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Abstract
Background/Objectives: Reconstruction of shapes from unorganized data points is a problem with lot of practical 
significance in which a piecewise linear approximation to the shape is computed from the sample of the unknown shape. 
Methods/Statistical Analysis: An approach based on reconstruction of curves by using the feature points as control 
points is presented. At the transmission end the curve is represented using the feature points and at the receiver side 
the reconstruction of curve is established by optimizing the parameters of a radial basis function (RBF) neural network. 
Findings: The method reduces the complexity in terms of time and space. In other words it reduces the informational 
complexity of the RBF network for the problem of curve reconstruction. It also allows for noise in the data by using the 
inherent capabilities of a RBF neural network. Applications/Improvements: Scenes generated by modeling and 
animation using multimedia techniques contain curves and surfaces and thus the presented approach is useful in efficient 
transmission of images and video sequences.

1. Introduction
Interpolation and curve fitting are the fundamental prob-
lems in many fields of computer graphics, multi-media 
applications and mathematical modelling. Storage, 
retrieval and transmission of all points on a curve require 
lot of space as well as time. Representing a curve using 
control points not only saves space but also leads to its 
systematic and mathematical representation. Apart 
from that it also reduces the bandwidth requirement for 
transmission which is a major bottleneck in wireless com-
munication. The purpose is to represent the curve with 
a minimum number of control points. Lot of research is 
being done to minimize the number of control points at 
the transmitter end and an efficient and accurate recon-
struction of the curve at the receiver end to reduce the 

bandwidth requirement. In this paper we have talked 
about an approach based on the reconstruction of curve 
using the extracted feature points at the transmitter end. 
We have used piecewise feature extraction of curves 
to find the control points of a given curve. The curve is 
reconstructed from the features by using an RBF neural 
network. The training set of RBF net is reduced to the set of 
feature points. So we have optimized the storage require-
ments of a curve by combining the capabilities of feature 
extraction and RBF neural networks. The approach is bet-
ter than the approach based on taking arbitrary points as 
control points because arbitrary points may not be able 
to capture the peaks and valleys of a curve or may not 
be able to handle high variations in the curvature of the 
curve. RBF network is used rather than the traditional 
curve fitting or interpolation techniques because then 



Indian Journal of Science and TechnologyVol 9 (28) | July 2016 | www.indjst.org 2

Piecewise Feature Extraction and Artificial Neural Networks: an Approach towards Curve Reconstruction

the curve is forced to lie in to a family of polynomial 
functions and also these methods fail completely in the 
presence of noise. RBF neural networks are considered 
to be an efficient tool for interpolation, curve fitting and 
function approximation leading to efficient modelling of 
curves and surfaces. A comprehensive survey of RBF neu-
ral networks for the solution of these problems is given 
in1,2. The problem of reconstruction of curves and surfaces 
has been solved in various ways using these networks. It 
has been concluded that RBF networks can approximate 
incomplete and noisy curves and surfaces. Also they are 
efficient in terms of learning speed and the accuracy of 
computations3,4. RBF networks perform better than back 
propagation and generalized regression neural networks 
as given in5. These networks are superior in terms of pre-
cision, error and convergence speed6.

There are other approaches to curve reconstruction 
which are based on the concepts computational geometry. 
These approaches make use of Delaunay Triangulations 
and their duals Voronnoi diagrams. The crust algorithm 
given in7, NN-crust in8, Conservative Crust in9 and 
Alplha shapes in10 are some of the benchmarks in the field 
of curve reconstruction. The drawback associated with 
these approaches is that they are not able to handle noise 
in the data and also in case of a dense sample the com-
plexity of these methods become very high. Moreover 
they assume certain sampling condition on the data for 
the curve reconstruction.

None of the approach used in literature is based on 
extracting the control points rather all the approaches are 
based on considering the arbitrary points thus incurring 
the complexity in terms of number of points and entire 
reconstruction process. Approach used in the current 
work is based on the extraction of features of the curve 
and then reconstruction is carried out with the extracted 
feature points using a RBF neural network. The features 
that are considered here are the features of a curve which 
are geometric invariant i.e. the features which are not 
affected by a particular group of transformations. The 
optimization is in terms of storage space and the learn-
ing process of RBF neural network. RBF neural networks 
have universal approximation properties. In order to 
obtain the results we need to solve a system of equations 
involving the training sample data. So, if the number of 
samples is large then it becomes hard to solve the equa-
tions and obtain the weights. In other words the presented 
approach reduces the informational complexity of the 
neural network for the reconstruction of curves. We can 

define informational complexity of a neural network as 
the minimum amount of information needed for the neu-
ral network to learn the relationship in the data.

The method is applied to smooth, continuous and 
simple curves which have lot of variations in the curva-
ture. The resultant curve is a good approximation to the 
original curve. Effectiveness of the method is shown with 
the help of reconstruction of various curves and the mean 
square error in each of the case. The detailed algorithm 
is given in section 4, implementation details are given in 
section 5 and the theoretical aspects of the problem are 
given in section 2. Mathematical formulation of the prob-
lem is given in section 3. Conclusion and the future work 
are in section 6.

2. Theoretical Concepts

2.1 Function Approximation, Interpolation 
and Curve Fitting
Function Approximation: As the name suggests function 
approximation is to approximate a given

function f(x) by another function f1(x) such 
that 

|f(x) - f1(x)| < e           (1)
where e is the error which is very small and f1(x) is a 

linear combination of some simple functions. But many 
times the function f(x) is not presented completely; rather 
its value is given at a specified number of discrete points. 
To find the function passing through all the given points 
is known as interpolation. So with interpolation, in case 
of 2-d the curve is expected to pass through all the given 
set of data points. The major drawbacks of interpola-
tion are the use of fixed degrees of polynomials and the 
degradation of results in the presence of noise. Another 
approach for the reconstruction of curves is curve fitting, 
in which the reconstructed curve may not pass through 
the given set of data points. Principle of least square fit-
ting is used so that the sum of the squares of the distance 
between the original curve and the reconstructed curve 
is minimum. But with the traditional curve fitting tech-
niques like polynomial fitting or spline fitting, the curve 
is forced to have a polynomial of fixed degree. The next 
milestone in the theory of curve fitting was achieved with 
the advent of artificial neural networks. These are the 
networks designed artificially to mimic the functioning 
of the human brain specifically the learning tasks car-
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ried by human beings with examples. These networks 
have been used in several practical applications including 
face recognition11, weather and storm analysis12, predic-
tion of stock market13, prediction of pressure drop in heat 
exchangers14 and tourism arrival forecasting15. Also the 
neural networks can perform curve fitting from a given 
set of data points with desired amount of accuracy. These 
networks can work for noisy data sets as well. The neural 
network used in the current work is an RBF neural net-
work.

2.2 RBF Neural Networks
RBF neural networks designed by Moody and Darken in 
1989 are a class of feed-forward networks which follow 
supervised learning paradigm. They are known to be the 
general function approximators as they are able to achieve 
the universal approximation property16. The structure of 
a radial basis network consists of three layers- the input 
layer, the hidden layer and the output layer. Input layer 
is a simple layer responsible for obtaining input from the 
environment. It is connected to the hidden layer in which 
each node is a radial basis function with the center and 
width as parameters. The hidden layer is in-turn con-
nected to a linear output layer which gives weighted sum 
of the outputs of the hidden layer. Many basis functions 
could be used for the hidden layer but the most common 
is a Gaussian function.  It is a bell shaped curve given by 
the following equation:

)
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j

σ
−

−=
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         (2)
where fj represents output of the jth hidden neuron/

radial basis neuron, x is the input vector, cj is the center 
of the jth hidden neuron and also known as spread is the 
smoothness parameter that needs to be optimized for 
the problem; higher values of leads to over smoothness 
whereas lower values lead to insufficient smoothness.

Initially RBFs were used for exact interpolation hav-
ing a fixed number of centers, same as the number of 
input neurons. But this made an RBF network computa-
tionally expensive and applicable only to exact modelling 
of the given data. Appropriate centers have to be chosen 
to deal with the noise in the data and thus to have better 
approximation capabilities. There are many ways in which 
RBF centers could be chosen which enables it to deal with 
the problems like function approximation and fitting of 
curves. The centers could be a subset of the given train-

ing set or could be suitably chosen as a part of training. 
Cluster centers obtained by supervised clustering are also 
used as an efficient representation for centers in RBF net-
works. Various center selection method and their impact 
on the results is given in3, 17. We have used a greedy way 
of addition of centers so that the RBF fits the data to a 
desired accuracy.

3. Mathematical Formulations

3.1 Universal Approximation of Neural 
Networks
Universal Approximation Theorem18 forms the basis for 
the approximation theory of neural networks. It states 
that every continuous function on compact subsets on Rn 
could be approximated by a single feed forward network 
which is having one hidden layer with finite number of 
neurons. It assumes certain restrictions on the activation 
function used in the network. Mathematically the theo-
rem states that given a continuous function h ∈ [0,1]m 
then we can always find a function H such that:

|H(x) - h(x)| < e        (3)
∀x in [0, 1] n, and ∃ α ∈ Rn, b ∈ Rm and W ∈Rn×m such 

that 
H(x) = α. f (Wx + b)                             (4)
where f is a monotonically increasing, continuous, 

bounded and a non-constant function.
So RBF networks with suitable radial basis functions 

at the hidden node can approximate any continuous 
function. Schoenberg Interpolation theorem19, Micchelli 
interpolation theorem20 and the theorem given by Park 
and Sandberg16 are major contributions in the field pro-
viding suitable conditions on radial basis functions. The 
condition given by Park and Sandberg for RBF networks to 
be universal approximators was that the function should 
be integrable, bounded, continuous almost everywhere 
and its integration should not be zero. The condition of 
integrability of the functions was relaxed by Lio prov-
ing that if the radial basis function used in the network 
is bounded, piecewise continuous and not a polynomial 
then the network can approximate any continuous func-
tion.

The activation function that we have used in this 
paper is the most common activation function- Gaussian 
function which is integrable and thus satisfies the condi-
tions of Park and Sandberg.
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3.2 Features
i) Local Maxima: It is a point on the curve where the first 
order derivative i.e the slope of the curve is zero and the 
derivative of the curve changes sign from positive to neg-
ative.

dy/dx = 0 gives the points of local maxima with dy/dx 
going from +ve to –ve.

ii) Local Minima: It is a point on the curve where the 
first order derivative is zero and changes sign from nega-
tive to positive.

dy/dx = 0 gives the points of local minima with dy/dx 
going from –ve  to +ve to.

iii) Points of inflection: A point is said to be a point 
of inflection if the curve is increasing on one side and 
decreasing on the other side of curve or vice versa.

d2y/dx2 = 0 gives the points of inflection with d2y/dx2 

changing sign from +ve to –ve or from –ve to +ve.
iv) x and y intercepts: These are the points of a curve 

that intersect with either of the x or y axis.
As discussed earlier that the transmission of all the 

points of a curve incurs lot complexity in terms of storage 
and computational time. The practical approach is to use 
few points rather than the entire data set to approximate 
a given curve. The problem is to decide which critical 
points or control points to select so that the reconstructed 
curve is a good approximation to the given curve.

Freeman (1978) has included the following points in 
his definition of critical points:

•	 Curvature maxima
•	 Curvature minima
•	 End points
•	 Points of intersection

Hoffman and Richards (1982) state that critical points 
found by first finding the maxima, minima, and zeroes of 
curvature are invariant under rotations, translations, and 
uniform scaling. 

The features that are used in the current work are – 
local maxima, local minima, starting point, end point and 
the centroid of the curve. The reason for taking centroid 
as one of the feature point or control point is that RBF 
networks give good approximations with cluster centers 
as the centers for RBF networks.

4. Algorithm
The problem of effectively storing and then reconstruct-
ing the curves is carried out using the following approach:

•	 The initial input data is a point set P = {xi} ∈ R2. 
Initially all the points of the input data lie on the 
curve.

•	 Divide the curve in to pieces ie the input points 
are segmented and from each of the pieces, fea-
tures are extracted. Based on the discussion in 
section 3.2 the following geometric invariant fea-
tures are considered:

•	 Start and end point of the curve.
•	 Maxima, minima, and centroid of each of the 

pieces.
•	 A RBF neural network is created as follows
•	 The training set comprises of the feature 

points extracted in the previous step.
•	 A simple greedy algorithm is used for the 

selection of centers21. Initially a subset from 
the given set of nodes is taken as center
•	 Error is evaluated at all the nodes
•	 If the error is less than the desired error 

then stop
•	 Otherwise add new centers towards the 

points where the error is large
•	 Repeat the fitting process of RBF and re-

evaluate the error; the loop begins again

•	 A Gaussian basis function is used in the hid-
den layer as: 

•	 f (||x-cj||) = exp(-||x- cj||
2 / 22σ )

•	 The output of the RBF is computed as a 
weighted sum of the output of the Gaussian 
basis neurons i.e.

1
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C
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•	 Adjust the parameter spread for the network. 

Same spread is taken for all the neurons.

•	 Noise is added to the feature set.
•	 A Radial basis function is trained for this noisy 

input set in a similar way as done for the un-
noisy data.

•	 Reconstruct the curve using the trained RBF 
neural network and the control points (noisy and 
un-noisy input feature points).

•	 Results of the reconstructed curve (for both noisy 
and un-noisy input) are compared to the original 
curve by evaluating the mean square error term.
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5. Simulation Results
The algorithm is applied to various smooth, continuous, 
open and non-intersecting curves. Some examples illus-
trating the effectiveness of the algorithm are shown in this 
section. Implementation of the algorithm is done in MAT 
LAB R2013a on Windows platform. The results of the fol-
lowing four curves are shown:

y = xsin(x),
y = sinc(x),
y = sin(4πx)exp(-5x) and 
y = 2 sin(πexp(-2x)).
Results of the first curve are shown in Figure 1(a)-

1(e), Initial curve is shown in Figure 1(a), extracted 
features are shown in Figure 1(b), Figure 1(c) shows the 
reconstructed curve and the original curve. Figure 1(d) 
shows the feature points with a noise of .01 added to each 
one of them. The reconstructed curve from the noisy 
points and the original curve are shown in Figure 1(e). 
The curve is divided in to 7 pieces and thus the number of 
control points is 23. The parameter spread is taken to be 2. 
Similarly the results of second, third and fourth curves are 
shown in Figure 2(a)-2(e), 3(a)-3(e) and 4(a)-4(e) respec-
tively.

5.1 Comparative Analysis
Performance of each of the curve with feature points 
without noise and with noise is shown in Table 1, along 
with the spread and the number of feature points taken 
in each curve.

It is clear from the figures and the table that the recon-
structed curve with the control points as the training set 
and RBF neural networks is a good approximation to the 
original curve. The performance in terms of mean square 
error is shown in the table for each of the curves. Also it 
can be observed that the number of control points in each 
of the curve is very less. The results are also good when 
the control points are contaminated with noise.

Yi liao has given an example of curve approximation 
for a simple function with two peaks and one valley using 
RBF neural networks22. The value of the function lies in 
the range-1 to 1 and the training set taken contains 21 
points. Whereas in the first example considered in this 
paper the value of the function is in the range 0 to 30 with 
5 peaks and 5 valleys; and the number of training points is 
just 23 which is approximately same as in22 but the range 
in which the curve is spread is 15 times more than that 
and it has lot of variations in the curvature.

The simulation example given by C Enachescu23 for 
approximating different functions using neural networks 
contain 50 training points in the range 0 to 1 with 5 peaks 
and 4 valleys.

The above mentioned results are the results of recon-
struction when the sample is without noise. B Walezak3 
has used a noisy data set with 50 samples as the training 
set used in approximating a given function which lies in 
the range-1 to 1 with 1 peak only. A comparison of the 
various basis functions for RBF neural networks is given 
by24 and the functions which are reconstructed also use a 
large training data.

The surfaces reconstructed in4 and5 also use a large 
data set for reconstruction using RBF networks. So the 
technique presented in the current work optimizes the 
storage and transmission requirements of the curves and 
facilitates for an efficient retrieval.

Table1. Performance of the reconstructed curves

Given 
Curve

No. of 
feature 
points

Spread Performance 
Without 
Noise

 
Performance 
With Noise

Curve 1
y = xsin(x)

23 2 1.0318 e-28 1.82259 e-27

Curve 2
y = sinc(x);

20 0.7 9.25271 e-33 4.61918 e-32

Curve 3
y = sin(4πx) 
exp(-5x)

11 0.3 1.6239 e-25 1.91886 e-23

Curve 4
y = 2 
sin(πexp 
(-2x))

11 1.5 2.52047 e-11 3.22954 e-08

6. Conclusion
An approach based on extracting the control points of a 
curve and then reconstructing it using the same points as 
a training set to a RBF neural network is presented. The 
feature points which are invariant under a set of transfor-
mations are selected as the training set for RBF network. 
The results show that instead of storing the entire curve 
it is effective to store only the control points. The recon-
structed curve is a good approximation to the original 
curve. The method deals with the noise in the data as well 
by utilizing the capabilities of a RBF net. So, with this 
method we are able to reduce the memory requirement 
and evaluation time without loss of accuracy. The method 
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can interpolate the curve effectively but the results are not 
good for extrapolation of the curve. It is tested on simple 
non intersecting curves with lot of variations in the cur-
vature. Ongoing research includes the identification of 
discontinuities in the curve thus leading to intersections. 
Other neural network techniques like the wavelet neural 
networks or hyper basis function (HBF) neural networks 
can be used to reconstruct such types of curves.

    
Figure 1(a). Original curve.

Figure 1(b). Extracted features.

Figure 1(c). Reconstructed curve vs. Original curve with

 
Figure 1(d). Noise added to features (Noisy feature points). 
spread = 2 and no. of points =23.

Figure 1(e). Reconstructed curve from noisy points vs. 
original curve.
Figure 1. Steps of the curve given by y = xsin(x).

k
Figure 2(a). Original curve.

Figure 2(b). Extracted features.
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Figure 2(c). Reconstructed curve vs. Original curve with

Figure 2(d). Noise added to features (Noisy feature points).  
spread = .7 and no. of points =20.

Figure 2(e). Reconstructed curve from noisy points vs. 
original curve.
Figure 2. Steps of the curve given by y = sinc(x).

Figure 3(a). Original curve

 
Figure 3(b). Extracted features.

Figure 3(c). Reconstructed curve vs. Original curve with
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Figure 3(d). Noise added to features (Noisy feature points).
spread = .3 and no. of points =11.

Figure 3(e). Reconstructed curve from noisy points vs. 
original curve.
Figure 3. Steps of the curve given by y= sin(4πx)exp(-5x).

Figure 4(a). Original curve.

Figure 4(b). Extracted features.

Figure 4(c). Reconstructed curve vs. Original curve with

Figure 4(d). Noise added to features (Noisy feature points). 
spread = 1.5 and no. of points =11.
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Figure 4(e). Reconstructed curve from noisy points vs. 
original curve.
Figure 4. Steps of the curve given by y= 2 sin(πexp(-2x)).
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