is to use indices and in-memory data structures for objects, queries together in order
to reduce cost of communication, updates on servers and battery burden of mobile device. But the method still supports
the most types of queries as possibly. Our experiments show that the proposed method can manage continuous queries in
large number quickly and efficiently in a wireless environment.

1. Introduction
Streaming data could be data items that can be in rela-
tional database, XML messages, log records of systems,
networks, or webpage visits, sensor data, and so on. They
come from many sources to special databases to serve end
users through LAN, wireless, internet. Particularly, those
data arrive as streams continuously in numerous, quick,
possibly uncontrollable and unlimited way. As a result,
streaming data appears to introduce some new research
problems. Several applications only create data streams
instead of data sets, such as financial indices, activities in
network monitoring and traffic management, log records
or clicks, views in web tracking and data feeds from sensor
networks, and others.

A Data-Stream Management System (DSMS) must be
a computer software that maintains and manages continu-
ous queries of data in streams. A continuous query has to
keep executing over time whenever the stream receives
new data. Thus, the results of the continuous query are

up-to-date in nearly real time. There are some data-stream
management systems include Spark Streaming, Hadoop
Streaming, Microsoft StreamInsight, Microsoft Biztalk,
IBM InfoSphere.

In contrast to traditional queries of which the results
are fetched just one time for completion on the current data
sets, continuous queries are continuously executing to have
the result of them up-to-date over the streaming database.
In applications, continuous queries can be used to monitor
traffic network behavior in order to detect anomalies such
as hardware errors, attacks from hackers); In BI (Business
Intelligent) applications, continuous queries can be used to
monitor KPIs, performance of business system and alarm
abnormal signals. In LBS (Location Based Services) appli-
cations, continuous queries can be used to monitor mobile
objects/users moving in static areas or moving areas. These
applications are all in need of continuous queries for users
who require real-time updated answers in continuous way
to make decisions. It is impossible for traditional queries to
work on rapid data streams. In this paper, our applications

Continuous Queries for Streaming Data of Mobile Objects

Indian Journal of Science and TechnologyVol 9 (16) | April 2016 | www.indjst.org 2

is to be applied that LBS applications use GPS (Global
Positioning System) to locate outdoor objects and IPS
(Indoor Positioning System) to locate indoor objects.

There are many methods proposed for manag-
ing continuous queries of mobile/moving objects with
assumption that every object carries mobile devices such
as smart phones. Within our application domain, the
objects only generate new-value events without modify-
ing, deleting events. Thus, an application’s major research
issue is how to efficiently manage massive amounts of
mobile objects. As objects are continuously moving, the
query results also may continuously change and require
continuous communication between objects and a sys-
tem. The challenges are as follows:

• First, the constant transmission between mobile
objects and a database server can not only cause
an overhead communication but also quickly
make the mobile battery power exhausted.

• Second, when the number of mobile devices is
very large, that excessively manipulating contin-
uous queries to be updated possibly overwhelm
the database system.

• Third, there may be diversity of continuous que-
ries, either stationary or moving, either current
or future and so on.

Greedy to address most of the above challenges, in
this paper, we propose an efficient method that can gain
results of continuous queries in efficient and speedy way.
Our method has the properties as follows:

• To reduce the number of transmission, the
method takes advantage of motion function data
for moving objects. This kind of data does not
require too many location updates from users
and gives a database server many chances to
work off line.

• To accelerate continuous query revaluating per-
formance, we deploy indices together with linked
data structures in main memory. As a result, our
method can help a service server less depen-
dent on the connection between the server and
mobile devices and improve query performance.

• To deploy various types of continuous query that
includes stationary (range) queries, moving que-
ries, current and future anticipated queries.

In the rest of this paper, we reviews some related
works on continuous queries in section 2. Then, we pres-
ent our proposed method in section 3. Section 4 shows
our experimental results. We conclude our method in
section 5.

2. Related Works
Recently, motivated by LBSs, processing Continuous
(range) Query (CQ) over moving objects has been a hot
topic instead of processing (traditional) snapshot queries,
which retrieves their results only once during their life
cycle. CQs for mobile objects assume that those objects
continuously send new locations to the server via wire-
less connections, and the server stores and updates all the
results of the active queries immediately. However, in case
the number of CQs as well as objects becomes enormous,
the system can be overloaded because it possibly has to
re-calculate all CQs for new results and the wireless net-
work can get jam due to overwhelming communication.
Thus, many methods have been proposed for processing
a continuous query as well as a large number of queries
efficiently.

The papers1,2 are with the validity of the results
approach. With each query answer, the server returns a
valid region1 or a valid time2 of the answer. The valid time
and the valid region indicate the temporal and the spa-
tial validity of the returned answer, respectively. Once the
valid time is expired or the client goes out of the valid
region, the client resubmits the continuous query for
complete reevaluation. The papers3,4 are with the results
caching approach. The main idea is to resubmit the con-
tinuous query every fixed time interval T. The recent
query result is cached either in the client side3 or in the
server side4. Upon resubmission, the previously cached
results are used to prune the search for the new results of
k-nearest-neighbor queries3 and range queries4.

To avoid redundant location-update reports from
each moving object, the safe region method was proposed
in5. Similarly, MQM6 was proposed to aim to reduce the
communication cost and the server workload by allow-
ing moving objects to be able to estimate their effect on
the CQ’s results through the concept of resident domain,
containing current location of an object. SPQI7 was pro-
posed to index query regions instead of monitor regions
in MQM. However, a moving object must know other
queries through which it may go and use this information

Hoang Do Thanh Tung

Indian Journal of Science and Technology 3Vol 9 (16) | April 2016 | www.indjst.org

to evaluate and inform a server whether or not it moves
to other queries. In the worst case, there are a lot of CQs
active in the server, changing overtime. That requires
large computing in mobile devices and heavy burden on
the network.

The above methods can’t support moving range que-
ries. They either support very specific continuous queries
or focus on processing a continuous query at a time. They
do not deal with the problem of a large number of que-
ries that is more meaning than the dealing with just one
query. Q-index8 is to manage a large number of continu-
ous queries as a data. the Q-index uses an R-tree index
structure to manage CQs. Whenever any moving object
has a new location, the object will probe the Q-index to
find the queries to which the object should belong. The
Q-index has two disadvantages: (1) it supports only point
represented data of which updates trigger reevaluation for
queries; (2) It is applicable only for stationary queries. The
work9 assumed that trajectories of moving objects may be
known in advance. It made Grid indices for objects and
queries. The disadvantage of this method is that a CQ
also must know object’s trajectories/moving functions.
As a result, at every time t, the CQ has to re-calculate all
objects whether or not still inside it in order to request
updates on a server. This work is not necessary because an
object and a query only intersect each other only a certain
period of time. Moreover, it is not easy to know future
trajectories of objects.

3. Proposed Method
In this paper, we focus on an approach to manage high
amount of continuous queries efficiently, reducing redun-
dant updates on active CQs, heavy communication
burden between mobile objects and a database system.
Our approach is to use two HTPR-tree indices10 that
manage data of mobile objects and continuous queries,
respectively. In particular, we propose In-memory struc-
tures that keep results of queries up-to-date when objects
are moving, new objects or continuous queries are arriv-
ing, efficiently. Based on them, we have designed update
algorithms with substantially lower costs than the most
general case for an update.

Our contributions are as follows:

• We assume moving object’s motion functions
are known. With our approach, the method can

support several types of continuous queries,
including moving continuous queries.

• We use a combination of indices with In-memory
structures for efficiently managing relationship
between objects and queries. This reduces query
update and communication cost significantly.

In this paper, we assume that the moving objects
are moving in a two/three-dimensional plane. For each
object o, a motion function fo is associated. Normally,
the current position of each object has to be transmit-
ted whenever the object changes its position to update
the related CQs in the system. In our approach, only the
change of an object’s velocity (direction and speed) is in
need of transmission. We assume that entire of streaming
data and computation for result sets of continuous que-
ries are stored and processed on a server side.

The basic idea of our method is that while objects are
moving, there is not any query-update request from the
objects if none of them change their velocities. Therefore,
we need a mechanism to update CQs automatically even
when they don’t receive any request from any object.
Because we don’t want mobile objects to consume their
energy to compute like MQM6, the server has to keep
track of both, the moving objects and the continuous que-
ries. Now, we should consider some following scenarios
in which CQs has to be updated automatically even when
there is no update request form moving objects by chang-
ing their velocities.

(1) First, a new continuous query arrives and the
query result has to be computed from all current
objects.

(2) Second, a new object arrives or go out of (is
removed from) the plane, then continuous queries
need checking the object whether become in their
results or not.

(3) Third, the most generally frequent case, changes of
the positions of some mobile objects can change
the result of some continuous queries when they
move in or out the query region.

In our approach, we use two independent indices to
manage (1) and (2). Objects and queries are managed
by HTPR-tree indices, respectively. We use two linked
data structures to manage (3). The first structure is used
for keeps track of all objects moving among CQs in the
future. The second structure is used for the current result

Continuous Queries for Streaming Data of Mobile Objects

Indian Journal of Science and TechnologyVol 9 (16) | April 2016 | www.indjst.org 4

of all continuous queries. These simple data structures
will automatically generate query update requests as well
as re-compute several CQs when some moving objects
move in/out any query. With this approach, we expect
that the costs for update operations can be kept rather
low. Additionally, mobile objects don’t need spending
power on storing query data, computing CQs as well as
communicating to a server to update CQs.

In the following sub sessions, we present our proposed
algorithm to manage continuous queries completely in
main memory. Therefore, we have to assume that the
main memory of a server stores entire the data needed
for the method. Technically, the data consists of only
moving objects related to queries and query’s results so
that it is feasible to deploy our method for real applica-
tions. Because we just apply the algorithms of HTPR-tree
to index objects and queries, we will not introduce the
HTPR-tree algorithms in this paper. Instead, we present
the method’s data structures and related algorithms that
we propose.

3.1 In Main Memory Structure
Different from the managing data of current positions
as points, the managing data of motion functions can-
not take the advantage of position-updated events from
users in order to trigger re-evaluating continuous que-
ries active in server. In other words, in a database server
managing motion functions, the position changes that
impact query’s results does not alert the server to re-eval-
uate continuous queries active in it without the change of
velocities. Because of the difference, we employ two main
memory structures to manage continuous queries as fol-
lows:

• Self-triggering structure is linked-list data
stored in main memory. We call it outerQ(ueries).
It stores all moving objects that are going to enter
any queries at any time after now as potential
objects. It is used at every timestamp to detect
new results for the active continuous queries.
The purpose of this structure is to trigger updates
on the continuous queries. Its data is an object
linked list of (Oid, mint, maxt, queries_list)
records in which Oid is an potential object’s iden-
tifier; mint is the earliest time when the object
enters any query in queries_list; maxt is the latest

time when the object enters any query; queries_
list is a query linked-list of (Qid, int, outt) records
in which Qid is a query’s identifier; int/outt is the
time when the object Oid enters/goes out the
query Qid. Figure 1 is a visual picture of self-trig-
gering structure. It shows that each node of an
object Oid is connected to a list of queries which
the object is going to intersect during an interval
[int, outt]. The figure also shows that the object
list is sorted by Oid and the query list is sorted
by {int, outt}. The sorting minimizes inspection
processing time in following algorithms.

• Queries-result structure is a main memory
array that keeps all results of all continuous que-
ries valid until now or the future. We called it
innerQ(ueries). Its data is a query linked list of
(Qid, mint, Objects-list) recodes in which Qid is a
query’s identifier; mint is the earliest time when
any object goes out the query; Objects-list is an
object linked list of (Oid, outt) records as the
query’s result in which Oid is an object’s iden-
tifier; outt is the time when the object goes out
the query. Figure 2 is a visual picture of Queries
result structure. It shows that each node of a
query Qid is connected to a list of objects that
already stay inside the query until a time outt.
The figure also shows that the query list is sorted
by Qid and the object list is sorted by time outt.
The sorting minimizes inspection processing
time in following algorithms.

We keep innerQ and outerQ entirely in main memory.
In case the number of potential objects is too large, we can
improve the speed of inspecting potential objects in out-
erQ by simply organizing outerQ as a binary-tree of Oid.

3.2 The Method Algorithms
Given a set of active continuous queries, the work of our
algorithms is composed of two main steps, first setting up
data for outerQ and innerQ structures that are needed to
re-evaluate the queries at subsequent timestamps by using
an Initial-conQuery Algorithm, secondly using those
structures to re-evaluate the queries without disk accesses
while time are running by using a conQuery Algorithm.
The former work needs repeating every after a long time
period but the second need repeating at every timestamp.

Hoang Do Thanh Tung

Indian Journal of Science and Technology 5Vol 9 (16) | April 2016 | www.indjst.org

3.2.1 Initial-conQuery Algorithm
Given a number of continuous queries, we first scan the
HTPR-tree to gain results in which objects already are
inside the queries, and anticipated future (or potential)
results in which objects potentially can intersect the que-
ries in the future. To limit the cost of collecting the results,
we employ an until_t time parameter. After until_t, we
have to re-do this algorithm again in order to calculate
further results. The value of until_t depends on a specific
situation. Figure 3 shows a process in which we have a
number of queries inspect/scan a HTPR-tree. At leaf
nodes, every query is measured with objects to calculate
int and outt, int is the time an object enters a rectangle
and outt is the time the object goes out the rectangle. We
can find the algorithm to calculate an interval of an inter-
section between a moving object and a moving query
in10. In this algorithm, after inspecting the HTPR-tree,
the rest work is simply to deliver the results to innerQ and
the potential results to outerQ.

3.2.2 conQuery Algorithm
This algorithm operates at every timestamp to update
query’s results that are active in a database server. Using
this algorithm, a system can inform a user new objects
that need adding to or obsolete objects that need deleting
form his/her query. Thank to that, the system can avoid
re-sending entire content of the query to the user at every
timestamp.

In this algorithm, we have to deal with two important
situations. The first situation is when a database server
receives a change from a moving object. Thus, an update
occurs and invokes the server to process it. Our queries do

not wait to be updated until the secondary storage of the
server is updated as usual. The algorithm deals with the
new change by itself. The Figure 4 shows the process used
for the situation. The process mainly takes three steps. At
first, because the object change its state (velocities), the
algorithm fetch the object in outerQ and delete it as well
as its query list from outerQ. At second, the algorithm
inspects all queries in innerQ except their object lists
in order to calculate intervals (int, outt) of intersections
between the new state of the object as long as all con-
tinuous queries still active. At third, after calculating the
intervals and updating queries in innerQ, the algorithm
inserts the object as well as its query list into outerQ. The
system can use this information to send {Q, +O} or {Q,
-O} to each user of the queries. +O means the object O
needs adding; -O means the object O needs deleting.

The second situation is that the server does not receive
any velocity-update from objects. Despite that, some con-
tinuous queries still possibly change their results because
objects are changing their positions. In this case, the
algorithm has to trigger updating query results by itself.
Figure 4 shows the process used for this situation. The
process is composed of two periods. The first period is to
find new objects that entered any query already at a time
t. Given a time t, this work inspects objects in outerQ. If
any object has mint less than t, the object must be inside
any query in its query list and the work will dig down the
query list to find out those queries. Searching the queries
containing the object at t is very quick because the query
lists are all sorted by {int, out}, thereby stopping as soon
as meeting either a query with int greater than t or an
object with mint greater than t. The other parameters outt
and maxt are used to check whether or not an object goes

Figure 1. Self-triggering Structure, outerQ. Figure 2. Queries result Structure, innerQ.

Continuous Queries for Streaming Data of Mobile Objects

Indian Journal of Science and TechnologyVol 9 (16) | April 2016 | www.indjst.org 6

out a query. In other words, “maxt < t” means the object
goes out all queries and “outt < t” means the object only
goes out the query. If new objects are found in outerQ,
the objects will be deleted from outerQ and added into
innerQ. The system can use this information to send {Q,
+{O1,O2, .., Ok} } to each user of the queries.

The second period is to find obsolete objects that went
out of any query already at t. The work inspects all que-
ries in innerQ. If meeting a query that has mint less than
t, there must be any object in its object list that has gone
already, the work will dig down the object list to find out
those objects. Searching obsolete objects at t is very quick
because the object lists are all sorted by outt, thereby stop-
ping as soon as meeting either a query with mint greater
or equal to t or an object with outt greater or equal to t.
if obsolete objects are found in innerQ, the objects will
be deleted from inner Q forever. The system can use this
information to send {Q, -{O1,O2, .., Ok} } to each user of
the queries.

4. Experiments
We built up entire data structures in main memory.
Besides that, we used a fundamental index to support ini-
tial-conQuery algorithm in fetching result and potential
objects. The index is HTPR-tree10. The disk page size is set
to 1k bytes, and the maximum number of entries in a node
is 27 for all indexes. Our goal is to compare (continuous
query + update) performance between our method and
a similar method, Q-index8. However, because Q-index
doesn’t index on motion-function data, we have to change
its algorithms to index motion-function data by replac-
ing Rtree with TPR-tree, we call TPR-Q index.

We use a real spatial dataset LA11 to initiate posi-
tions and directions of MOs at timestamp 0. We assume
that mobile cars/objects randomly distributed in 2d area
where each axis of the area is normalized to [0, 10.000
meters]. Then, every object is associated with a VBR
such that (a) object does not change spatial extents dur-
ing its movement, (b) every car can run at most of about
90km/h, velocity can be positive or negative as two oppo-
site directions with equal probability. A time unit is 3
seconds. At each time unit, every object can randomly
change its speed, direction if it reaches an intersection, or
even nothing.

Each query q has three parameters: qRlen, qVlen, and
qTlen, such that (a) its MBR qR is a spare, with length

qRlen, uniformly generated in the data space, (b) its VBR
is qV = { -qVlen, qVlen, -qVlen, qVlen }, (c) its query interval
is qT = [0, qTlen]. Query cost is measured as the average
number of CPU clock ticks

4.1 Comparing Performance at different
timestamps Performance of Continuous
Moving Range Queries
In these experiments, we examined 200 continuous mov-
ing range queries with properties: spatial extents of the
queries qRlen = {100,100}; velocities of the queries qVlen
= {-10, 10, -10, 10} that means our queries run about
12km/h on a direction. However, because we let the que-
ries run on all directions, the speed of their enlargement
was about 24km/h. the positions of those queries were

Figure 3. Object Update Processing.

Figure 4. Query Update Processing.

Hoang Do Thanh Tung

Indian Journal of Science and Technology 7Vol 9 (16) | April 2016 | www.indjst.org

randomly located on the terrain. Th e horizon time to re-
set up our data structures periodically was 10. We made
two experiments: one was running the continuous que-
ries without interruption of updates, in other words, we
assumed the database server was running off line from
moving objects, see Figure 5; the other was the running
continuous queries but at every timestamp, they were
interrupted by 1000 updates from moving objects. In
other words, we assumed the database server was run-
ning on line with moving objects, see Figure 6. Figure 5
shows performance of queries running from timestamp
7 to timestamp 8 continuously. At timestamp 7, the per-
formance of conQ (our method’s continuous queries) is

Figure 5. Without object updates, work off line. Figure 6. 1000 updates at every t, work online.

lower than that of TPR-Q (TPR-tree’s continuous que-
ries) because we get total cost of setting up our structure
data and querying data. Nevertheless, at the other time-
stamps, conQ’s performance is much higher than TPR-Q’s
because the TPR-tree has to re-evaluate all queries at
every timestamp. Th erefore, if we compare total cost of
running continuous queries during 10 timestamps, conQ
will spends about 2 seconds; meanwhile TPR-tree will
spends about 10 seconds.

Figure 6 also shows the performance of queries run-
ning from timestamp 7 to timestamp 8 continuously.
However, in this experiment, the continuous queries have
to be updated on not only by objects that are linearly mov-

ing but also by objects that have changed their velocities,
directions or speeds. Because TPR-Q’s continuous queries
have to wait until the database server fi nishes processing
1000 updates, the total cost to re-gain results of TPR-Q
is very high. Figure 6 shows that even at timestamp 7,
the performance of TPR-Q is worse than that of conQ.
From timestamp 9 to 10, the cost of TPR-Q performance
is higher than 3 seconds that means the results of those
queries are really obsolete for the users of those queries at
time they receive.

4.2 Performance of Continuous Stationary
Range Queries
In these experiments, we examined 200 continuous sta-
tionary range queries with properties: spatial extents of
the queries qRlen = {100,100}. Th ose range queries would
be stationary just like crossroads. Th e positions of those
queries were randomly located on the terrain. Th e hori-
zon time to re-set up our data structures periodically was
10. We also made two experiments: one was running the

continuous queries without interruption of updates, in
other words, we assumed the database server was running
off line from moving objects, see Figure 7; the other was
running continuous queries but at every timestamp, they
were interrupted by 1000 updates from moving objects.
In other words, we assumed the database server was run-
ning on line with moving objects, see Figure 8. Figure 7
shows performance of queries running from timestamp
7 to timestamp 8 continuously. At timestamp 7, the per-
formance of conQ (our method’s continuous queries) is
lower than that of TPR-Q (TPR-tree’s continuous que-
ries). However, in this experiment, the cost of conQ
is not substantially higher than that of TPR-Q. At the
other timestamps, conQ’s performance is much higher
than TPR-Q’s. In spite of that, total cost of conQ in run-
ning continuous queries during 10 timestamps is much
cheaper than that of TPR-Q.

Figure 8 also shows the performance of queries run-
ning from timestamp 7 to timestamp 8 continuously.
However, in this experiment, the continuous queries
have to be updated on not only by objects that are lin-

Continuous Queries for Streaming Data of Mobile Objects

Indian Journal of Science and TechnologyVol 9 (16) | April 2016 | www.indjst.org 8

early moving but also by objects that have changed their
velocities, directions or speeds. Because TPR-Q’s continu-
ous queries have to wait until the database server fi nishes
processing 1000 updates, the total cost to re-gain results
of TPR-Q is very high. Figure 8 shows that even at time-
stamp 7, the performance of TPR-Q is worse than that
of conQ. Especially, in this experiment, at all timestamps
7, 8, 9, and 10, the cost of TPR-Q performance is always
higher than 3 seconds that means the results of those que-
ries make no sense for the users of those queries at time
they receive at all.

5. Conclusions
By building up main memory structures to manage con-
tinuous queries and taking advantage of data indexes like
the HTPR-tree to manage object movements, our pro-
posed method has some advantages as follows

• Low Communication Cost: our data is of motion
functions so that a small number of updates
occurs over time. Without updates, our method
still gains new results of continuous queries off -
line from moving objects. Moreover, if a query
has some changes, only changes need transmit-
ting to its users.

• Low Query cost: continuous queries don’t need
to re-access the based index on disk to gain new
results every time. By using two main memory
structures, updating queries is very fast.

• Dynamically Operating: Diff erent from the most
of others, our method spends low cost for new
coming queries and objects. It supports variety
of continuous queries.

Figure 7. Without object updates, work off line. Figure 7. 1000 updates at every t, work online.

In our knowledge, this is the fi rst method manag-
ing continuous queries on motion functions data in
main memory. We hope this method to be useful for real
applications such as traffi c systems. Nevertheless, in this
method, storing potential objects can make us rather dif-
fi cult to estimate main memory occupation, although
we think that the occupation is almost less than that of
Q-index, which stores all safe regions of all objects.

6. Acknowledgment
Th is paper is supported by project VAST01.09/14-15,
Vietnam Academy of Science and Technology (VAST),
Hanoi, Vietnam.

7. References
1. Zhang J, Zhu M, Papadias D, Tao Y, Lee DL. Address based

Spatial Queries. Proceedings of the ACM International
Conference on Management of Data, SIGMOD, San Diego,
CA. 2003 Jun. p. 443–54.

2. Zheng B, Lee DL. Semantic Caching in Location-Dependent
Query Processing. Proceedings of the International
Symposium on Advances in Spatial and Temporal
Databases, SSTD, Redondo Beach, CA. 2001 Jul; 97–116.

3. Song Z, Roussopoulos N. K-Nearest Neighbor Search for
Moving Query Point. Proceedings of the International
Symposium on Advances in Spatial and Temporal
Databases, SSTD, Redondo Beach, CA. 2001 Jul; 79–96.

4. Lazaridis I, Porkaew K, Mehrotra S. Dynamic Queries
over Mobile Objects. Proceedings of the International
Conference on Extending Database Technology, EDBT,
Prague, Czech Republic. 2002 Mar. p. 269–86.

Hoang Do Thanh Tung

Indian Journal of Science and Technology 9Vol 9 (16) | April 2016 | www.indjst.org

5. Saltenis S, Jensen CS, Leutenegger ST, Lopez MA. Indexing
the Positions of Continuously Moving Objects. Proceedings
of SIGMOD, NY, USA. 2000 Jun; 331–42.

6. Cai Y, Hua KA, Cao G, Xu T. Real-
time processing of range-monitoring
queries in heterogeneous mobile databases. Journal of IEEE
Transactions on Mobile Computing. 2006 Jul; 931–42.

7. Jung H, Kim Y-S, Chung YD. SPQI: An Efficient Index
for Continuous Range Queries in Mobile Environments.
Journal of Information Science and Engineering. 2013 May;
557–68.

8. Prabhakar S, Xia Y, Kalashnikov DV, Aref WG, Hambrusch
SE. Query Indexing and Velocity Constrained Indexing:
Scalable Techniques for Continuous Queries on Moving
Objects. Journal of IEEE Transaction on Computers. 2002
Oct; 1124–40.

9. Schmiegelt P, Seeger B, Behrend A, Koch W.
Continuous queries on trajectories of moving objects.
Proceedings of the 16th International Database Engineering
and Applications, NY, USA. 2012; 165–74.

10. Tung HDT, Jung YJ, Lee EJ, Ryu KH. Moving Point Indexing
for Future Location Query. Proceedings of the International
Workshop on Conceptual Modeling for GIS, 23th ER2004
conference, Shanghai, China. 2004 Nov; 79–90.

11. Datasets at Available from: Http://www.census.gov/geo/
www/tiger/. Date accessed: 01/12/2015

12. Li X, Karras P, Shi L, Tan K-L, Jensen CS.
Cooperative Scalable Moving Continuous Query
Processing.Proceedings of IEEE 13th International
Conference on Mobile Data Management, Bengaluru,
India. 2012 Jul. p. 69–78.

