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1.  Introduction

Recently, in the study of statistical methodology, many 
authors have studied the characterization of Gompertz 
distribution. The Gompertz distribution is applied in 
various fields such as actuarial science, epidemiological 
and biomedical studies. Many methods have been 
implemented for estimating the parameters of the 
Gompertz distribution such as maximum likelihood 
method1, least square method2 etc. Also recently, research 
studies have been developed in which a combination 
of Fuzzy Set Theory and Statistics has been established 
with different purposes. Dual fuzzy systems approach 
has been already used to approximate nonnegative 
symmetric solution of some dual fuzzy linear system of 
equations3. To improve the stability function, Hybrid 
Fuzzy Jordan Network method has been introduced4. 
Refined Asymmetric Classifier Fuzzy Keyword Search is 
another new scheme used5. Fuzzy Bayesian approach is 
implemented to enrich the probability updating process 
with fuzzy facts. In this paper, different methods of 

estimation are discussed to estimate the parameters of 
Gompertz distribution when the available data are in the 
form of fuzzy numbers. 

2.  Gompertz Distribution

A random variable X is said to possess a Gompertz 
distribution if it has the following form:

( ) where b > 0 and  >0
bxb x ef x b e e e hhh h-=      (1)

3.   Fuzzy Data and the Likelihood 
Function

If an evidence e, has n fuzzy values, e1, e2, ..., ..., en, the 
likelihood p(ei|Hj) is computed as

( / ) ( ) ( / )
ii j e jp e H x f x H dxm= ò

where f ( x / Hj ) density function. The posterior probability 
is:
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Suppose that X1...Xn is a random sample of size ‘n’ 
from Gompertz distribution with pdf given by Equation 
(1). Let X =... (X1...Xn)denote the corresponding random 
vector. If a realization x = (x1...xn) of  X was known exactly, 
we can obtain the complete data likelihood function as 

( ) 1( , , ) , , , 0
b xin b x eL x b b e e x bhhh h h- åå= >

Now suppose that x  is not observed precisely and 
only partial information is available in the form of a 
fuzzy subset x  with the membership function ( )x xm



7. 
This information can be encoded as a trapezoidal fuzzy 
number ix . For trapezoidal membership functions, the 
trapezoidal fuzzy can be defined as ( , , , )x a b c d= and its 
membership function can be defined as 
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Assuming the joint membership function ( )x xm


, the 
likelihood can be written as
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4.  Bayesian Estimation

In this section, let us assume bivariate prior distribution 
of the parameters α and β, to obtain the posterior 
distribution.

The bivariate prior distribution of the Gamma and 
Log normal priors is given by
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Hence the Posterior distribution based on the above 
priors is
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The Bayesian estimation for the above expression 
is obtained by different methods of approximation as 
detailed below.

5.  The Loss Functions

In Bayesian outlook the loss functions play an important 
role. Many authors use the symmetric loss function and 
obtain the posterior mean as the Bayesian estimate8. In 
this section we use both the types of loss functions to 
obtain the posterior mean.

5.1 Asymmetric Loss Functions

5.1.1 Linear Exponential (LINEX) Loss Function
In Linear Exponential (LINEX) loss function the Bayes 
estimator of θ, is given as 1ˆ ln [exp( )]L E a

a qq q=- - provided 
that Eθ [exp(-aθ)] exists and is finite9. The Bayes estimator 
is given as 

[exp( ),exp( )] ( , )
ˆ [exp( ),exp( )/ ]
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      (2)
The above integral can be approximated using Linley’s 

approximation procedure 
Lindley’s expansion can be approximated 

asymptotically by
2 2
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where L is the log- likelihood function,  and the estimated 
value is given by
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5.1.2 Entropy Loss Function
The Bayes estimator for the Entrophy loss function 
(ENLF) is
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Similar Lindley approach is used for the general 
entropy loss function as in the LINEX loss and the 
estimated value is given by
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5.1.3 Squared Error Loss Function
The squared error loss function is symmetric in nature. 
The Bayes estimator of a function ( , )u u b h=  under squared 
error loss function is the posterior mean.
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The same Lindley approach is used to find the 
estimated value. 

Also to evaluate the integrals in Equation (4) for SELF, 
the Tierney and Kadane (TK) estimation10 is used in the 
following form:
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6.  Numerical Data Analysis

To exemplify the application of the methods of estimation 
developed above we consider the set of data reported by 
NTBC from 2009 to 2011. The report provides district 
wise suspected TB cases and the smear positive TB cases. 

In Tamil Nadu state of India there are 30 states. The TB 
patients of each state from the year 2009 to 2011 are 
taken for the study. Each realization of x for the years 
2009, 2010 and 2011 was made fuzzy using the following 
membership functions.
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       (7)
In analysing the complete data and applying the 

different methods as given above, the estimates using the 
maximum likelihood estimation and Bayes’ estimators 
of the parameters of the Gompertz model are studied 
for different loss functions under bivariate priors. From 
Table 1, the loss function LINEX loss function has lesser 
Bayes posterior risk than other loss functions and can be 
considered as the better loss function than the other loss 
functions. 
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7.  Simulation Study

Simulation is employed to examine the performance of a 
different field of study. Here, a simulation criterion is used 
and the Bayes estimates are calculated under different loss 
functions along with the bivariate gamma and log-normal 
prior. The simulation was carried out for sample sizesn 
= 50, 75, 100, 200 and 500. The comparison of Bayes 
posterior risk under different loss functions the bivariate 
prior has been made. From Table 2 we can conclude that 
LINEX loss function is more preferable as compared to 
all other loss functions which are provided here because 
under this loss function Bayes posterior risk is small.

8.  Conclusion

In this study ‘Fuzzy Bayesian Inference for Gompertz 
Distribution’, different estimation procedures for the 
Gompertz distribution were obtained when the data 
obtained are fuzzy numbers. Different types of loss 
functions both symmetric and asymmetric were used for 
estimating the posterior risk for the data of TB affected 
people of Tamil Nadu state. Amongst loss functions, 
LINEX loss function is more preferable as compared to 
all other loss functions which are provided here because 
under this loss function Bayes posterior risk is small.

Table 1.    Posterior summary using the real data
YEAR α β μ σ SELF LINEX ELF

LA TK
2009 0.291 0.4768 0.5 0.6 0.712 0.935 0.232 0.345
2010 0.2496 0.29792 0.5 0.6 0.365 0.964 0.146 0.291
2011 0.2251 0.4381 0.5 0.6 0.765 0.9824 0.540 0.421

Table 2.    Bayes estimates under different loss functions for the 
years 2009, 2010 and 2011
Year n SELF LINEX ELF

LA TK

2009

50 0.595 0.892 0.212 0.452
75 0.452 0.855 0.247 0.245

100 0.419 0.851 0.211 0.237
200 0.392 0.752 0.204 0.403
500 0.388 0.754 0.192 0.543

2010

50 0.781 0.918 0.336 0.240
75 0.683 0.927 0.294 0.354

100 0.532 0.819 0.213 0.750
200 0.511 0.800 0.211 0.564
500 0.473 0.775 0.193 0.245

2011

50 0.517 0.781 0.249 0.173
75 0.428 0.683 0.221 0.547

100 0.417 0.532 0.189 0.553
200 0.298 0.511 0.184 0.521
500 0.161 0.473 0.179 0.594
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