
Abstract
The paper is mainly concerned with the existence and uniqueness of solution for a class of Cauchy initial value problem 
of fractional order with impulses and infinite delay. The criteria on existences and uniqueness are obtained via successive 
approximation and solution operator. Finally an example is given to support our main result. 
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1.  Introduction 
During the last decades, fractional calculus has been 
blossomed and grown in pure mathematics as well as sci-
entific applications. But to classify fractional calculus as a 
young science would be utterly wrong. In fact, the origin 
of fractional calculus is a far back as classical itself. On the 
other hand today’s mathematical topics which fall under the 
class of fractional calculus are far from being the “Calculus 
of fractions” as one might suspect by the notation itself. 
Instead, integration and differentiation of an arbitrary order 
would be a better notation for the field of fractional calcu-
lus as it is understood today. See1-5 and reference therein.

In recent years many researchers and scientists have 
been attracted with the topics related to the existence 
results for fractional differential systems with delay and 
impulses. (See6-8 and references therein).

Motivated by some recent works, we consider the fol-
lowing fractional impulsive differential equations with 
infinite delay.
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Where DC
q  is the Caputo fractional derivative of order,  

0<q<1, 0 = t0<t1<t2<….. <tm< tm+1 = T, f ∈ ([0,T] × 
R, R)and Ik ∈  (R, R) are given functions satisfy-
ing some assumptions that will be specified later. 
∆x t x t x t x tk k k k( ) ( ) ( ), ( )= −+ − +  and x tk( )-  represents 
the right and left limits of x (t) at t = tk respectively, and 
they satisfy that x t xk k( ) ( )− = t . Now define 

	 x x tt ( ) = ( + ), ∈(∞ ]q q q , .0 �

Here xt, represents the history of the state up to present 
time t.

Further, the construction of paper is in following way. 
In section 2, we give some preliminaries. In Section 3, we 
study the existence and uniqueness of mild solutions for 
the problem (1). At last an example is given to demon-
strate the applicability of results in Section 4.

2.  Preliminaries
In this section we recall some basic facts, definitions and 
propositions of fractional calculus which will be needed 
in the paper. (See9,10).
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Definition 2.1. (See11,12). “The fractional integral of order q 
with the lower limit zero for a function f is defined as 
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Where Γ is the gamma function.”

Definition 2.2. (See11,12). “The Riemann-Liouville deriva-
tive of order q with the lower limit zero for a function f is 
defined as: 
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Definition 2.3. (See11,12). “The Caputo derivative of order q 
with the lower limit zero for a functions f is defined as 
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Let J = [0,T] and J’ = J \ {t1, t2, …tm}. We denote  
(J) = {u : [0,T] → R | u ∈  (J, ), and u tk( )-  exists and 
u t u t k mk k( ) ( ), , ,...., }- = = 1 2 . Obviously  (J) is a 

Banach space with the norm || || | ( ) | ."supu u tt J= ∈

Lemma 2.4. According to X. Zhang (See13), we give fol-
lowing Lemma:

“Assume that y ∈  ([0,T], ) then a function x ∈ PC 
(J) is a solution of Cauchy problem 
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Iff x satisfies following equation
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Proof. Assume that x satisfies the integral equation (3). 
We have φ (0) = 0 and 
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Which shows that for t ∊ (t2,t3].
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By iteration, the solution x(t) for t ∊ (tk, tk+1] can be 
written as 
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Conversely, if x is a solution of problem (1), then it can 
be easily seen by direct computation, that Dq x(t) = y (t), t 
≠ tk, t ∊ [0,T] and Δx(t) = x tk( )+  – x tk( )+  = Ik (x(tk))where
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In this way the proof of the Lemma is completed”.

3.  Main Results 
Firstly, set 0 = {z | z ∊  ([0, T], R), z(0) = 0}. For each  
z ∊ 0, we denote by z the function defined by 

	 z t z t t T and z t t( ) ( ), , ( ) , .= ≤ ≤ = − ∞ ≤ ≤0 0 0 � (4)

If x is solution of (1), then x (.) can be decomposed 
as x(t) = z (t) + ϕ(t) for – ∞ ≤ t ≤ T, which implies that  
xt = z t + ϕt for 0 ≤ t ≤ T, where

	 ϕ = ≤ ≤ ϕ = ϕ − ∞ ≤ ≤( ) , , ( ) ( ), .t t T and t t t0 0 0 � (5)
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Therefore, the problem (1) can be transformed into the 
following fixed point problem of the operator F : 0→R,
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Now, let us present our main result.

Theorem 3.1. For the functions f ∈  ([0,T] × , ) and  
Ik :  → , assume the following conditions hold.
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(H4) � There exists a constant M > 0 such that |f(t,φt)| ≤M, 

where φ is defined in (5).

Proof. We complete the proof, via method of successive 
approximations. Define a sequence of functions zn : [0,T] 
→ , n = 0,1,2,…. as follows:
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which implies that ||zn – zn-1|| ≤ N ||zn-1 – zn-2|| with N < 1. 
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If m,n are sufficiently large numbers then it follows 
form the above inequalities with N < 1 that ||zm-zn|| → 0. 
Thus {zn(t)} is a Cauchy sequence in (J). Since (J) 
is a complete Banach space, then ||zn-z|| → 0 as n→∞ for 
some z ∈ (J), which means the zn(t) is uniformly con-
vergent to z(t) with respect to t. 
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Thus, as per convergence of the two previous and 
equations (10)-(12), one obtains that |z(t) – Fz(t)| → 0, 
which implies that z is a solution of (1).

Finally, we prove the uniqueness of the solution. Assume 
that z1,z2 :[0,T]→ R are two solution of (1) , Note that 
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According to the condition (H3), the uniqueness of 
the problem (1) follows immediately, which completes 
the proof.

4. An Example
In this section we give an example to illustrate the above 
results. Consider the following impulsive partial hyper-
bolic fractional differential equations with infinite delay.
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It is clear that the functions f and I are continuous. 
Now we have.
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Where a(t) = 
1

10
 So the condition (H1) of Theorem 3.1 is 

satisfied. Also we have
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Where L = 
1
4

. So the condition (H2) is also satisfied. Now 
it is easy to conclude
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Thus, the equation (4) satisfies all the conditions given 
in Theorem 3.1, which implies that the (13) has a unique 
solution.

5.  Conclusion
In this paper, existence and uniqueness for a class of 
Cauchy initial value problem with impulses and infinite 
delay is discusses. A better and simple method is set to get 
criteria of existence and uniqueness of the solution to such 
problems by using successive approximation. Such type of 
equations arise in real world phenomena like oscillation 
with discontinuities, etc. One can deduce slightly differ-
ent results by taking different time variables.
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