
Abstract
Background/Objectives: To analyze, find and interpret the current challenges in Distributed File Systems for research.
Method/Statistical Analysis: With the immense growth of network applications a large amount of data existence
is managed and stored. To process a huge amount data that is to be stored, a backend framework is required and for
that DFS provides a central store for those data. As the amount of data being increased, the issue of proving efficient
and easy to use solution arises and this issue is overcome using distributed file systems. Findings: In this research, an
overview about various evolution of file system and how distributed file system is being used effectively in wide variety of
network applications. DFS aims at sharing data and storing resources which is physically distributed on computers with a
common file system. The main issues concerning the design of DFS such as fault tolerance, architecture, synchronization,
consistency and replication and few others are also discussed in detail. It alsogives a comprehensive taxonomy of DFS in
detail. Applications/Improvements: The encouraging results observed from this work serve as the motivation to apply
future implementation of DFS within the context of current developments in distributed computing.

A Comprehensive Survey on Taxonomy and
Challenges of Distributed File Systems

D. Sathian1*, R. Ilamathi2, R. Praveen Kumar3, J. Amudhavel2 and P. Dhavachelvan4

*1Department of CSE, Pondicherry University, Kalapet, Puducherry – 605014, Pondicherry, India; dsathian@gmail.com
2Department of CSE, SMVEC, Madagadipet, Puducherry – 605107, Pondicherry, India; ilam.mathi21@gmail.com,

info.amudhavel@gmail.com, rathnapriyadevi89@gmail.com
3Department of MCA, SMVEC, Madagadipet, Puducherry – 605107, Pondicherry, India; praveenkoumar@gmail.com

4Pondicherry University, Pondicherry – 605014, Tamil Nadu, India; dhavachelvan@gmail.com

Keywords: Challenges, Distributed File System, Fault Tolerance, Scalability, Transparency

1. Introduction
Long term storage is the purpose of file system which
is the subsystem of operating system. It is used to man-
age how a file is stored and retrieved out. As the need
of storage and processing of data increased, the various
evolution of file system emerged. Various progression of
file system is discussed here. Distributed file systemis a
client -server based application that allows processing of
data stored on the server which makes client to access
them1. The demand of storing large amount of data has
developed over recent years. These data should be stored
for future change or sharing among users. Local file sys-
tem could not handle huge data for providing services.
DFS allows sharing huge data over a period of time using
multiprocessors in a secured and a reliable way. DFS has
a distributed implementation but appears to provide
a centralized file system view. In DFS files are accessed

by a number of remote clients that are stored in one
or more central server stores. Replication can be used
for achieving better system performance and reliabil-
ity. Multi-computer file sharing system in DFS does not
need IPC or RPC2. File sharing between user will be in a
hierarchical and in a unified view. DFS contains software
residing on both network servers and clients which links
shared file located on different file server transparently
into a single namespace in improving load sharing and
data availability. Initially, file appears to be a normal file
on a client machine that retrieves file from the server and
the client machine can work on the same file as if it is
stored locally on to its workstations. After finishing the
work with the file then it is returned back to its server in
an altered form and those file can be used for future ref-
erences. In consistency maintenance each of update that
made to file are being consistently maintained at each
replica servers where the file is being located. Various

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(11), DOI: 10.17485/ijst/2016/v9i11/89268, March 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

A Comprehensive Survey on Taxonomy and Challenges of Distributed File Systems

Indian Journal of Science and Technology2 Vol 9 (11) | March 2016 | www.indjst.org

requirements of DFS compared to a local file system
are First, Fault tolerance is well implemented, ability of
how the data are being recovered during or after failure.
Second, it can store and handle huge amount of data3.
Here, file servers are divided into file and blocks (i.e.) to
reduce size of data handled by one operations (GB’s to
MB’s) and it requires an additional mapping procedure.
Finally, files are in write-once and read-many format and
in handling metadata DFS assigns a certain node through
which data can be retrieved faster.

1.1 Structure of Distributed File System
The schema of distributed file system structure contains
the following:

1.1.1 Service
It uses software that runs on one or more machines in
offering a typical function to remote clients in prior.

1.1.2 Server
It provides service by running the software on a particu-
larly single machine.

1.1.3 Client
It is used to invoke the services provided by its server by a
client interface by performing certain set of operations.

The rest of the paper is organized as follows: section 2
provides a detailed overview of issues in the distrib-
uted file system. Section 3 presents taxonomy of DFS is
reviewed in detail respectively. Section 4 is concludes the
discussion of the paper.

2. Motivation
DFS plays a vital role in managing huge cluster of data
store on to the network. In this paper we would try to dis-
cuss various evolution of file system and using that in we
try to present various issues and taxonomy of DFS alone
in detail.

3. Evolution of File Systems
We could find a various kinds or types of file system
that are being listed in long range, in market we could
now find enormous types of file system being evolved
with that emergence, large amount of unstructured data,

which are to be stored up and managed to match up real
time problem solving existence4-6. The major category or
 classification file systems are listed below.

3.1 Local File System
Applications are present within the server. Data contents
are available only at their individual file system and no
sharing of data is made possible. One way for sharing the
data is using scale up. This scaling can be done in two
ways they are vertical scaling and horizontal scaling.

3.2 Shared File System
Different application or multiple instances of the same
application will be running on different servers. Multiple
servers are connected simultaneously through the physical
storage devices which are called shared storage devices7,8.
Therequest made by the client I/O is transactional in this
file system. The transactions are made through three steps.
In the first step the request will be made by client from
metadata server. In the second step client will receive the
response from the metadata server. In the third step the
data from the file are read or write from the storage device
by the client.

3.2.1 SAN File System
The san file system is a master slave architecture. The
master role will be played by the metadata servers. The
dedicated low latency system area network is used to con-
nect the clients and MDS9. In the SAN file system the
clients are widely dispersed among the same operating
system.

3.2.2 Cluster File System
Cluster file system is another variation in the shared file
system. In the cluster file system the dedicated machine is
not the Meta data server. The metadata services are dis-
tributed among all clients within the ecosystem. So the
cluster file system is distributed database which requires
cluster technology to handle the cache coherency and
locking.

3.2.3 Network File System
The network file system is similar to the SAN file system,
but in SAN file system a block based protocol like ATA
or SCSI is used by the client in order to access the storage
devices10.

D. Sathian, R. Ilamathi, R. Praveen Kumar, J. Amudhavel and P. Dhavachelvan

Indian Journal of Science and Technology 3Vol 9 (11) | March 2016 | www.indjst.org

3.2.4 Distributed File System
From the file server the clients read and write the files
which appear like a single file server, but several file servers
are used for distributing the files and directories in DFS11.

3.2.5 Distributed Parallel File System
In distributed parallel file system the file servers are used
to distribute the files in addition to that the files are seg-
mented into small parts and are distributed over the file
server. By which the granularity is smaller. A single or
global namespace is provided to all file servers12.

4. Issues Considered in Design of
Distributed File System

During designing a distributed file system various issues
are being taken into considerations. The issues are:

4.1 Transparency
Transparencyis hiding processes and resource distribu-
tion held physically across the network from the user.
Transparency does not provide the user of the system what
is happening behind the system (i.e.) what processing and
interaction is held between the client machine and server
machines13. The various transparencies are described in
the Table 1 and Table 2:

4.2 Flexibility
Flexibility can be achieved by using a monolithic kernel
or microkernel on each machine. To mange activities like
process management, resource management, memory

management kernels are used. Monolithic kernel provides
functionality of kernel by not considering whether all
machine use it or not, the approach used is (kernel does it
all). Micro-kernels provides accessibility to other services
as needed using minimalist modular approach14-16.

4.3 Reliability
Reliabilityis availability of data when and where it is
required on time without any variation and alternation.
Distributed system allows multi-processes which are pre-
ferred by users as it can protect against single processors

Table 1. Different forms of transparencies

Transparency Description
Access Resource access and data representation

differences are hidden
Location Resource location is hidden

Migration Moving of resources from one location to
another is hidden

Relocation Location of resource moved out during use
is hidden

Replication Resource is Replicated are hided
Concurrency Resource are hidden that is may be shared

by multiple competitive users
Failure Failure and recover of resource is hidden

Table 2. Abbreviations of taxonomy

DFS Distributed file
system

REPL Replication

PRO Process RAID Redundant arrays of
inexpensive disk

SEC Security CKS Checksum
FT Fault tolerance CSC Client-side caching
CR Consistency and

replication
SSR Server side

replication
SYNC Synchronization FLS File-locking system
NAM Naming HYA Hybrid

COMU Communication ATT Atomic transactions
ARC Architecture CMS Central metadata

server
AUTHE Authentication MDS Metadata

distribution in all
nodes

AUTHO Authorization N-I Network
independence

PRIV Privacy UDP User datagram
protocol

TCP Transmission
control protocol

ASY Asymmetric

SY Symmetric CB Cluster based
PL Parallel CS Client server

WO Write-once HDFS Hadoop distributed
file system

RM Read-many KFS Kosmos file system
PSC Perform all

operations
synchronously

PVFS2 Parallel virtual file
system

GFS Google file
system

RGFS Red hat global file
system

NFS Network file
system

EXCEP Exception

A Comprehensive Survey on Taxonomy and Challenges of Distributed File Systems

Indian Journal of Science and Technology4 Vol 9 (11) | March 2016 | www.indjst.org

system crashes. In case of failure replicated copies can be
used .if we use replicated copy, the copy present should
be consistent with its content. Thus even on a failure, a
backup of contents are available17.

4.4 Performance
Performance metrics can be measured using response
time, throughput, system utilization and amount of net-
work capacity used. Response time is time of system or a
functional unit to respond to the given input or request.
Throughput is successful message delivery with respect to
time measured out in (bps) bits per second. System utili-
zation reports server OS configuration and its associated
utilization information. Network capacity is maximum
capacity of network path to convey data from one net-
work location to another18. Applications that run should
be presented as if it running on a single processor. In
LAN message transmission takes over milliseconds.
Performance can be increased by reducing the number of
message transmitted19.

4.5 Scalability
Scalabilityin which resources get added or removed in
a network at any time. More clients are connected with
the system day to day. An efficient system is needed in
handling those users or client. There can be many CPU’s
getting added to the distributed system. While designing,
DFS can be made in two ways: one is centralized and the
other is decentralized architecture. Centralized architec-
ture requires more administration while scaling up in the
distributed file system. Decentralized architecture scaling
can be managed by an administrator itself20,21.

4.6 Security
Securityof the system can be achieved using three main
aspects they are: confidentiality, integrity and availability.
Confidentiality uses authentication techniques to protect
our system from unauthorized users. Integrity uses mes-
sage digest to identify and protect our system against data
corruption. Availability protects system against failure
and making the system always accessible22.

4.7 Fault Tolerance
Fault tolerancehas to be provided when a failure occurs
(can be a hardware or software) in a distributed file sys-
tem. It must be provided with fault-tolerant capability

such that the system should be able to recover and tolerate
faults that occur. Consider if a system has multiple serv-
ers, if any one fails, then the load has to be distributed
among the servers in transparent way23.

5. Taxonomy of Distributed File
Systems

In the Figure 1, the taxonomy of distributed file systems
is to be organized most appropriately and suitable file sys-
tem (the detail that establish the distributed file system)
has to be considered for better performance, fault tolerant
and to be secured one. Based on various factors the tax-
onomy is being discussed below:

5.1 Architecture
There are five types of architecture in distributed file sys-
tem they are:

5.1.1 Client-Server Architectures
It maintains a uniform view of local file system (e.g. Sun
Microsystems’s Network File System). It appears with a
set of communication protocols which shares a common
file system in a machine that allows clients to access files
stored on different processes running on different operat-
ing system. This is largely independent of local file system.
The main issue of the system is it cannot be used in MS_
DOS for its short file names24-26.

Figure 1. Taxonomy of Distributed File System.

RM Read-many KFS Kosmos file system
PSC Perform all operations

synchronously
PVFS2 Parallel virtual file system

GFS Google file system RGFS Red hat global file system
NFS Network file system EXCEP Exception

Figure 1. Taxonomy of Distributed File System.

D. Sathian, R. Ilamathi, R. Praveen Kumar, J. Amudhavel and P. Dhavachelvan

Indian Journal of Science and Technology 5Vol 9 (11) | March 2016 | www.indjst.org

5.1.2 Cluster-Based Distributed File System
It consists of multiple chunk servers contained in a
single server and each chunk is divided into 64 Mbytes
(e.g. Google File system). The advantage is that a single
master which manages and controls few hundred chunks
of server. In designing cluster-based DFS three impor-
tant features are taken into Considerations they are:
Decoupled metadata and data, Reliable autonomic dis-
tributed object storage and dynamic distributed metadata
management27.

5.1.3 Symmetric Architecture
It is based on peer-to-peer technology. Here clients also
host the metadata manager code which results in under-
standing each of the disk structure. It uses a chord-DHT
for distributing data combined up with a key based
look-up mechanism28 .

5.1.4 Asymmetric Architecture
It uses one or more metadata managers to maintain the
file system and its associated disk structure (e.g. panasa
active scale, luster, NFS). Parallel architecture contains
data blocks that are stripped in parallel across multiple
storage devices and servers29. Parallel application sup-
ports node access to same file at same time (i.e. CRCW)
concurrent read and writes capabilities.

From the above survey it is found that multi-layers
architecture allows flexibility and so functions or proto-
cols layer can be added at ease30.

5.1.5 Process
When concerning processes, a process can be either state-
full or stateless. State-full or stateless report whether a
computer program is designed to mark and extract one
or more leading event in a given sequence of interaction
with the users31.

5.1.6 State-Full
It keeps track on the state of interactions (i.e.) it stores
session state and keeps track of which client used the file,
current read and write of the files and which client has
blocked which file is being maintained32.

5.1.7 Stateless
It has no note or log of previous interactions or interac-
tion request has to be managed based on information that

appears. It does not store any session state and each and
every client is treated independently. The advantage of
this process is if a client fails or resume it leaves without
disturbing the entire or whole system (e.g. PVFS2)33.

5.1.8 Communication
Remote procedure call is a communication method used
in Distributed file system .it makes the system call inde-
pendent to its underlying operating systems, network and
transport protocols. It uses two different approaches they
are TCP and UDP. Another approach for handling com-
munication is plan 9 where all files are accessed based on
syntax34.

5.1.9 Naming
It is a process of mapping between logical objects and
physical objects. Each object plays a major role that has
an associated logical path and physical address. A loca-
tion transparency is provided by DFS (i.e.) where the file
is located is not provided to its user and mobility of file
names is made without and alternation35. (Name of a file).
To access the information of the DFS an object address is
required. To access a remote file system contents a com-
plete transparency has to be provided to client. The two
approaches are central metadata server and metadata dis-
tributed in all nodes. A collection of logical path names
constitute a distributed name space and it is logical sepa-
rated into domain36.

5.1.9.1 Central Metadata Server
It provides in managing the file name space. So par-
titioning of the metadata is made in improving the file
namespace and in breaking synchronization problems.

5.1.9.2 Metadata Distributed in All Nodes
It makes nodes identifies the structure of the disk .On
basis of security issues the name spaces are not shared
between the users and file sharing becomes difficult.

5.1.9.3 Synchronization
Semantics of read and write is necessary when a same
file is accessed and shared between two or multiple users.
Semantics of files sharing is conceptually easy and diffi-
cult during implementation. Apart from semantic various
approaches are available they are file locking system,
hybrid approaches, and atomic transactions.

A Comprehensive Survey on Taxonomy and Challenges of Distributed File Systems

Indian Journal of Science and Technology6 Vol 9 (11) | March 2016 | www.indjst.org

5.1.9.4 Atomic Transaction
It is based on two signals they are begin transaction and
end transaction.

5.1.9.5 File Locking System
It is based on write-once-read-many and producer/single-
consumer. Some systems choose between locks on objects
to clients and perform all operations synchronously on
the server to support their access model.

5.1.9.6 Hybrid Model
It uses leases to lock on object to the client and it controls
parallel access to distributed file system.

5.1.10 Consistency and Replication
Checksum is typically used to authenticate the data that
are sending to communication network. Furthermore,
replication and caching plays a vital role in DFS.
Replication of data provides high availability and consis-
tency of data is maintained using caching, it is performed
to improve system performance. It can be executed in cli-
ent-side caching and server-side replication. Client-side
caching asks the server whether the data cached is valid
and validates the content requested by the client is being
served with the desired information needed. Server-side
replication where every open is notified by the server for
example if a file is accessed or during any modification if
caching is stuck for other clients of that file. Replication
of data should consider the metadata replication and data
object replication. Four places where data are held are on
the server’s disk, cache in server memory, in the client’s
memory, and on the client’s disk37. Availability and recov-
erability of the data in ensured in DFS, which provides
proxy of metadata server with that of the snapshots of
metadata along with its transaction logs. Asynchronous
replication method is used on a high bandwidth and is
consumed when data objects gets replicated on various
servers.

5.1.11 Fault Tolerance
A system has to provide a fault-tolerant capability to
 tolerate faults and recovering from faults that occur dur-
ing hardware and software failure. To provide excess
fault tolerance techniques like replication and redundant
arrays of inexpensive disk (RAID) are used. Availability
and transparency of failure is provided to users using rep-
lication. Failure as exception systems and failure as norm

systems are methods for handling Fault tolerance38. In
failure as an exception be made by eliminating or by iso-
lation of failure node such that it could be easily recover
the system from last normal running state. And replica-
tion concept is applied in failures as norm for all types
of data and replicates when replication rate becomes
 uncertain.

5.1.12 Security
The key security issues in DFS are Authentication and
access control. Security are provided in DFS using
authentication, authorization and privacy39. Whereas
few DFS does not need in any security mechanisms
because they trust in communication laid between
nodes and clients.

6. Conclusion
DFS is the classic model of sharing file system through
which multiple users can store and share resources and it
is permanent storage medium. In this paper an overview
of various evolutions file system and overview of their
processing details of each of the individual files are being
discussed. Based on this study, a detailed study or survey
of how to design a distributed file system, with that of the
issues related in designing the system and with that tax-
onomy related to DFS are presented.

Finally, the encouraging results observed from this
work serve as the motivation to apply future implementa-
tion of DFS within the context of current developments in
distributed computing.

7. References
1. Alonso R, Barbara D, Cova LL. Using stashing to increase

node autonomy in distributed file systems. Huntsville, AL:
Proceedings of 9th Symposium on Reliable Distributed
Systems. 1990; p.12–21.

2. Hac A. Modelling parallel access to shared resources in a
distributed file system using queueing networks. Journal of
Systems and Software. 1986; 6(1-2):61–9.

3. Akinlar C, Mukherjee S. A scalable distributed multimedia
file system using network attached autonomous disks. San
Francisco, CA: Proceedings of 8th International Symposium
on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems. 2000; p. 180–87.

4. Martini B, Choo KKR. Distributed filesystem forensics:
XtreemFS as a case study, Digital Investigation. 2014;
11(4):295–313.

D. Sathian, R. Ilamathi, R. Praveen Kumar, J. Amudhavel and P. Dhavachelvan

Indian Journal of Science and Technology 7Vol 9 (11) | March 2016 | www.indjst.org

 5. Gaidioz B, Koblitz B, Santos N. Exploring high perfor-
mance distributed file storage using LDPC codes. Parallel
Computing. 2007; 33(4-5):264–74.

 6. Bian J, Seker R. The Jigsaw secure distributed file system.
Computers & Electrical Engineering. 2013; 39(4):1142–52.

 7. Amudhavel J, et al. An robust recursive ant colony opti-
mization strategy in VANET for accident avoidance
(RACO-VANET). International Conference on Circuit,
Power and Computing Technologies (ICCPCT); Nagercoil.
2015. p. 1–6.

 8. Amudhavel J, et al. A krill herd optimization based fault
tolerance strategy in MANETs for dynamic mobility.
International Conference on Circuit, Power and Computing
Technologies (ICCPCT); Nagercoil. 2015. p. 1–7.

 9. Amudhavel J, Prabu U, Dhavachelvan P, Moganarangan
N, Ravishankar V, Baskaran R. Non-homogeneous hid-
den Markov model approach for load balancing in web
server farms (NH2M2-WSF). Global Conference on
Communication Technologies; Thuckalay. 2015. p. 843–5.

10. Mecozzi D, Minton J. Design for a transparent distrib-
uted file system. Monterey, CA, USA: Eleventh IEEE
Symposium on Mass Stroage Systems, Digest of Papers.
1991; p. 77–84.

11. Yu J, Wu W, Li H. DMooseFS: Design and implementation
of distributed files system with distributed metadata server.
Shenzhen: IEEE Asia Pacific Cloud Computing Congress
(APCloudCC). 2012; p. 42–7.

12. Fridrich M, Older W. Helix: The Architecture of the XMS
Distributed File system. IEEE Software. 1985; 2(3):21–9.

13. Zhang T, Sun XZ, Xue W, Qiao N, Huang H, Shu J, Zheng W.
ParSA: High-throughput scientific data analysis framework
with distributed file system. Future Generation Computer
Systems. 2015; 51:111–19.

14. Lanjewar U, Naik M, Tewari R. Glamor: An architecture
for file system federation. IBM Journal of Research and
Development. 2008; 4(5):329–39.

15. Carretero J, Perez F, de Miguel F, Alonso GL. Performance
increase mechanisms for parallel and distributed file
 systems. Parallel Computing. 1997; 23(4,5):525–42.

16. Hac A. A benchmark for performance evaluation of a dis-
tributed file system. Journal of Systems and Software. 1989;
4(9):273–85.

17. Hac A. A validated performance model for distributed file sys-
tems. Journal of Systems and Software. 1989; 10(3):169–85.

18. Perez F, Carretero J, Garcia F, de Miguel F, Alonso L.
Evaluting ParFiSys: A high-performance parallel and dis-
tributed file system. Journal of Systems Architecture. 1997;
43(8):533–42.

19. Zhou X, He L. A Virtualized Hybrid Distributed File
System. Beijing: Proceedings of International Conference
on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberCC). 2013; p. 202–05.

20. Cho JY, Jin HW, Lee M, Schwan K. Dynamic core affinity
for high-performance file upload on Hadoop Distributed
File System. Parallel Computing. 2014; 40(10):722–37.

21. Liu T-J, Chung C-Y, Lee C-L. A high performance and low
cost distributed file system. Beijing: 2011 Proceedings of
IEEE 2nd International Conference Software Engineering
and Service Science (ICSESS). 2011; p. 47–50.

22. Hung-Chang H, Hsueh-Yi C, Haiying S, Yu-Chang C. Load
Rebalancing for Distributed File Systems in Clouds. IEEE
Transactions on Parallel and Distributed Systems. 2013;
24(5):951–62.

23. Lee W, Su D, Srivastava J. QoS-based evaluation of file sys-
tems and distributed system services for continuous media
provisioning. Information and Software Technology. 2000;
42(15):1021–35.

24. Thanh TD, Mohan S, Choi E, Kim SB, Kim P. A Taxonomy
and Survey on Distributed File Systems. Gyeongju:
Procedings of 4th International Conference on Networked
Computing and Advanced Information Mangement,
NCM’08. 2008; p. 144–49.

25. Hac A. Performance-reliability issues in distributed file sys-
tems. Journal of Systems and Software. 1986; 6(3):219–24.

26. Hurley RT, Yeap SA, Wong JW, Black JP. Potential benefits
of file migration in a heterogeneous distributed file system.
Sudbury, Ont.: Proceedings 5th International Conference
on Computing and Information, ICCI’93. 1993; p. 123–27.

27. Peng H, Wang L-R, Wang J, Hagiwara I. Design and
Implement of File Linked Distributed File System. Los
Angeles, CA: WRI World Congress on Computer Science
and Information Engineering. 2009; 7:305–09.

28. Verma A, Sharma U, Rubas J, Pease D, Kaplan M, Jain R,
Devarakonda M, Beigi M. An architecture for lifecycle
management in very large file systems. Proceedings of 22nd
IEEE/13th NASA Goddard Conference on Mass Stroage
Systems and Technologies. 2005; p.160–68.

29. Dwivedi K, Dubey SK. Analytical review on Hadoop
Distributed file system. Noida: Proceedings of 5th
International Conference on Confluence the next
Generation Information Technology Summit (confluence).
2014; p. 174–81.

30. Wu Y, Ye F, Chen K, Zheng W. Modeling of Distributed
File Systems for Practical Performance Analysis. IEEE
Transactions on Parallel and Distributed Systems. 2014;
25(1):156–66.

31. Chen P, Li J, Gou XR. Research of distributed file system
based on massive resources and application in the network
teaching system. International Conference on Advanced
Intelligence and Awareness Internet (AIAI 2011). 2011;
p. 154–58.

32. Sharma N, Irwin D, Shenoy P. A distributed file system
for intermittent power. Arlington, VA: 2013 International
Green Computing Conference, (IGCC). 2013; p. 1–10.

A Comprehensive Survey on Taxonomy and Challenges of Distributed File Systems

Indian Journal of Science and Technology8 Vol 9 (11) | March 2016 | www.indjst.org

33. Tseng F-H, Chen C-Y, Chou L-D, Chao H-C. Implement a
reliable and secure cloud distributed file system. New Taipei:
Proceedings of International Symposium on Intelligent
Signal Processing and Communications Systems, ISPACS.
2012; p. 227–32.

34. Chu C-C, Hsu C-H. A Performance-Effective and
High-Scalable Grid File System. Busan: Proceedings of
International Conference on Multimedia and Ubiquitous
Engineering, MUE’08. 2008; p. 460–65.

35. Hiroyasu T, Minamitani Y, Miki M, Yokouchi H, Yoshimi
M. Distributed PACS using distributed file system with
hierarchical meta data servers. San Diego, CA: 2012 Annual
International Conference of the Engineering in Medicine
and Biology Society (EMBC). 2012; p. 5891–94.

36. Rani LS, Sudhakar K, Kumar SV. A Survey International
Journal of Computer Science and Information Technologies.
2014; p. 123–256.

37. Lauf AP, Peters RAL, Robinson WH. A distributed detec-
tion system for resource-constrained devices in ad-hoc
networks. Ad-Hoc Networks. 2010; 8(3):253–66.

38. Gharehchopogh FS, Arjang H. A Survey and Taxonomy
of Leader Election Algorithms in Distributed Systems.
Indian Journal of Science and Technology. 2014 Jan;
7(6):815–30.

39. Kim BS, Kim TG, Song HS. Parallel and Distributed
Framework for Standalone Monte Carlo Simulation using
MapReduce. Indian Journal of Science and Technology.
2015 Oct; 8(25):1–8.

