
Abstract
Objectives: To analyze the influence of the sparseness distribution characteristics of gradient-based descriptor data on 
reduction of high-dimensional data, this paper presents experimental analysis on learned samples of gradient descriptor 
data. Method: In order to draw valid inferences, a single gradient descriptor, the Edge based Gabor Magnitude (EGM) facial 
descriptor, is used. The descriptor data is learned using various linear subspace dimensionality reduction methods. The 
subspace models are the Principle Component Analysis plus Linear Discriminant Analysis (PCA plus LDA), supervised 
Locality Preserving Projection (sLPP) and Locality Sensitive Discriminant Analysis (LSDA) under the LGE and OLGE general 
framework (which in the present is used to aid the characterization of the data geometric properties). Findings: Using 
the plastic surgery data set, the following observations were made. The global based linear subspace model (PCA plus 
LDA) which do not require complex neighborhood assignment performs favorably well in relation to the graph embedding 
models. This may be due to the fact that it only works on the basis of class information. The LSDA is observed to be more 
affected by the nature of the descriptor data influenced by the complexity of plastic surgery because in all its identification 
rates, a below 60% is achieved. On the other hand, the sLPP show to be a best fit model for the sparse nature of the 
descriptor data. This can be attributed to its data preserving property by which it is able to preserve the local structures 
of a sparse data (gradient-based) and so outperformed the PCA plus LDA and most importantly, the LSDA. Applications/
Improvements: Understanding the best fit model for certain descriptor data is as important as optimizing recognition 
rates, an important observation for the face recognition research community. 
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1.  Introduction 
The tasks of subspace models are to find and exploit the 
intricate low-dimensional structures in high-dimensional 
data1. The earliest methods are the Principal Component 
Analysis (PCA)2 and Linear Discriminant Analysis 
(LDA)3. The PCA projects the principal components, 
usually described as the eigenvectors, linearly along the 
direction of maximal variance2. The PCA, when observed 
from the perspective of discrimination by4 shows that it is 
a poor representation of the discriminative information 
of a data. The reason being that; data variance might be 

moving towards a non-discriminative direction. Though, 
its holistic information processing capability, which 
according to the research work in psychophysics5, can 
play vital role in face discrimination, if properly adopted. 
The LDA finds application in classification tasks6 due to its 
ability to maximize the separability criterion of between-
class scatter in relation to the within-class scatter. Later on 
7introduced the two-stage PCA plus LDA dimensionality 
reduction approach so as to silence the weaknesses of the 
individual models while celebrating their strengths. The 
PCA plus LDA works by maximizing the between-class 
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criterion and minimizing the within-class criterion 
of projected data. In the more recent years, research in 
dimensionality reduction moved from the holistic based 
methods to the non-linear (manifold) methods. For 
example, there is the Isometric Mapping (ISOMAP)8, 
Maximum Variance Unfolding (MVU)9 and Laplacian 
Eigenmaps (LE)10. However, in most cases they are 
overtaken by their linear counterparts such as Locality 
Preserving Projection (LPP)11 and Locality Sensitive 
Discriminant Analysis (LSDA)12. In some instances, as 
observed by13, for the data having discontinuous distri-
bution due to noise and outliers, the linear counterparts 
outperform the non-linear methods. In order to extend 
the capabilities of the linear and non-linear subspace 
methods, in 14proposed a general dimensionality reduc-
tion framework. The framework is of two categories 
namely; Linear Graph Embedding (LGE) and Orthogonal 
Linear Graph Embedding (OLGE). Despite the long exis-
tence of different subspace learning models, there is still 
a fundamental problem to be considered. The fundamen-
tal problem is about finding the discriminative elements 
of low-dimensional structures in high-dimensional data. 
After all, it is not all low-dimensional structures in high-
dimensional data that are discriminative. This brings us 
to the following question: How does subspace learning 
model respond to the distribution of descriptor data? The 
distribution of facial information data is highly dependent 
on the facial descriptor. A facial descriptor can either be 
of intensity, texture or gradient domain which invariably 
means that the resulting data can be of different distribu-
tion. For instance, the gradient data contains more zero 
elements in its matrices than the data formed from the 
intensity or the texture-based descriptors. Though, it can 
generally be argued that the non-zero elements of the 
gradient information describe significant features of an 
object necessary for discrimination. At this junction, it 
will be interesting to note that the processing of the gra-
dient data might vary across subspace learning models 
because it may be difficult to ascertain the low-dimen-
sional structures of the high-dimensional data which are 
the discriminative information. This point was also raised 
by15. Therefore, there could be a way to work-around the 
discriminative elements of the gradient descriptor data, 
this we will discuss shortly, though it does not fall within 
the scope of this paper. 

On the basis of the above stated, the following ideas 
can be established: It will be interesting to be able to define 
the distributions of data built on different categories of 

descriptor domain, that is, the intensity, texture or gradi-
ent. The outcome can go a long way to help in the design 
and development of subspace models that adapts to dif-
ferent descriptor data distributions. These stated points 
might potentially remedy the oversampling/over fitting 
problem caused by discontinuity, outlier or noise in data 
suffered by most subspace learning methods. More also, 
the outcome of the analysis might be of significance to 
removing anomalies16 in the data or clustering significant 
data17. This is an open area that can be further investigated, 
but in this paper we considered analyzing some contem-
porary descriptors from the intensity, texture and gradient 
descriptor domains for describing facial images from the 
plastic surgery data set. We further show that the gradient-
based descriptor is highly discriminative in comparison 
with the intensity and texture-based descriptors.

In order to demonstrate that different subspace 
methods respond differently to gradient data, we experi-
ment using linear subspace methods and show that for 
increased discrimination, the subspace methods that best 
fits the gradient descriptor data is optimal. The use of the 
linear subspace models is based on the experimental obser-
vation in13. This paper extends the experimental analysis 
of the Edge-based Gabor Magnitude (EGM) feature18. 
However, our contribution is purely based on presenting 
knowledge that is critical to research in dimensional-
ity reduction and essential to practical face recognition 
systems. How is that so? We will demonstrate through 
systematic experimentation the significance of gradient-
based descriptors in comparison with descriptors from 
the intensity or texture domains as they tailor well to 
complexities, discontinuities, outlier or noise in sample 
data. More also, we investigate the influence sparseness 
property (the wild randomness in sample point’s) of gra-
dient based descriptor data, precisely on EGM, might have 
on dimensionality reduction process of linear subspace 
methods in retaining essential low-dimensional features 
for recognition. This investigation is carried out based on 
experimental analysis using some linear subspace meth-
ods to support or refute the stated assumption. And as 
well be able to ascertain the subspace method that best 
preserves the discriminative capabilities of the gradient 
descriptor data for the given sample data.

The rest of the paper is organized as follows. In 
Section 2, a brief introduction on the linear subspace 
methods adopted in the experiments and their respective 
graph embedding framework are presented. In Section 3 
experiments were carried out on the publically available 
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real-world two-dimensional data set (i.e. the plastic 
surgery data set) and results of the face recognition 
experiment on the individual surgery procedures (com-
monly practiced in literature) are presented. In Section 
4 we carried out further statistical analysis on the gradi-
ent descriptor data with respect to the subspace methods 
in order to support our hypothetical claim. Lastly, is the 
conclusion in Section 5.

2. � Dimensionality Reduction via 
Linear Subspace Methods

The subspace models under consideration are the LSDA 
and sLPP employed under the LGE and OLGE general 
framework and PCA plus LDA. 

Given the feature vector Dx ℜ∈ from a set of training 
samples x1, x2,…, xn that belong to any one of the c classes. 
We assume that each class has an unknown distribution. 
The optimal interest is to be able to map the original high-
dimensional data of the feature vector in D-dimensional 
space onto a D-dimensional space by a transformation 
function k  expressed as:

	 k : dD
ℜ→ℜ � (8)

k can be any of PCA plus LDA, LSDA or sLPP11,19 

dimensionality reduction methods, usually D is of much 
lower dimension than d, i.e, d ≪ D. The reduced feature 
vector dy ℜ∈ is defined as:

	 xWy Τ
= � (9)

The optimal objective of the subspace learning 
algorithms is to search W, a matrix representation in 
which all the significant observations are well retained. The 
process of finding such a matrix varies with the different 
objective function of different subspace learning models. 

2.1  PCA plus LDA
The PCA2 is often used for dimensionality reduction 
owing to the fact that it can preserve much useful infor-
mation within a small dimensional space, but lacks the 
capability to solve a classification problem. LDA on the 
other hand utilizes the class information to maximize 
separation of data points of different classes while mini-
mizing the within class feature points. Using k -PCA, the 
most expressive features y are obtained by the following 
objective function J(W) defined as2:

	 i = 1, 2,…, n.� (10)

To further employ k -LDA, we denote the mean 
values and grand means of the classes ci as Mi and M. 
The within-class scatter matrix Sω and the between-class 
scatter matrix Sb are defined as3:

	 ( )( ) ,)(
1

b
T
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Where P(Ωi) is the probability of the ith class.
The LDA derives a projection matrix A that maximizes 

the Fisher’s discriminant criterion:
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LDAWJ
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b

)(
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The Fisher’s discriminant criterion is maximized when 
W consists of the eigenvectors of the matrix3:

	 ,b
1

∆=
− WWSSw � (13)

Where W and Δ are the eigenvector and eigenvalue 
matrices of b

1SS−w , respectively. The two-stage (PCA plus 
LDA)7 dimensionality reduction approach is employed to 
reduce feature dimension while maximizing the between-
class criterion and minimizing the within-class criterion 
projected data points.

2.2 � Graph Embedding based sLPP and 
LSDA 

The sLPP19 is a variant of the LPP11 that uses the class 
label information to construct the new feature points 
through projecting a similarity graph that preserves 
the essential manifold structure of the data points. The 
LSDA takes into consideration the data manifold struc-
ture by constructing a single nearest neighbour graph, 
which further uses class label information to construct 
two graphs: The between-class graph and the within-
class graph. These linear subspace learning methods 
(sLPP and LSDA) share common graph embedding 
formulation along with their linearization13. The graph 
embedding framework objective function J(W) for 
LSDA and sLPP is defined as1,13:

	 ,
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Where




 ∈∈

=

otherwise
ixNjxorjxNixif

ijS
,0

)()(,1
, which is an 

adjacency matrix that describes the neighbourhood rela-
tionship, N  of sample points ix  (ith sample point) and 

jx  (jth neighbour of the ith sample point). p
ijS  denotes 

the unconnected sample points. 
This generalized graph embedding framework 

describes the LGE and OLGE. The only difference is 
that for the OLGE, an optimization function that curbs 
redundancy of projected data is employed20. This might 
come-off as a costly function for some data. While the 
sLPP and LSDA can be defined in a single graph embed-
ding framework, they differ in their respective approach 
for computing the similarity graph. From the adjacency 
graph denoted by ijS  the objective function for which 
the similarity map is obtained with sLPP is optimized as 
follows11,19:

	 ∑ −≠= ijSjyiyji
W

sLPPWJ 2)(
)(

minarg)( ,� (15)

and for the LSDA two objective functions are derived 
individually for the within class ijwS ,  graph and between 
class ijbS ,  graphs12:

	 ∑ −≠= ijwSjyiyji
W

bLSDAWJ ,
2)(

)(
minarg)( � (16)

	 ∑ −≠= ijbSjyiyji
W

wLSDAWJ ,
2)(

)(
maxarg)( � (17)

The above arguments in (14)-(17) translate as follows. 
For the {arg min}, if the sample pairs (xi, xj) are close and 
of the same class label then, the feature points (yi, yj) are 
as well close. For the maximum argument {arg max}, if 
the sample pairs (xi, xj) are close, but are of different class 
labels then, (yi, yj) are considered far apart from each 
other. 

For a set of training samples x1, x2,…, xn that belong 
to any one of a training subject sets. Suppose the training 
sets are given as follows: x⊂}))({,},)3({},)2({},)1(({ n

KxKxKxKx 

 
(Note that K  is the number of samples per subject and 
n  is the total number of subjects in the database), the 
descriptor features are obtained and learned for all the 
images in the set using the k -linear subspace trans-
formation models, which can be any of PCA plus LDA, 
sLPP-LGE, sLPP-OLGE, LSDA-LGE, or LSDA-OLGE. 
The reason for learning a set of samples, known as the 
training sets, is for the face recognition system to gener-
alize well to an unknown sample (test image)11, which is 

possible in the reduced space because, as earlier noted, 
feature vectors that are of large dimensions can hinder 
the classification processes. In the subsequent section, 
we will present the experiment scenario and results of 
face recognition carried out on publically available real-
world two-dimensional data set (i.e. the plastic surgery 
data set).

3.  Experiments
In this section, we conduct several identifications and 
verification experiments using the plastic surgery data set 
and in the manner that is informative. 

3.1  Database and Experimental Setup
Two evaluation scenarios: Identification and verification 
on the plastic surgery data set21 are presented. The plastic 
surgery data set consists of one image each of pre-surgery 
and post-surgery images of real people who have under-
gone plastic surgery. For the identification scenario, two 
types of experiments, namely “without subspace learn-
ing” and “with subspace learning” are performed. The first 
experiment is the case of “without subspace learning”. The 
recognition accuracy of a number of facial descriptors cat-
egorized as texture domain (LBP-based descriptors22 and 
Gabor descriptor23) and gradient domain (the EGM facial 
descriptor18) with no training processes (i.e., applying 
subspace learning methods), are evaluated. The second 
experiment presents the various results of EGM facial 
descriptor on employing “subspace learning methods” at 
varied number of dimensions. Since the intrinsic com-
plexity and dimension of data are assumed to lie in low 
dimensional space24 it will be interesting to investigate how 
different dimensionality reduction methods transform 
the EGM data across different plastic surgery procedures. 
The dimensionality reduction methods evaluated are the 
linear subspace methods. Asides the reports in literature 
that have determined the efficiency of linear subspace 
methods over the nonlinear subspace methods13,25, the 
reason why only the linear subspace methods are consid-
ered in this experiment is because, as earlier noted, the 
subspace of data lying on low-dimension is said to be lin-
ear24. In both experiments, the evaluation is on the basis 
of different plastic surgery procedures because it will be 
interesting to observe how the data at different plastic 
surgery procedures influence the subspace learned EGM 
facial pattern recognition system. On the existing aesthetic 
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plastic surgery database, we generated one image each of 
the available pre-surgery and post-surgery images, that is, 
their mirror versions. Firstly, this way, the under-sample 
problem suffered by some subspace learning models, 
which require a number of images in the training set 
for good generalization is avoided. Secondly, the mirror 
image can be used to recognize a face image26,27. Thirdly, 
so that one is able to evaluate recognition performance 
for a situation where there exists a post-surgery image in 
the gallery set. Therefore, the total number of images per 
subject in the database becomes four. In the two experi-
ments, we report the Cumulative Match Curve (CMC) 
scores using the settings: Gallery set contains 3 images 
per subject and the remaining image per subject is used as 
the probe images, but in the case of “with subspace learn-
ing”, the training is performed on the gallery set. In the 
verification scenario we evaluate the one-to-one identity 
verification capability of the subspace learned EGM facial 
pattern recognition system. In this scenario, the main 
interest is to determine whether the claimed identity of a 
subject (pre-surgery face image in the gallery set) matches 
the currently enrolled identity of an individual (i.e., the 
probe, which is the post-surgery image). We report the 
verification scores of the subspace learned EGM facial 
pattern recognition system on employing different lin-
ear subspace dimensionality reduction methods via the 
Receiver Operating Characteristics (ROC) curves. The 
experimental evaluation is based on a one-to-one setting, 
that is, of the 4 images available per subject we used 2 pre-
surgery images for training. We selected 1 pre-surgery 
image each from a subject used for training to make up 
the gallery set, while a single post-surgery image each of a 
subject made up the probe set. 

The dataset configuration and the experimental 
parameters applied for different descriptors for all the 
experiments are summarized in the given tables under 
the following sub-headings.

3.1.1  Dataset Configuration
The aesthetic plastic surgery procedures are listed 
alongside the number of subjects in each of the surgery 
procedures in Table 1.

3.1.2  Parameter used for the Descriptors
We replicate the settings for each of the descriptors (EGM, 
LGBP, CLBP-M-S, CLBP-S, CLBP-M) used in the experi-
ment according to their original usage in literature. These 

settings are provided in Table 2. The abbreviations woc, 
SQI and rgbGE stand for without correction, self-quotient 
image and rgb-gamma encoding technique.

3.2 � Evaluation of Gradient Descriptor 
(EGM) with some State of the Art 
Descriptors.

First, we present the identification results of differ-
ent descriptor-based face recognition methods on the 
high-dimensional representation of the face data with-

Table 1.  The constituents of the plastic surgery 
database

 
Modification 

Category

Plastic 
surgery 

procedure
What changes

Number 
of 

subjects

Soft Tissue

Blepharoplasty
Skin Peeling

Rhytidectomy
Dermabrasion

Others
Browlift

Skin texture, relative 
position and size of 

eyes
Skin texture

Global skin texture 
and relative position 
and size of features

Skin texture
Skin texture, relative 
position and size of 

some features
Skin texture around 
the forehead, relative 
position of the brow

105
74

308
32
56
60

Hard Tissue

Rhinoplasty
Otoplasty
Cheek and 

Chin

Relative position of 
nose tips and size of 

the nose
Relative position of 

ear concha
Skin texture around 

the chin / jaw, relative 
position and size of 

chin line.

192
74
21

Table 2.  Some parameter settings for the different 
descriptors

Method
Illumination

Normalization
Pixel (p)

Neighbourhood

CLBP-M [22]
CLBP-S [22] 

CLBP-S-M [22]
LGBP [23]
EGM [18]

woc
woc
woc

self-quotient image 
(SQI)

rgbGE [18]

p-8
p-8
p-8
p-8

p-8 (defined by 
Sobel mask)
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out employing subspace learning methods or a training 
process. The facial descriptors under comparison are the 
LBP variants (CLBP-M-S, CLBP-M and CLBP-S), LGBP 
and EGM. We report the recognition rate on Rank basis, 
considering at most the Rank 10. Rank is the ratio of cor-
rectly recognized faces in the order they are scored. If the 
probe face image is correctly identified at each recogni-
tion process it is ranked highest, this is represented as 
Rank-1, while the subsequent Ranks from 2 and above 
means that there is some degree of freedom. The results of 
the various facial descriptors (without subspace learning) 
in the recognition of surgically altered face images are 
shown in Figure 1. From the figure we make the following 
observations.

The EGM descriptor is observed to be more robust 
against the noise, outlier or discontinuity that might be 
present in the plastic surgery data set, which is shown by 
its above 60% Rank-1 recognition rate in all the experi-
ments than the LGBP and LBP variants. The identification 
accuracy of the variants of LBP descriptor (texture) is 
rather disappointing. They failed to reach a satisfactory 
recognition rate despite having features of lower dimen-
sion. Overall, the EGM facial descriptor shows to have 
the best Rank recognition performance. It achieved as 
high as 100% recognition rate for all the Ranks especially 
in the case of recognizing Brow lift surgery altered face 
images. We observe that the plastic surgery procedures 
that directly impacted on the nose, eye or the overall 
face which have been found in psychophysics and com-
puter vision to contribute largely to face recognition task, 
were only correctly recognized within the range 50% 
to 60%. However, in those procedures (Blepharoplasty, 
Rhytidectomy and Rhinoplasty) the EGM showed to have 
achieved the top most recognition rates in comparison to 

other descriptors. We can deduce that the EGM would 
have performed better if not for the viewpoint changes 
of images in the data set. Since for every two images I 
and J under the same viewpoint, that is, the EGM-I and 
EGM-J (gradient-based features) must be parallel at every 
point where they are defined28. For all other procedures, 
which are basically skin textures changing procedures, 
the EGM is most insensitive to the alterations they make 
on the faces, followed by LGBP. We also observed that the 
CLBP-S performed surprisingly well from Rank 5 to 10 
in the recognition of Blepharoplasty surgery altered face 
images, while CLBP-M-S performed better than each 
features apart for all the other plastic surgery procedures.

3.3 � Evaluation of EGM on Adopting 
different Subspace Learning Methods

In this second experiment, our interest is to observe how 
the subspace learning methods are capable of handling 
the sparseness property of the EGM data. We are referring 
to the ability of the subspace learning methods to retain a 
low-dimensional representation of the high-dimensional 
EGM data in such a way that the significant information 
of the high-dimensional data is preserved. Therefore, 
it will be interesting to observe how recognition rate 
transcends as the significant and discriminative informa-
tion within the EGM are more retained in the reduced 
space. On this basis, we report the systematic analysis of 
the identification performances of EGM on employing 
different subspace learning methods. The subspace learn-
ing methods under comparison are the PCA plus LDA, 
sLPP and LSDA. The performances of sLPP and LSDA 
are obtained under a generalized LGE and OLGE frame-
work at varied number of dimensions. We also report the 
recognition rate under the different plastic surgery pro-
cedures on Rank basis. We are considering the Rank 1 
to 5 of which each of the graphs comprises of the result 
of varying dimensions of the subspace learning meth-
ods and represented by their various Ranks. We show in 
boldface in Table 3 the best performing subspace learning 
method for different plastic surgery procedures. The table 
summarizes the Rank 1 results corresponding to Figure 2. 
From the results of this experiment shown in Figure 2 we 
make the following observations.

According to the experimental results we see that for all 
the plastic surgery procedures experimented on, the LSDA 
did not improve the results of EGM in its high-dimensional 
space (that is, the case of the first experiment). The rec-

Figure 1.  Identification result for CLBP-M-s, CLBP-M, 
CLBP-S, EGM and LGBP. Starting from left corner 
(coordinates 0, 1) to the lower right corner (coordinates 
1, 0) are the blepharoplasty, skin peeling, rhytidectomy, 
dermabrasion, others, brow lift, rhinoplasty, otoplasty 
and cheek and chin aesthetic plastic surgery procedures, 
respectively.
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ognition performance of EGM from LSDA is surprisingly 
disappointing. This resulting outcome of LSDA cannot be 
likened to any report in literature on LSDA. Therefore, we 
infer that the poor performance of LSDA might be resulting 
from the nature of the data set. Also, the gradient domain 
being the building block of the EGM descriptor implies 
that the descriptor will conform to the sparseness prop-
erty of gradient distribution, which is often characterized 
by the sparseness nature of the data distribution. We refer 
the reader to the following literatures15,29,30–,32. Therefore, 
attributing the failure of the LSDA to the sparseness char-
acteristics of gradient-based data should not be out of 
place. The LSDA follows a local approach to the globality 
of LDA by constructing two graphs, a within-class graph 
and between-class graph, from one nearest neighbour 
graph12. These capabilities of the 

LSDA should by no doubt make it perform better than 
PCA plus LDA, but this is not the case, it is rather the 
reverse. Thus, it is also by no means out of place to say that 
LSDA is unable to guarantee the global connectedness 
within the constructed between-class and within-class 

graphs for this kind of data. If the globality is considered 
in constructing these graphs, it might remedy the said 
limitation of LSDA that is observed in this paper. From 
the experiment we see that the simple PCA plus LDA per-
formed far better than the LSDA for all the plastic surgery 
data set cases we investigated. Since the PCA plus LDA 
is concerned with the projection of the within-class and 
between-class in relation to the global structure of the 
manifold, we can claim that it is somewhat insensitive to 
the underlying complexity of the data distribution and 
this worked in favour of the PCA plus LDA. In some of 
the experiments presented here, the PCA plus LDA per-
forms comparably to sLPP despite its simplicity, e.g., skin 
peeling and brow lift data set cases. From the results, it is 
obvious that PCA (no loss of information33) complements 
LDA (classification capability6) and that is the reason why 
they both are a great merge for subspace learning.

Overall, the sLPP outperforms the PCA plus LDA 
and LSDA under the generalized framework; LGE and 
OLGE. We can attribute the performance of the sLPP 
to the following: sLPP follows a linear approximation 
to a nonlinear manifold learning method known as the 
Laplacian eigenmaps34. Unlike the LSDA, the sLPP uses 
a single graph and class labels to define the local neigh-
bourhood information of the data points, which implies 
that connectedness of data points can exist. One major 
advantage of sLPP over other methods compared in this 
paper is that: 1. It best preserves the essential manifold 
structure35 of the EGM within face space, and 2. The gra-
dient-based data have been assumed to follow a Laplacian 
distribution15, this best explains the reason for the better 
fit of the sLPP (note that this is an observation made from 
a performance point of view) to the essential manifold 
structure of EGM data and 3. It is a linear approximation 
of a nonlinear dimensionality reduction method, which 
implies that it is somewhat more suited for sample data 
with outliers than PCA plus LDA and LSDA. From the 
perspective of the generalized framework, the OLGE 
performed better than the LGE generalized framework. 
This is for the fact that the concept of orthogonality helps 
in better representation of the original data via curbing 
redundancy in projected data19. The role that orthogo-
nality can play in subspace learning has been stated in36, 
which is that the performance of subspace learning meth-
ods can be improved from the basis of orthogonality. We 
summarize the results of the experiment corresponding 
to Figure 2 on Rank 1 basis for each plastic surgery pro-
cedure in Table 3.
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Figure 2.  Identification results of various subspace learning 
(columns) from EGM with their respective dimensions 
for different plastic surgery procedures (rows). Row 1-9 
(blepharoplasty, skin peeling, rhytidectomy dermabrasion, 
others, brow lift, rhinoplasty, otoplasty and cheek and chin, 
respectively) while column 1-5 (EGM-PCA+LDA, EGM-
sLPP-LGE, EGM-sLPP-OLGE, EGM-LSDA-LGE and EGM-
LSDA-OLGE, respectively).
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3.4 � EGM Verification Results on Applying 
Different Subspace Learning Methods 

The changes in facial appearance as a result of plastic 
surgery can range from mild to severe. After some plastic 
surgery procedures, a complete transformation of facial 
identity is expected, which is the reason why plastic sur-
gery can be an avenue for criminals to conceal identity 
and remain elusive to face recognition systems. An exam-
ple is the popular case of Andrew Moran a most wanted 
fugitive, who by means of plastic surgery evaded arrest37. 
It took the law enforcement four years to apprehend him. 
And it is likely that there are many others who have been 
evading arrest via the aid of plastic surgery. There has 
also been a case when as a result of the changes in facial 
appearance due to plastic surgery the customs officers at 
the China Hongqiao International airport could not relate 
the identity claim of a group of women to their passport 
identity in the system38. As reflected in the above inci-
dents, the identities of the persons who undergo plastic 
surgery procedures have a high likelihood to tend towards 
a different person’s identity than their actual identity. 

Therefore, the face verification experiment should also 
be a way of evaluating face recognition methods across 
different plastic surgery procedures. Figure 3 shows the 
ROC curves for different plastic surgery procedures, 

Table 3.  Identification performances of subspace learning from EGM under different dimensions for various 
plastic surgery procedures

Method
Blepharoplasty (%)
d-30 d-60 d-90 d-99

Skin-peeling (%)
d-25 d-40 d-55 d-72

Rhytidectomy (%)
d-50 d-150 d-250 d-307

EGM-PCA+LDA  92.00  97.30  88.20 
EGM-sLPP-LGE 84.16 93.07 94.06 96.04 91.80 94.50 97.30 97.30  51. 51.00 82.80 90.60 93.20

EGM-sLPP-OLGE 86.14 95.05 96.04 97.03 90.40 97.30 97.30 97.30 70.50 94.80 97.70 94.80
EGM-LSDA-LGE 8.91 14.90 34.70 45.50 19.20 42.50 64.40 84.90 03.57 09.42 16.20 32.50

EGM-LSDA-OLGE 8.91 18.80 40.60 50.50 21.90 47.90 68.50 89.00 04.22 08.44 19.50 42.20

Method
Dermabrasion (%)
d-5 d-15 d-25 d-31

Others (%)
 d-25 d-35 d-45 d-55 

Browlift (%)
d-30 d-40 d-59 

EGM-PCA+LDA  90.60  80.40  100 
EGM-sLPP-LGE 59.40 84.40 84.40 84.40 85.70 96.40 100 100 91.70 96.70 100

EGM-sLPP-OLGE 34.38 84.38 87.50 93.75 94.60 100 94.60 98.20 96.70 96.70 96.70
EGM-LSDA-LGE 43.80 43.80 78.10 84.10 37.50 55.40 75.00 85.70 18.30 28.30 41.70

EGM-LSDA-OLGE 43.80 46.90 78.10 84.40 39.30 58.90 75.00 85.70 18.30 25.00 40.00

Method
Rhinoplasty (%)

d-50 d-100 d-150 d-191
Otoplasty (%)

d-25 d-40 d-55 d-70
Cheek&Chin (%)

d-5 d-15 d-25 d-31
EGM-PCA+LDA  94.30  81.70  80.40
EGM-sLPP-LGE 77.60 90.10 93.20 96.40 85.70 91.50 94.40 97.20  85.70 96.40 100 100 

EGM-sLPP-OLGE 90.10 96.40 97.40 97.40 91.50 97.20 98.60 98.60  94.60 100 94.60 98.20
EGM-LSDA-LGE 4.17 12.50 21.90 37.50 14.10 29.60 54.90 71.80  37.50 55.40 75.00 85.70

EGM-LSDA-OLGE 13.50 13.50 23.40 45.30 14.10 32.40 54.90 76.10  39.30 58.90 75.00 85.70

Figure 3.  Verification results of subspace learning from 
EGM for various plastic surgery procedures. These are 
blepharoplasty, skin peeling, rhytidectomy dermabrasion, 
others, brow lift, rhinoplasty, otoplasty and cheek and chin, 
respectively. The subspace models are; EGM-PCA+LDA, 
EGM-sLPP-LGE, EGM-sLPP-OLGE, EGM-LSDA-LGE and 
EGM-LSDA-OLGE, respectively.
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namely blepharoplasty, skin peeling, rhytidectomy, 
dermabrasion, others (botox, liposhaving, etc.), browlift, 
rhinoplasty, otoplasty and cheek and chin surgeries. The 
ROC curve is the plots of the verification rate (which dis-
plays the probability that a correct identity is accepted) 
to the False Acceptance Rate (FAR) which displays the 
probability that an identity is incorrectly accepted. Given 
FAR at 0.01, 0.05 and 0.1, we summarize the verification 
results of the ROC curves in Table 4. 

In this experiment we able to confirm the claim that 
LSDA is sensitive to factors affecting the data set because 
when presented with images of a person that are of the 
same angle (viewpoint) in the verification experiment, a 
tremendous difference in face recognition performance is 
observed for EGM with LSDA. Overall, the verification 
experiments for all the aesthetic plastic surgery proce-
dures show impressive recognition ability of the subspace 
learned EGM facial pattern recognition system in match-
ing successfully the pre-surgery image of a person to his/
her post-surgery image. 

Surprisingly, unlike in the previous experiment, the 
sLPP subspace learned EGM facial pattern recognition 

system under the LGE general framework performed 
better in comparison to the OLGE. This obviously can be 
attributed to the fact that there is only fewer data avail-
able for comparison. The reason is that the OLGE works 
best when the data available for comparison is huge. Also, 
despite the simplicity of the PCA plus LDA in comparison 
with the sLPP and LSDA under the generalized frame-
work, the PCA plus LDA subspace learned EGM facial 
pattern recognition system performed favourably in com-
parison to the sLPP, but on the average the sLPP is still 
top best. 

4. � Statistical Analysis and 
Discussion

To demonstrate that the gradient descriptor data do not 
follow a normal distribution, we present a statistical 
analysis using a measure known as the Quantile-Quantile 
(Q-Q) plot. The Q-Q plot is a plot of the probability dis-
tributions of data points. Given in Figure 4 is the plot of 
a sample frontal face image whose intrinsic patterns are 

Table 4. Verification performances of subspace learning from EGM for various plastic surgery procedures

Method
 Blepharoplasty (%)

0.01 0.05 0.1
 Skin-peeling (%) 

0.01 0.05 0.1
 Rhytidectomy (%) 

0.01 0.05 0.1

EGM-PCA+LDA 81.19 88.12 89.11 94.52 97.26 97.26 76.62 90.91 93.18 

EGM-sLPP-LGE 82.18 90.10 93.07 91.78 95.89 97.26 80.84 89.94 93.51

EGM-sLPP-OLGE 74.26 82.18 90.10 83.56 94.52 94.52 64.29 79.87 85.39

EGM-LSDA-LGE 80.20 84.16 89.11 87.67 95.89 95.89 66.56 78.57 84.74 

EGM-LSDA-OLGE 74.26 82.18 90.10 89.04 91.78 93.15 69.48 83.44 88.31

Method
Dermabrasion (%)

0.01 0.05 0.1
Others (%)

0.01 0.05 0.1
Browlift (%)
0.01 0.05 0.1

EGM-PCA+LDA 75.00 90.63 96.88 89.29 92.86 96.43 73.33 85.00 90.00 

EGM-sLPP-LGE 84.38 93.75 96.88 87.50 98.21 98.21 78.33 83.33 93.33

EGM-sLPP-OLGE 81.25 96.88 96.88 94.60 94.60 98.20 66.67 78.33 83.33

EGM-LSDA-LGE 84.38 93.75 93.75 85.71 89.31 90.15 63.33 76.67 80.00

EGM-LSDA-OLGE 78.13 93.75 93.75 55.40 75.00 85.70 61.67 80.00 83.33 

Method
Rhinoplasty (%)

0.01 0.05 0.1
Otoplasty (%)
0.01 0.05 0.1

Cheek&Chin (%)
0.01 0.05 0.1

EGM-PCA+LDA 80.73 92.71 95.83 81.69 90.14 94.37 70.00 80.00 85.00 

EGM-sLPP-LGE 64.06 84.90 88.54 81.69 92.96 95.77 75.00 85.00 85.00

EGM-sLPP-OLGE 64.06 84.90 88.54 71.83 88.73 92.96 65.00 80.00 85.00 

EGM-LSDA-LGE 72.92 80.21 87.50 83.10 85.92 88.73 65.00 80.00 85.00

EGM-LSDA-OLGE 70.83 86.98 90.63 77.46 85.92 91.55 75.00 80.00 85.00 
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defined using EGM, a gradient-based descriptor. Note 
that the best reading of the Q-Q plot is towards the posi-
tive, that is, the Right Hand Side (RHS), which is actually 
in the direction of significance.

The probability plot of the sample data is fitted over a 
standard normal quantile that is based on theoretical con-
cepts of normal distributions. It can be clearly observed 
that the data points (indicated using the blue star points) 
for the EGM sample data deviated from the normal sta-
tistical distribution (indicated by the red line). However, 
carefully observing the distributions of the sample, it can 
be established that the distribution of the sample face 
image defined using EGM is heavy-tailed. Its distribu-
tion started deviating from the normal at point 0.93137 
(x-axis) up until point 6.834 (y-axis). 

To statistically investigate how the subspace learning 
methods respond to the distribution of the EGM data, the 
subspace learning methods introduced in this paper are 
used and are shown in Figure 5.

Using the linear subspace models, PCA plus LDA, 
sLPP and LSDA, the linear transform of the sample data 
of a face image defined by the EGM descriptor is dem-
onstrated by means of the Q-Q probability plots. An 
obvious inference is drawn from Figure 5 (a-c) which 
is that sLPP best transforms the EGM data. The second 

best is the PCA plus LDA. The LSDA showed to have had 
one extreme outlier which is a clear indication that the 
EGM sample is heavy-tailed. The term heavy-tail means 
that there is a wild randomness in sample point’s distribu-
tion. On removing the outlier, LSDA can be said to be 
more linearly distributed than PCA plus LDA. However, 
a statistical tool for such removal is required which can be 
addressed by defining the distributions of the data in order 
to proffer solutions. It can be said that a single data cannot 
alone define the behaviour of these methods, but we have 
just presented what seems like first-hand insight into the 
influence of a descriptors data distribution on dimension-
ality reduction methods. Further analysis can, however, 
be made in the future to observe from numerous sample 
data defined using EGM descriptor for different data sets 
known to be having discontinuity, outlier or noise. 

5.  Conclusion
Based on the need to represent effectively facial infor-
mation, facial descriptors are used. We employed two 
categories of descriptors, namely texture and gradient 
domain descriptors. From the initial experiments, using 
various descriptors in each of the categories, we were able 
to observe that the gradient-based descriptor was more 

-4 -3 -2 -1 0 1 2 3 4
-4

-2

0

2

4

6

8

Standard Normal Quantiles

E
G

M
 Q

u
an

ti
le

s
(H

ig
h
-D

im
en

si
o
n
al

 D
at

a)
 

 

 

Figure 4.  Statistical Q-Q plot of the distribution of sample 
face data. The high-dimensional data distribution of face 
sample defined using EGM descriptor.

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-30

-20

-10

0

10

20

Standard Normal Quantiles

EG
M

-P
C

A
+L

D
A

 Q
ua

nt
ile

s 

(a)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-20

0

20

40

60

S tandard Normal Quantiles

EG
M

-L
SD

A
 Q

ua
nt

ile
s

(b)

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
-20

-10

0

10

20

30

Standard Normal Quantiles

E
G

M
-s

L
PP

 Q
ua

nt
ile

s 

 

 

Figure 5.  Statistical Q-Q plot of the distribution of face data 
defined using subspace learning from EGM. (a) Subspace 
learning with PCA plus LDA. (b) Subspace learning with 
LSDA. (c) Subspace learning with sLPP.

(c)
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superior to the texture-based descriptors with a good 
enough margin. But then the distribution of gradient-
based descriptor data was statistically proven to be of 
heavy-tailed distribution due to the sparseness property 
of descriptors built on the concept gradients. For this 
reason, we carried out several systematic analyses, in this 
paper, for determining the linear subspace model that 
best fits the sparseness property of the distribution of the 
gradient descriptor data based on the facial image repre-
sentation and recognition capabilities of the models. The 
performances of the linear subspace learning methods 
have been systematically evaluated and compared on real-
world two-dimensional facial image data set. Our main 
findings are as follows.

Through our systematic analysis, it was evident that 
the resulting distribution of a descriptor face image data 
is significant to the discriminative ability of the descriptor 
on applying subspace learning methods for dimensionality 
reduction. We observed that the linear subspace learning 
methods used to achieve dimensionality reduction behaved 
differently than their usual known behaviour in literature. 
For instance, Locality Sensitive Discriminant Analysis 
(LSDA) fell short of expectation on top of the much added 
computational expenses. From the experimental results it 
was shown that the LSDA is highly sensitive to the distri-
bution property of gradient-based data. Surprisingly, the 
Principle Component Analysis plus Linear Discriminant 
Analysis (PCA plus LDA) beat the LSDA in performance. 
We are somewhat speculating that it is the “no knowledge 
of the data distribution, but of the class information of 
the sample data” that contributes or is mainly responsible 
for the good performance of the PCA plus LDA. On the 
other hand, the supervised Locality Preserving Projection 
(sLPP) was observed to overcome the wild randomness 
(sparseness property) in the distribution of the gradient-
based data which causes it to be heavy-tailed. A high 
recognition rate of the gradient-based descriptor was 
achieved using the sLPP for reducing the dimensionality 
of the data. It wasn’t much of a surprise anyway that the 
sLPP improved the descriptor discriminative capability 
by 23.84% because the heavy-tailed distribution almost 
follows a Laplace distribution and the sLPP is a linear ver-
sion of the Laplacian eigenmaps. 

These findings do suggest that the distribution of data 
is a significant aspect of research in dimensionality reduc-
tion of a sample face image with features characterized by 
a descriptor, whose descriptor domain is either based on 
intensity, texture or gradient. Therefore, this paper may 

likely inspire various research efforts in dimensional-
ity reduction to examine with careful consideration; the 
distribution of descriptor data in the design of a method 
that fits all distribution or has prior knowledge of the 
distribution of input data to the subspace learning model. 
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