
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(29), DOI: 10.17485/ijst/2016/v9i29/90783, August 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Improved Data Integrity Proofs using Additive
Homomorphic Encryption for Remote Storage

Parth Shah1* and Amit Ganatra2

1Department of Information Technology, Chandubhai S Patel Institute of Technology, Charusat, Changa - 388421,
Gujarat, India; parthshah.ce@charusat.ac.in

2Department of Computer Engineering, Chandubhai S Patel Institute of Technology, Charusat, Changa - 388421,
Gujarat, India; amitganatra.ce@charusat.ac.in

Keywords: Additive Homomorphism, Data Integrity Proof, Encryption, Efficiency, Remote Storage

Abstract
Background/Objectives: Remote data storage becomes the hype nowadays as various organizations provide free access
of the application. Security and efficiency are the major concerns while using such kind of application. Hence solution
related to data integrity verification needs to be focused to achieve reliability. Methods/Statistical Analysis: Despite of
all the hype surrounding the storage and security solutions, clients are still hesitant to deploy their business in the cloud.
As security is the major concerns which may become the hindrance as clients are more concern about data privacy and
data protection. In proposed work we have provided solution of efficiency and security related to remote data storage
using additive homomorphic encryption. Findings: Solution to this can be provided using some of the data integrity
proofs techniques. The advent of an advanced model of the security to provide the solution should not negotiate with the
required efficiency and reliability present in the current solutions. Additive homomorphic encryption has been proven
to efficient compared to multiplicative homomorphic encryption. Additive homomorphic encryption is efficient compare
to multiplicative homomorphic encryption which provides better efficiency. Applications/Improvements: Methodology
given could be useful for remote file storage applications. Proposed algorithm has been implemented and tested. The
results shows that it gives improvement over the existing solution in terms of tag generation and verification.

1. Introduction
Storage outsourcing causes a number of challenges1.
To verify that the file or data has been stored on server
entrusted to it by the client should be verifiable. The
server may not be trustworthy in terms of security and
reliability, e.g., it may maliciously or accidentally erase the
data or migrate it onto thearchives. Worsening the prob-
lems are factors such as restricted network bandwidth
and limited computing power. This problem is considered
as data integrity issue which can be solved using various
data integrity proofs mechanism.

Verifying integrity of the data, huge amount of data
need to be downloaded, which incurs network overhead.
The basic problem is that the client required to access
whole fileto perform verification, and the client maybe

constrained for verification due to a priory bound. In
addition, there are also three problems like public veri-
fiability, data updates and privacy against third party
auditors.

In the proposed work we have tried to provide solu-
tion related to remote data integrity verification using
additive homomorphic tags2, which is quite efficient com-
pared to existing solutions.

Rest of the sections of paper are organized as follows:
Section 2 gives the information of related work done so far.
Section 3 describes various cryptographic assessment and
overview of proposed scheme. Section 4 gives the details
about the proposed algorithm. Implementation and
experimental results are given in Section 5. Conclusion
is given in Section 6 and which also gives the future
enhancement related to proposed work.

Indian Journal of Science and TechnologyVol 9 (29) | August 2016 | www.indjst.org 2

Improved Data Integrity Proofs using Additive Homomorphic Encryption for Remote Storage

2. Related Work
Initial solution of data integrity proofs provided by3 uses
hash functions which is based on RSA. Unfortunately the
solution has the downside of needing the server to expo-
nentiation over the whole file. This clearly prohibits the
server whenever the file size is too large and more number
of client access the systems simultaneously. As proposed
in4 improvement of Speed in Public Key Cryptography
using Message Encoding Algorithm is used to improve
the speed of public key cryptography but this would be
overhead for remote file storage.

Additionally error recovery along with integrity
checking is provided in5. They propose scheme using
erasure-coded data that comprehends availability of data
in event of error. XOR-based, parity m/n erasure codes
have been used to create n different shares of a file which
would bekept at multiple sites. To provide collusion resis-
tant scheme, they blind parity and data by XORing them
with a pseudo-random stream.

In6 provided first probabilistic solution of Provable
Data Possession (PDP). It provides data format inde-
pendence without constraining on possible number of
tries the user can challenge to the remote server. This
scheme uses multiplicative homomorphic verifiable tags.
However, this does not guarantee that the client can
retrieve the file in the case of a failure. Also it relies on
modular exponentiation over file blocks, so scheme is
computationally intensive.

The theory of Proof of Retrievability (POR) is intro-
duced by7. It can recover the data along with it checks
the possession of data in case of disruption whereas PDP
does not. Sentinels are used which disguised the blocks,
hidden among file blocks such that the server cannot dis-
tinguish from encrypted blocks. This scheme can only be
useful to encrypted files. Number of challenges is fixed
a priory, as individual challenge consumes some sentinel
blocks.

All the above mentioned techniques are built on
public-key cryptosystem; consequently the calculation
overheads are very severe, particularly in the case of huge
file size. In8 authors have proposed PDP scheme based
which is based on symmetric key cryptosystem and a
provably secure, which supports some dynamic opera-
tions, including modification, deletion and appending.
They store pre-computed response in the form of meta-
data. In this method, Computation and communication
complexities of server and client are less because of sym-
metric key cryptosystem however it is unsuitable for
public verification. As it is not fully dynamic, it cannot do
block insertions, but only append type insertions are pos-
sible. Number of challenges and updates are fixed a priori
so limited. Also update requires recreation of remaining
challenges.

Multiple-Replica PDP (MR-PDP)9 is a provably secure
scheme. Client is allowed to stores t replicas of a file so
that it can verify t copies that held by the server. They have
extended previous work on PDP for a single copy of a file.

Table 1. Comparative analysis of various PDP schemes

Scheme Matrix [3] [6] [9] [12] [13] [14] [15] [16]
Data possession NO YES YES YES YES YES YES YES
Support Sampling NO YES YES YES YES YES YES YES
Type of Guarantee D D P P P P P P
Server Block access O(logn) O(1) O(1) O(logn) O(1) O(logn) O(logn) O(logn)
Server Computation
overhead

O(1) O(1) O(1) O(logn) O(1) O(logn) O(logn) O(logn)

Client Computation
overhead

O(1) O(1) O(1) O(logn) O(1) O(logn) O(1) O(logn)

Communication
overhead

O(logn) O(1) O(1) O(logn) O(1) O(logn) O(1) O(logn)

Storage cost O(1) O(1) O(1) O(n) O(1) O(1) O(1) O(1)
Support dynamic
integrity

NO NO YES YES YES NO YES YES

Supporting public
auditability

NO YES NO NO YES YES NO YES

Data recovery NO NO NO NO YES NO NO NO

Indian Journal of Science and Technology 3Vol 9 (29) | August 2016 | www.indjst.org

Parth Shah and Amit Ganatra

The scheme is computationally more efficient in com-
parison to use single replica PDP. This scheme is able to
generate further replicas on demand with low cost, when
failure occurs. Unfortunately, RSA is used to provide the
solution and data update is also not considered.

In their extended work10 they use Forward Error-
Correcting codes (FEC) which resulted in trade-offs on
performance, flexibility and reconfigurable rate of error
correction and data format of output, distilled the secu-
rity requirements and key performance for mixing FECs
into PDP. A Monte-Carlo simulation is used to build and
to evaluate trade-offs in space overhead, reliability and
performance. A detailed analysis of the scheme is pro-
vided which quantifies the probability of the success of an
attacker given different attack strategies, encodings and
client checking strategies. However, the scheme needs to
generate MACs for each block, resulting into large addi-
tional storage.

Previous schemes related to POR use the extra storage
and is applicable only to encrypted files. In11 designed two
different schemes based on POR. One of them isbased on
BLS signatures that has been proved secure in the random
oracle model, also it has the shortest response and query
with public verifiability. Another one isbuilt on function
of pseudorandom, which has also shortest response but a
longer query including private verifiability. They encode
file using an erasure code, which in turn able to convert
into an error-correcting code. The scheme provides the
static solution without any data update. Comparative
analysis of existing solution is given in Table 1.

3. Preliminaries

3.1 Cryptographic Setting and Assumptions
Our scheme uses two public parameters. The positive
integer d > 2 and m which is a large integer which should
have many small divisors and at the same time it should
have many integers less than m that can be inverted mod-
ulo m.

The secret parameters isr ∈Zm such that r−1 mod m
exists and a small divisor m’ > 1 of m such that s = logm’ m
is a (secret) security parameter. This parameters are based
on17.

3.2 Overview of Proposed Scheme
Proposed scheme involves the three entities. One of them
is server S. Clients C that outsources their data and prompt

the storage server to generate proof. Third party, denoted
by Auditor denoted by AUD that allowed to check the
integrity of clients’ data outsourced to the server.

Our scheme consists of the following modules:
•	 KEYGEN(1S) → (pk, sk): This module will generate

key. Parameter s as taken as security input, and
generate spk and sk as public parameters, where
pk and sk is the corresponding public key and pri-
vate key of a client respectively.

•	 TAG GENERATION (pk, sk,Fid) →Tm: Client ini-
tiates this module to generate the verification
metadata. File is divided into the blocks like a1,
a2...an, where n is number of blocks. It takes file
block ai ,, a secret key sk, a public key pk as an input
and returns the verification metadata Ek(ai).

•	 UPLOAD(F, Tm): Over a private channel this
data uploading module executed by the client to
assure secrecy of the data.

•	 AUDITINT (GenProof(pk, Fid, chal) →γ and
Check Proof(pk, sk, chal, γ) → {“success”, “fail-
ure”}): This module is executed between server S
and verifier (client or third party) so that server
convinces verifier that file is not maliciously tem-
pered. The verifier provides the file identifier Fid

as an input and the corresponding private key pk.
The server takes F as an input corresponding to
Fid. The solution is based on challenge-response
type protocol, where verifier sends a chal to the
prover and the prover compute sresp and sends
to verifier. If resp is valid with respect to chal,
verifier outputs success, that indicates integrity
of F is guaranteed, otherwise failure.

4. Proposed Algorithm
In the proposed scheme is based on the approach used
in17. Followings are the detailed description of the each
modules of the system

•	 KEY GENERATION (1S)
Generate public key pk = (d, m) and secret key sk = (r, m '),
such that s = logm’m is a security parameter and m is large
integer which may have many divisor.

•	 TAG GENERATION (pk, sk, Fid)
Let pk = (d, m) and sk = (r, m '), F = a1, a2 … an. where n is
number of blocks.

Randomly split ai into secrete ai1, ai2… aid such that

1

'
=

=∑
d

i ij
j

a a modm .

Indian Journal of Science and TechnologyVol 9 (29) | August 2016 | www.indjst.org 4

Improved Data Integrity Proofs using Additive Homomorphic Encryption for Remote Storage

Generate tags Ek(ai) = (ai1* r mod m, ai2* r mod m,…,
aid* r mod m), where 1£i£n.

•	 Calculate

SumTag = () () ()1 2 1
1 1 1

, , ,)
= = =

…∑ ∑ ∑
n n n

k i k i k i
i i i

E a E a E a

and generate

 1 2
1 1 1

(() ())τ
= = =

= + +…+

∑ ∑ ∑

n n n

sum k i k i k id
i i i

E a E a E a .

Output ()(,)τ τ= k i sumE a .

•	 GENERATE PROOF (pk, Fid, chal)

Let pk= (d, m) and chal=(c, r ' , m '' , k)where m '< m ''
and r such that ' 1−r modm exits.

Compute section the indices of the for which the
proofs will be generated ()π=j ki c , for 1£j £c.

Compute

() 1 2

' ' ' '
1 2(* , * , , *)= …

c ck i i i i dE a a r modm a r modm a r modm

where
1

 ''
=

=∑c c

d

i i j
j

a a modm .

Calculate 'SumTag =

(() () ()1 21 2
1 1 1

, , ,)
= = =

…∑ ∑ ∑ c

n n n

k i k i k i k
i i i

E a E a E a .

Generate

1 21 2
1 1 1

' (() ())τ
= = =

= + +…+

∑ ∑ ∑ c

n n n

sum k i k i k i k
i i i

E a E a E a

where

Output ()'(, ')γ τ=
ck i sumE a .

CHECK PROOF (pk, F, chal, γ)

Letpk= (d, m), sk = (r, m ') and chal=(c, r ' , m '' , k) and
γ for 1£k £c.

Compute
() () () ()'' ' 1 ' 1 ' 1

1 2((*)* , (*)* , , (*)*)− − −= …k i k i k i k idE a E a r rmodm E a r rmodm E a r rmodm

where where
1

'
=

=∑
d

i ij
j

a a modm .
Calculate

() ()1 2

' 1 ' 1 ' 1
1 2

1 1

'' ' * * * * , * *− − −

= =

= =

∑ ∑

n n

Sum Sum k i k i
i e i

Tag Tag r r E a r r E a r r

,…,

() ' 1

1

* *)−

=
∑ c

n

k i k
i

E a r r .

Generate

''
1 2

1 1 1

(() ())τ
= = =

= + +…+

∑ ∑ ∑

n n n

sum k k k k
i i i

E a E a E a

where .

If 'τ sum = ''τ sum then output success otherwise fail.

5. Implementation and
Experimental Results
Experiments related to computation complexity have
been conducted and compared with the conventional
methodology.

Figure 1. Time required to generate tags for files having
different size.

Figure 2. Time required to generate and verification of proof.

Indian Journal of Science and Technology 5Vol 9 (29) | August 2016 | www.indjst.org

Parth Shah and Amit Ganatra

All experiments are conducted on i5-4210 U an Intel
core CPU @1.7GHz 2.4GHz system with a 256 KB cache,
and 8 GB of RAM. Windows 64 bit operating system is
used to run the experiments. Experiments were con-
ducted on different file size to simulate time required to
generate tags (Figure 1.) and for the generation and veri-
fication of proof (Figure 2).

Table 2. Pre-processing vs. challenge trade-offs with
file size

File Size
(in KB)

Tag Generation Generate and Verify
Proof

Multi (in
ms)

Add (in
ms)

Multi (in
ms)

Add (in
ms)

1 1.67 2.19 28.93 18.03
5 55.91 11.21 29.72 15.96
10 114.78 19.05 16.44 8.26
25 246.16 27.53 27.68 15.79
100 911.45 55.45 33.12 16.59
418 3960.94 81.44 69.57 32.82
1010 9030.69 164.53 47.69 22.55
1555 14366.93 231.07 37.2 16.41
1865 16877.83 237.4 37.21 68.62
3405 29086.95 354.42 44.43 22
4052 34461.68 435.18 44.51 22.82
12124 101481.71 1062.17 182.44 91.97
24266 206038.51 3014.42 254.3 112.25

6. Conclusion and Future Work
We provided a framework for building public-key addi-
tive homomorphic solution which stratifies the certain
homomorphic properties. The proposed framework is
efficient compared to previous solution.

The work can be further extended to provide solution
by considering the deduplication functionality along with
confidentiality. Also key distribution problem may be
considered for the further improvement.

7. References
1. Lee J-Y. A study on data integrity and consistency guar-

antee in cloud storage for collaboration. Indian Journal of
Science and Technology. 2015 Apr; 8(S7). DOI: 10.17485/
ijst/2015/v8iS7/70471.

2. Suveetha K, Manju T. Ensuring confidentiality of cloud data
using homomorphic encryption. Indian Journal of Science
and Technology. 2016 Feb; 9(8). DOI: 10.17485/ijst/2016/
v9i8/87964.

3. Deswarte Y, Quisquater J-J, Saidane A. Remote integrity
checking. Proc of Conference on Integrity and Internal
Control in Information Systems ‘03; 2003 Nov.

4. Amalarethinam DIG, Geetha JS, Mani K. Analysis and
enhancement of speed in public key cryptography using
message encoding algorithm. Indian Journal of Science
and Technology. 2015 Jul; 8(16). DOI: 10.17485/ijst/2015/
v8i16/69809.

5. Schwarz TSJ, Miller EL. Store, forget, and check: Using alge-
braic signatures to check remotely administered storage.
2006 26th IEEE International Conference on Distributed
Computing Systems, ICDCS; 2006. p. 12. DOI: 10.1109/
ICDCS.2006.80.

6. Ateniese G, Burns R, Curtmola R, Herring J, Kissner L,
Peterson Z, Song D. Provable data possession at untrusted
stores. Proceedings of the 14th ACM Conference on
Computer and Communications Security (CCS ‘07); New
York, NY, USA. 2007. p. 598–609. DOI: http://dx.doi.
org/10.1145/1315245.1315318.

7. Juels A, Kaliski BS. Pors: proofs of retrievability for
large files. Proceedings of the 14th ACM Conference
on Computer and Communications security (CCS ‘07);
New York, NY, USA. 2007. p. 584–97. DOI: http://dx.doi.
org/10.1145/1315245.1315317.

8. Ateniese G, Di Pietro R, Mancini LV, Tsudik G. Scalable
and efficient provable data possession. Proceedings
of the 4th International Conference on Security and
Privacy in Communication Networks (SecureComm
‘08); New York, NY, USA. 2008. p. 10. DOI: http://dx.doi.
org/10.1145/1460877.1460889.

9. Curtmola R, Khan O, Burns R, Ateniese G. MR-PDP:
Multiple-replica provable data possession, The 28th
International Conference on Distributed Computing
Systems, ICDCS ‘08; Beijing. 2008. p. 411–20. DOI:
10.1109/ICDCS.2008.68.

10. Chen B, Curtmola R. Robust dynamic provable data pos-
session. Proceedings of the 2012 32nd International
Conference on Distributed Computing Systems Workshops
(ICDCSW ‘12); Washington, DC, USA: IEEE Computer
Society. 2012. p. 515–25. DOI: http://dx.doi.org/10.1109/
ICDCSW.2012.57.

11. Shacham H, Waters B. Compact proofs of retrievability. In:
Pieprzyk J, editor. Proceedings of the 14th International
Conference on the Theory and Application of Cryptology
and Information Security: Advances in Cryptology
(ASIACRYPT ‘08); Berlin, Heidelberg: Springer-Verlag.
2008. p. 90–107. DOI: http://dx.doi.org/10.1007/978-3-
540-89255-7_7.

12. Erway C, Kupcu A, Papamanthou C, Tamassia R. Dynamic
provable data possession. In Proceedings of the 16th ACM
Conference on Computer and Communications Security
(CCS ‘09); New York, NY, USA. 2009. p. 213–22. DOI:
http://dx.doi.org/10.1145/1653662.1653688.

Indian Journal of Science and TechnologyVol 9 (29) | August 2016 | www.indjst.org 6

Improved Data Integrity Proofs using Additive Homomorphic Encryption for Remote Storage

13. Storer MW, Greenan K, Long DDE, Miller EL. Secure data
deduplication. In Proceedings of the 4th ACM International
Workshop on Storage Security and Survivability (StorageSS
‘08); New York, NY, USA. 2008. p. 1–10. DOI: http://dx.doi.
org/10.1145/1456469.1456471.

14. Wang C, Wang Q, Ren K Lou W. Ensuring data storage
security in cloud computing. 17th International Workshop
on Quality of Service, IWQoS; Charleston, SC. 2009. p. 1–9.
DOI: 10.1109/IWQoS.2009.5201385.

15. Liu F, Gu D Lu H. An improved dynamic provable data
possession model. 2011 IEEE International Conference

on Cloud Computing and Intelligence Systems (CCIS);
Beijing. 2011. p. 290–5. DOI: 10.1109/CCIS.2011.6045077.

16. Shen S-T, Tzeng W-G. Delegable provable data posses-
sion for remote data in the clouds. Qing S, Susilo W, Wang
G, Liu D, editors. Proceedings of the 13th International
Conference on Information and Communications Security
(ICICS’11); Berlin, Heidelberg: Springer-Verlag. 2011. p.
93–111.

17. Domingo-Ferrer. A provably secure additive and multipli-
cative privacy homomorphism. Information Security-ISC,
Springer LNCS. 2002; 2433:471–83.

