
Abstract
Objectives of the Study

(a)   To study previously designed models for identification of refactoring area in Object Oriented Software Systems.
(b)   To design a general framework or model that helps to easily identify the software code smells for a good quality of 

coding.
(c)   To identify the bad smells in the code with a design of neural network based model with the help of object-oriented 

metrics and further to predict the performance of the proposed model using various evaluation parameters of  confusion 
matrix.

Analysis/Methods: In this study, two different versions of Rhino (1.7r1 and 1.7r2) were taken as dataset. Object –Oriented 
metrics were  taken  as  input  data  and  the  probability  factor  (occurrence  or  non-occurrence  of  a  bad  smell  as  output. 
Presence of a bad smell was considered as 1 and 0 means absence of bad smell. If there was at least one bad smell present 
in the code in a class, it was marked as smelly class. The tool used to extract the databases for collected object –oriented 
metrics and bad smells of these Rhino versions is PTIDEJ. Further, the data was tested on neural networks for different 
epochs to predict their performance. Findings: a) Bad Smell Analysis: Twelve design smells were considered to detect 
the presence of bad smell in code. If there was at least one bad smell present in the code in a class, it was marked as smelly 
class. b) Neural Network Model Table: Weight and bias factor for various predictors were calculated for different epochs 
(500, 1000, and 2000). It shows the weights assigned from input layer to hidden layer and from hidden layer to output 
neurons layer. After the training, the weights were tested on various datasets. C) Performance Tables and Graphs: In
this, the Neural network proposed model was trained using different number of epochs to examine if the number of epochs 
used in training has any impact on the results or not. Further, the results for the accuracy of these models were shown. 
Novelty/Improvement: When the data was highly trained then the results were better. When the data was trained with 
500 epochs, it was suitable for only with-in company projects but when the data was more trained than the model was also 
appropriate for cross projects. It was seen that when the data was trained with 1000 and 2000 epochs, the results of the 
proposed model were improved.

Neural Network based Refactoring Area
Identification in Software System with

Object Oriented Metrics
Jaspreet Kaur1 and Satwinder Singh2*

1C. S. E. and I. T. Department B. B. S. B. E. C, Fatehgarh Sahib, Punjab – 140407, India; er.jaspreetkaurkohli@gmail.com
2Centre for Computer Science and Technology, Central university of Punjab, Bathinda, India; satwindercse@gmail.com

Keywords:  Artificial  Neural  Networks  (ANN),  Bad  smells,  Logistic  Regression,  Object  Oriented  Metrics,  Refactoring, 
Software Maintainability 

1. Introduction
Software needs to be changed with time and that change
can be due to change in requirements, change of tech-
nology, etc. or in other words, we can say that system

requires maintenance. Sometimes even a minor change
in the software, can lead to degradation of the system,
the code loses its originality and becomes complex. This
problem is not solved by using better software develop-
ment methods and tools as within the same time frame;

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(10), DOI: 10.17485/ijst/2016/v9i10/85110, March 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Neural Network based Refactoring Area Identification in Software System with Object Oriented Metrics

Indian Journal of Science and Technology2 Vol 9 (10) | March 2016 | www.indjst.org

we have to implement more new requirements making
the software more complex again. In order to deal with
a complexity like this, there is a technique that reduces
the software complexity by incrementally improv-
ing the internal software quality. Restructuring is a
research domain which addresses this problem. In terms
of object-oriented software development, it is known
as refactoring. A process of restructuring an exist-
ing computer code – changing the factoring – without
changing its external behaviour is known as refactoring.
This is a technique that keeps the software maintain-
able. It does not change the external interactions of a
system, but merely improves the existing design, thus
in turn improving the performance, correctness, and
the maintainability, which makes the software easier to
understand and modify.

Refactoring is a process which improves the inter-
nal structure of a program without affecting its external
behavior1. The observable or external behavior of the
software does not get changed by refactoring. 72 differ-
ent refactoring are cataloged by Fowler. They range from
localized changes such as EXTRACT LOCAL VARIABLE,
to more global changes such as EXTRACT CLASS. To
decide whether certain software needs refactoring or not
there is a list of bad code smells2. Any symptom which
indicates something wrong is referred to as a code smell.
Whether the code should be refactored or the overall
design should be re-examined is indicated by the code
smell. Certain characteristics which can be rectified using
refactoring are exhibited by a bad code.

As there is an increasing use of Object-oriented
methods in the new software development, there is a
growing need to document as well as improve the current
practices in the Object-oriented design and development.
Various models are used for predicting the performance
of object-oriented metrics. Models are based on statistical
relationship between the measure of quality and measure
of software attributes. Previous studies have shown that
use of neural networks is more advantageous as compared
to logistic regression, as neural networks are more flexible.

Studied3 how code smells evolve over time and proposed
the solution approach - a new group of code smells. In
this study comparison of eight data sets was done to iden-
tify the proportion of functional defects and evolvability
issues. The analysis was helpful in building tool support.
It was found that people’s relationship with the organi-
zation and code was an important factor in affecting the
evaluation results.

 To indicate where refactorings might be applicable by
automatically detecting program invariants implemented4
the Daikon tool. One invariant was that a certain param-
eter of a method is always constant, or is a function of the
other parameters of a method. It requires dynamic analy-
sis of the runtime behavior, which is the main problem of
this approach. to infer the program invariants, the appli-
cation needs to be executed. To this extent, the tool uses a
representative set of test suites. However, it is impossible
to guarantee that a test suite covers all possible runs of a
program. To detect program parts that require refactoring
is the identification of bad smells which is the most wide-
spread approach. Have5 made a prediction model that
integrates ten object oriented metrics. They have used
a statistical technique to establish a strong relationship
between metrics and maintenance effort in the Object-
Oriented [OO] systems.

In the same line6 conducted a study that compares
manual and automated refactoring, which was enabled
by an algorithm. According to the results, more than half
of the refactorings were performed manually. More than
one third of the refactorings performed by developers are
clustered in time. On an average, 30% of the performed
refactorings do not reach the Version Control System.

Used7 windows based GUI application to detect bad
smells of object-oriented metrics. Metrics were used
to identify the characteristics of bad smells “lazy class’,
“long method”, “comment lines” and “large class”. From
the experimental results, it was observed that calculated
metric values play a significant role to remove bad smells
as the refactoring methods can be directly applied on the
source code using calculated metric values. Therefore
quality of the software is improved.

Used8 Bayesian Inference to Predict Smelly classes
Probability in Open source software. Bayesian inference
graphs can represent decision for finding the smells pres-
ent in software system. Study demonstrates a statistical
technique for estimating the smelly classes for any piece
of software and presents the relationship between smelly
classes and object-oriented metrics. Two different types
of methodologies were used to perform this experiment.
This study contributes to all code smell prediction tech-
niques by designing a Logistic regression model and using
Bayesian inference graphs.

To identify bad smells and propose adequate refac-
torings 9 used object-oriented metrics. To propose move
method/attribute and extract/inline class refactorings,
they focus on use relations. The distance-based cohesion

Jaspreet Kaur and Satwinder Singh

Indian Journal of Science and Technology 3Vol 9 (10) | March 2016 | www.indjst.org

metric was the key underlying concept. The degree to
which methods and variables of a class belong together is
measured by the distance- based cohesion metric. The use
of object-oriented metrics is well-suited to detect places in
the source code that are in need of refactoring especially
in combination with software visualization. Find10 out the
threshold values against the bad smell for the Chidamber
and Kemerer (CK) metrics at five different levels by using
Logistic regression. To validate the study, two different
versions of jfreechart were used. From the experimental
result, it was observed that the CK metrics have threshold
effects at various risk levels and some metrics have a use-
ful threshold value at different levels to identify the bad
smell. It was also concluded that threshold values play a
significant role in improving the software quality because
classes having more than threshold values will increase
the testing efficiency.

2. Materials and Methods
To perform this research, two different versions of Rhino
(1.7r1 and 1.7r2) were taken as dataset which was then
run in background of eclipse. Then the database was
extracted from eclipse workspace using tool. Further, the
data was tested on neural networks for different epochs to
predict their performance.

A JavaScript engine written fully in Java which is man-
aged by the Mozilla Foundation as an open source software
is Rhino. Object – Oriented metrics were taken as input
data and the probability factor (occurrence or non-occur-
rence of a bad smell as output. The bad smells checked
for includes: Antisingleton, Blob, Class Data Should Be
Private, Complex class, Spaghetti Code, Swiss Army Knife,
Lazy Class, Long Method, Long Parameter list, Message
Chains, Refused Parent Request, Large class. Presence of
a bad smell was considered as 1 and 0 means absence of
bad smell. If there was at least one bad smell present in the
code in a class, it was marked as smelly class.

2.1 Software Tool Used
The tool used to extract the databases for collected
Object – Oriented metrics and bad smells of these Rhino
versions is PTIDEJ11.

Following Object-Oriented Metrics are used in this
research:

The number of pairs of methods with no common
attributes references is LCOM.

LCOM1 = 0 indicates a cohesive class.

LCOM2: LCOM2 is the percentage of methods
excluding specific attributes being accessed in the class,
averaged over all the attributes. LCOM2 indicates an
undefined value and is displayed as zero, if the number of
methods\attributes is zero.

LCOM5: As per Henderson-Sellers12, cohesion is
measured as per following properties:-

One-to-many relationship where each method •	
and every attribute of the class; known as “Perfect
Cohesion”, yields the measure as 0.
One-to-one relationship where each method refer-•	
ences only a single attribute yields the measure as 1.

LOC: Software metric using the number of lines in the
text of the program’s source code to measure size of the
program is LOC.

RFC: Response for a Class. The number of different
methods that can be executed when an object of that class
receives a message13

.is measured.
DIT: Depth of Inheritance Tree. A measure of the

inheritance levels from the object hierarchy top for each
class13 is the DIT.

CBO: Coupling between object classes. It represents
the number of classes coupled to a given class. A count of
the number of non-inheritance related couples with other
classes is CBO for a class. Two things are coupled if and
only if at least one of them acts upon the other13

.

WMC: Weighted methods per class. Simply the sum
of the complexities of its methods13 is a class’s weighted
methods per class WMC metric.

2.2 Model Based Upon Neural Networks
Many network architectures have been developed for
 various applications. Different types of networks are
available in Mat lab such as feed forward backprop; feed
forward time delay, perceptron, Hopfield etc. For predict-
ing the performance of various object-oriented metrics,

Table 1. Collected Metrics
Metric Description
LOC Line of Code

WMC Weighted Methods per Class
RFC Response for a Class

LCOM1,LOCM2,LCOM5 Lack of cohesion in methods
CBO Coupling Between Object classes
DIT Depth of Inheritance Tree

Neural Network based Refactoring Area Identification in Software System with Object Oriented Metrics

Indian Journal of Science and Technology4 Vol 9 (10) | March 2016 | www.indjst.org

Feed Forward Neural Network (FFNN) is used in this
research. Feed forward networks include a series of layers.
The first layer has a connection from the network input.
All subsequent layers have connections from the previous
layers. The network’s output is produced by the final layer.

In Figure 1, eight neurons are used at input layer and 3
neurons at hidden layer. The 8 inputs are object-oriented
metrics which are: - CBO, DIT, LCOM1, WMC, RFC,
LOC, LCOM2, LCOM5. The connection between the ith
and jth neuron is characterized by the weight coefficient
wij, reflects the degree of importance of the given con-
nection in the neural network is reflected by the weight
coefficient. The output of a layer can be determined by the
following equations.

and predicted classifications done by a classification
 system.

In Figure 2, the following are the four different pos-
sible outcomes of a single prediction for a two-class case
with classes “1” (“yes”) and “0” (“no”).

True Positives (TP) •	
True negatives (TN)•	
False Positives (FP) •	
False Negatives (FN)•	

Figure 1. Neural Network Model.

Actual Class

Predicted
Class

Positives Negatives

Positives True Positive
(TP)

False positive
(FP)

Negatives False Negative
(FN)

True Negative
(TN)

Figure 2. Confusion matrix of the proposed Model.

a = x1w1 + x2w2 + x3w3... + xnwn

In this research, the following activation functions are
used:-

Hyperbolic Tangent Sigmoid Function (tansig)•	
Linear Transfer Function (purelin)•	

Tansig is used as activation function for hidden layer
and purelin is used as activation function for the output
layer.Mean Square Error (MSE) is a network performance
function which measures the network’s performance
according to the mean of squared errors. In this study,
Gradient descent is used for updating the weights vector.
Gradient descent method uses first-order derivative of
total error to find the minima in error space.

2.2.1 Performance Evaluation Parameters
In this research, True Negative Rate (TNR), accuracy,
precision and Mean Square Error (MSE) parameters are
calculated to predict the performance of the proposed
model using the confusion matrix of neural networks. A
confusion matrix contains information about the actual

A false positive is when the outcome is incorrectly
 classified as “yes” (or “positive”), when it is in fact “no” (or
“negative”). A false negative is when the outcome is incor-
rectly classified as negative when it is in fact positive. True
positives and true negatives are correct classifications.

TNR is the true negative rate that measures the pro-•	
portion of negatives that are correctly identified. It is
also called specificity.
Precision is a description of a level of measurement •	
that yields consistent results when repeated.
Accuracy refers to the degree of conformity and cor-•	
rectness of something when compared to a true or
absolute value. It also refers to the number of correct
classifications divided by the total number of classifi-
cations.
MSE•	 measures a network’s performance according to
the mean of squared errors. It is a network performance
function.

3. Results and Discussion
In this study, analysis is done by neural network based
model on different versions of Rhino.

3.1 Bad Smell Analysis
Twelve design smells were considered to detect the
 presence of a bad smell in code. If there was at least one

Jaspreet Kaur and Satwinder Singh

Indian Journal of Science and Technology 5Vol 9 (10) | March 2016 | www.indjst.org

bad smell present in the code in a class, it was marked as
smelly class.

From the Table 2, it is clear that there is slight varia-
tion in results of both versions of Rhino. The affected
classes are those classes which have bad smell. Number
of affected classes is same in both Rhino Versions. From

the Table 2, it is seen that in both RHINO versions, design
smell which is found in most of the classes is BLOB. In
rhino 1.7r1, antisingleton, large class, message chain and
Spaghetti Code is the design smell, which is found in none
of the class. In 1.7r2 large class, message chain, spaghetti
code and Swiss Army Knife is the design smell which is
found in none of the class.

3.2 Neural Network Model Table
In this, the Neural network proposed model was trained
using different number of epochs to examine if the num-
ber of epochs used in training has any impact on the
results or not. The results for the accuracy of these models
are shown further.

In Tables 3 and 4, Rhino 1.7r1 and 1.7r2 were taken as
a dataset for analysis. Weight and bias factor for various
predictors are calculated for different epochs (500, 1000,
and 2000). It shows the weights assigned from the input
layer to the hidden layer and from the hidden layer to the
output neurons layer. After the training, the weights were
tested on various datasets

3.3 Performance Tables and Graphs
The following tables show the results of the proposed neural
network model for 500, 1000, 2000 epochs. These datasets
(1.7r1, 1.7r2) were trained using different iterations.

Table 2. Analysis of Bad Smells

Rhino 1.7r1 Rhino 1.7r2

Total Classes 62 61

Affected Classes 60 60

Antisingleton 0 1

Blob 27 27

Class Data Should Be
Private

14 14

Complex Class 20 19

Large Class 0 0

Lazy Class 3 1

Long Method 19 17

Long Parameter List 11 11

Message Chains 0 0

Refused Parent Request 2 2

Spaghetti Code 0 0

Swiss Army Knife 1 0

Table 3. Neural network model table of Rhino 1.7r1

Predictor

Epochs: 500 Epochs: 1000 Epochs: 2000

Hidden Layer 1
Output
Layer Hidden Layer 1

Output Layer
Hidden Layer 1

Output
Layer

H(1:1) H(1:2) H(1:3) OUTPUT H(1:1) H(1:2) H(1:3) OUTPUT H(1:1) H(1:2) H(1:3) OUTPUT

Input
Layer

(Bias) 1.6046 –0.05183 –1.419 1.8823 0.071111 –1.6089 –1.8209 0.17064 1.5941

CBO –0.08993 0.23964 –0.84154 –0.25315 –0.49108 –0.0085105 0.63547 0.019521 0.062322

DIT –0.34383 0.63866 0.29788 –0.79023 –0.61212 0.77808 0.61649 0.35438 0.76106

LCOM1 –0.69863 –0.77222 –0.86214 –0.11482 0.5331 0.44253 –0.34357 0.17484 0.13314

WMC –0.09191 –0.17693 0.22703 –0.02412 0.3843 0.8481 –0.07251 –0.95385 0.66127

RFC 0.41636 0.048382 –0.66423 1.0485 –0.74559 0.81711 –0.2563 0.060044 0.59262

LOC 0.24628 –0.8283 –0.67483 0.048397 0.62809 0.064778 –0.83964 –0.82515 0.13772

LCOM2 –0.74851 –0.74197 –0.73753 –0.32549 0.35276 –0.60299 0.17458 0.53378 0.68976

LCOM5 –0.56782 –0.41473 –0.27206 0.023459 0.56418 0.16549 0.36415 –0.63456 –0.58322

Hidden
Layer 1

(Bias) 0.78416 –0.0789 0.4421

H(1:1) –0.1894 0.84795 –0.60404

H(1:2) –0.23795 –0.010775 0.28994

H(1:3) 0.70159 –0.24057 0.36376

Neural Network based Refactoring Area Identification in Software System with Object Oriented Metrics

Indian Journal of Science and Technology6 Vol 9 (10) | March 2016 | www.indjst.org

Table 5. Performance table (500 epochs)
Training On Testing On %Accuracy %TNR Precision MSE

Rhino 1.7r1 Rhino 1.7r2 94.9 0 96.6 0.0425

Rhino 1.7r1 96.7 0 98.3 0.0259

 Rhino 1.7r2 Rhino 1.7r2 96.8 0 96.8 0.0437

Rhino 1.7r1 98.3 0 98.3 0.0368

The results of the proposed model for 500 epochs are
shown above, in which the model was trained on one
dataset and tested on other. It is observed that accuracy
ranges from 94–99%. Rhino 1.7r1 has highest precision
when it is tested over the same version but it doesn’t give
better accuracy results.

Related graphs are shown below:
In Figure 3 number of epochs is taken on x-axis and

MSE on y-axis. The lower value of MSE, better the perfor-
mance of the model. In Figure 3, when Rhino 1.7r1 is tested
over same version, it gives low value of MSE; therefore it is
better predictive model as compared to other ones.

In Table 6, best performance is given when training
is done on 1.7r2 and testing on 1.7r1. Following Figure 4
shows the performance graph for Table 6.

As we can see in the figure, the graph of (d) is moving
downwards because it has low value of MSE. The best
training performance for (d) is 0.0184.

In Table 7, the highest accuracy is shown by Rhino
1.7r1 when it is tested over the same version and it has
lower value of MSE i.e. the model performs better. The
higher value of accuracy indicates that the model pro-
posed in this research effectively discriminate refactoring
area (bad smells) in the software, that is it has better
 predictive power.

Related Graphs are shown below:
From the Figure 5 1.7r1 (b), it is observed that best

training performance is given by 1.7r1 when it is tested
over the same version as compared to others. The graph
is declining downwards more as compared to others for
the same because it has low value of MSE. The results
demonstrate that if the data is highly trained then the
results will be better. When the data is trained with 500
epochs, it is suitable for only with-in company projects
but when the data is more trained than the model is
also appropriate for cross projects. As shown in Table
6 and 7 respectively, when the data is trained with 1000
and 2000 epochs, the results of the proposed model are
improved.

Table 4. Neural network model table of Rhino 1.7r2

Predictor

Epochs: 500 Epochs: 1000 Epochs: 2000

Hidden Layer 1
Output
Layer Hidden Layer 1

Output Layer
Hidden Layer 1

Output
Layer

H(1:1) H(1:2) H(1:3) OUTPUT H(1:1) H(1:2) H(1:3) OUTPUT H(1:1) H(1:2) H(1:3) OUTPUT

Input
Layer

(Bias) 1.534 0.063 1.607 1.603 0.033 –1.5756 –1.599 0.41 1.678

CBO –0.912 –0.883 0.057 –1.065 –0.699 –0.57127 0.876 –0.51 0.516

DIT 0.671 0.784 –0.678 –0.427 –0.296 –0.80859 0.535 –0.434 0.066

LCOM1 0.176 –0.101 –0.89 0.1 –0.69 –0.60461 –0.907 –0.936 0.113

WMC –0.368 –0.659 0.54 0.32 0.567 0.75166 0.584 0.968 –0.662

RFC –0.431 0.062 –0.609 0.174 0.798 0.068329 0.138 0.053 –0.889

LOC 0.218 –0.467 0.283 0.04 –0.296 –0.13945 –0.354 –0.73 0.601

LCOM2 0.441 0.434 –0.088 –0.017 –0.73 0.60625 –0.407 0.026 –0.605

LCOM5 –0.908 –0.501 0.757 –1.057 –0.066 0.54695 0.211 –0.424 0.311

Hidden
Layer 1

(Bias) 1.085 0.983 –0.144

H(1:1) –0.66 –0.03 –0.052

H(1:2) 0.465 0.38 0.837

H(1:3) 0.167 0.456 0.253

Jaspreet Kaur and Satwinder Singh

Indian Journal of Science and Technology 7Vol 9 (10) | March 2016 | www.indjst.org

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a)

(c)

(b)

(d)

Figure 3. Training performance (MSE) for 500 epochs (a)
1.7r1 using 1.7r2, (b) 1.7r1 using 1.7r1, (c) 1.7r2 using 1.7r2,
(d) 1.7r2 using 1.7r1.

Table 6. Performance table (1000 epochs)
Training

On
Testing On %Accuracy %TNR Precision MSE

Rhino 1.7r1 Rhino 1.7r2 94.9 0 96.6 0.0356

Rhino 1.7r1 96.7 0 98.3 0.0228

 Rhino
1.7r2

Rhino 1.7r2 96.8 0 96.8 0.0349

Rhino 1.7r1 98.3 0 98.3 0.0184

(a)

(c)

(b)

(d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

 Figure 4. Training Performance (MSE) for 1000 epochs
(a) 1.7r1using1.7r2, (b) 1.7r1using 1.7r1, (c) 1.7r2 using
1.7r2, (d) 1.7r2 using 1.7r1.

Table 7. Performance table (2000 epochs)
Training

On
Testing On %Accuracy %TNR Precision MSE

Rhino
1.7r1

Rhino 1.7r2 94.9 0 96.6 0.0315

Rhino 1.7r1 98.4 0 98.4 0.0175
Rhino
1.7r2

Rhino 1.7r2 95.2 0 96.7 0.0340

Rhino 1.7r1 98.3 0 98.3 0.0179

(a)

(c)

(b)

(d)

Figure 5. Training Performance (MSE) for 2000 epochs
(a) 1.7r1using1.7r2, (b) 1.7r1using 1.7r1, (c) 1.7r2 using
1.7r2, (d) 1.7r2 using 1.7r1.

4. Conclusion
In this study, two different rhino versions were validated
using designed neural network model. Results varied when
the performance was evaluated on different versions, for
different epochs using same neural network model. Neural
networks played a significant role in identifying the refac-
toring area with Object-Oriented metrics. This study also
identifies the relationship between bad smells and object-
oriented metrics. A variety of software tools have been
developed for the automated detection of bad smells but
they differ in their capabilities and approaches. The degree
of automation level varies from tool to tool. Further studies
should be done to investigate why certain refactoring tools
are underused. Researchers should also consider how this
knowledge can be used to rethink these tools. In general,
there is a need for formalisms, processes, methods and tools
which address refactoring in a more consistent, directed,

Neural Network based Refactoring Area Identification in Software System with Object Oriented Metrics

Indian Journal of Science and Technology8 Vol 9 (10) | March 2016 | www.indjst.org

scalable and flexible way. It is found that code smells affects
the quality of software system. Therefore good predic-
tion system is necessary for predicting the performance of
model. Our Proposed model produced better results even,
when it was used over inter-project datasets in case of 1000
and 2000 epochs. These models can be further modified
for cross-company projects for the better results.

5. Acknowledgement
I would like thank the Punjab Technical University,
Jalandhar for giving me the opportunity to work on my
thesis during my final year of M.Tech. Thesis as a research
tool is an important aspect in engineering.

I also owe my sincerest gratitude towards Dr. Satwinder
Singh (Asstt. Prof. Centre for Computer Science and
Technology, Central university of Punjab, Bathinda.) for
his valuable advice, continuous guidance, and a balanced
criticism throughout my thesis which has helped me
immeasurably to complete my work successfully.

6. References
1. Fowler M, Beck K, Brant J, Opdyke W, Roberts D.

Refactoring: Improving the Design of Existing Code.
Addison-Wesley; 1999.

2. Fowler M, Beck K. “Bad Smells in Code,” in Refactoring:
Improving the Design of Existing Code. 1st ed., Boston:
Addison-Wesley; 2000. p. 75–88.

3. Mantyla M, Vanhanen J, Lassenius C. A Taxonomy and
Initial Empirical Study of Bad Smells in Code. Proceedings
of the International Conference on Software Maintenance;
2003. p. 381.

4. Kataoka Y, Ernst M D, Griswold W G, Notkin D, “Automated
Support for Program Refactoring Using Invariants,” Proc.
International Conference on Software Maintenance, 2001,
pp. 736- 43.

 5. Li W, Henry S. Object-Oriented Metrics that Predict
Maintainability. Journal of Systems and Software. 1993;
23(2):111–22.

 6. Negara S, Chen N, Vakilian M, Johnson RE, Dig D. A
Comparative Study of Manual and Automated Refactorings.
European Conference on Object-Oriented Programming
(ECOOP); 2013. p. 552–76

 7. Rani A, Kaur H. Detection of Bad Smells in Source Code
According To Their Object Oriented Metrics. International
Journal for Technological Research in Engineering. 2014;
1(10): 1211–14.

 8. Kapila H, Singh S. Bayesian Inference to Predict Smelly
classes Probability in Open source software. International
Journal of Current Engineering and Technology. 2014 June;
4(3): 1724–28.

 9. Steinbruckner SF, Lewerentz C.Metrics Based Refactoring.
Proc. European Conf. Software Maintenance and Reeng;
2001. p. 30–38.

10. Kaur S, Singh S, Kaur H. A Quantitative Investigation of
Software Metrics Threshold Values at Acceptable Risk
Level. International Journal of Engineering Research and
Technology (IJERT). 2013 March; 2(3):1–7.

11. Gueheneuc YG. A Reverse Engineering Tool for Precise
Class Diagrams. CASCON; 2004.

12. Jamali SM. Object Oriented Metrics (A Survey Approach).
2006.

13. Chidamber SR and Kemerer CF. A metrics suite for object
oriented design. IEEE Trans. On Software Engineering.
1994; 20(6):476–493.

14. Satwinder S, Kahlon KS. Effectiveness of encapsulation
and Object-Oriented –Metrics to refactor code and iden-
tify error prone classes using bad smells. ACM SIGSOFT
Software Engineering Notes. 2011; 36(5): 1–10.

15. Satwinder S, Kahlon KS. Effectiveness of refactoring metrics
model to identify smelly and error prone classes in open
source software. ACM SIGSOFT Software Engineering
Notes. 2012; 37(2): 1–11.

16. Satwinder S, Kahlon KS. Object-Oriented metrics threshold
values at quantitative acceptable risk level. CSI transactions
on ICT; 2014; 2(3):191–205.

17. Satwinder S, Mittal P, Kahlon KS. Empirical model for
predicting high, medium and low severity faults using
object-oriented metrics in Mozilla Firefox. International
Journal of Computer Applications in Technology. 2013;
47(2/3): 110–124.

