
Indian Journal of Science and Technology, Vol 9(7), DOI: 10.17485/ijst/2016/v9i7/87835, February 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

Abstract
Background/Objectives: To meet the challenge of increasing design complexity, designers are turning to System Level
Design Languages (SLDLs) to model systems at a higher level of abstraction. Methods/Statistical Analysis: Now there are
some system level languages like SystemC but hardware developers prefer HDL based languages like VHDL for coding. So
focusing on methods for extending VHDL for system-level modeling is the issue of hardware modeling researches. VHDL
itself has some high level structures to model near system-level. Here we have implemented a 9 switch Network-on-Chip
(NoC) with processing and communication elements like FIFOs and we have tried to eliminate signals as communication
elements between processing components and using high level structures in addition to resolution function (for the first
time in NoC structure) in routing algorithm. Finding: Resolution function can decrease simulation speed as in the literature
mentioned so we have applied some improving techniques for simulation accelerating to see the result of these tradeoffs.
All in all the one with resolution function and other high level structures besides applying improving speed rules has better
performance and we have gain about 28% speed up and 35% speed up in contrast to the latter one without eliminating
possible signals. Conclusion/Application: All in all by using accelerating rules we had no simulation time penalty and
gained 28% speed up. Resolution function is a high level structure which is used for hardware purposes, it is preferable
than simply implementing the routing algorithm by other common statements

Keywords: High Level Structures, NoC, Resolution Function, System Level Design, VHDL

Pseudo-System-Level Network-on-Chip Design
and Simulation with VHDL: A Comparative
Case Study on Simulation Time Trade-Offs

Negin Mahani*

Zarand Higher Education Complex, Computer Engineering Department, Shahid Bahonar University, Kerman, Iran;
Negin.mahani @uk.ac.ir

1. Introduction

In hardware design, we are familiar with several levels of
abstraction: transistor, gate, Register Transfer Level (RTL)
and Transaction Level Modeling (TLM). It has been
apparent that the Register Transfer Level is too low for
the size of hardware systems which are being fabricated,
due to increasing chip capacity. So designers prefer more
abstract levelsy1.

System simulations are vital for pre-silicon
development. One of the bottlenecks that face current
developers is the massive simulation times that arise
with such embedded systems especially that the sizes
and complexities of such circuits are increasing. A way
to decrease simulation times is to change the abstraction
level in which the system is defined, such that the

system still performs the same function but with less
simulation complexity. Simulating a complex system
defined in RTL would mean that the simulator will have
to monitor each internal register in the system at each
clock cycle and compute how the register value should
change. An abstraction level like TLM would offer some
communication abstraction to the system such that the
intermediate signals that connect different modules of
the system can be removed. By applying such abstraction
to an RTL system, simulation times of a System-on-
Chip (SoC) with high communication rates between its
modules would be reduced significantly2.

Object oriented languages make creating new levels of
abstraction in a single language particularly easy and in
fact, that is the primary virtue of C++. SystemC is nothing
more than a hardware level of abstraction implemented

Vol 9 (7) | February 2016 | www.indjst.org Indian Journal of Science and Technology2

Pseudo-System-Level Network-on-Chip Design and Simulation with VHDL: A Comparative Case Study on Simulation
Time Trade-Offs

by extension in C++. More important is that using C++,
additional data types and operations can be defined to
create higher levels than the base SystemC level. TLM is
also an extension to SystemC3,4.

Design flow must utilize Hardware Description
Languages, synthesis and co-simulation capabilities to
achieve these goals. Hardware Description Languages
(HDL) such as VHDL has been developed that allow the
description of the behavior and the structure of a digital
system in a simulatable and synthesizable form. The aim
of this paper is to focus on previous works in extending
VHDL for system level modeling extracting VHDL
challenges in system level. Besides we have implemented a
NoC infrastructure close to TLM level by using processing
and communication elements and tried to eliminate using
communication signals as much as possible. We have
proposed to use resolution function as a built in language
structure in NoC routing algorithm development besides
other high level structures and observe the effect of
these high level structures in simulation time. Section
2 is about system level HDLs. Section 3 is about VHDL
system level challenges and high level structures. Next
section includes applying high level structures in order
to increasing the abstraction level in VHDL models and
simulation accelerating techniques. Section 5 describes
implementing a NoC structure close to system level with
VHDL. The simulation result is come in the next section
and the final part is the conclusion.

2. System Level HDLs

The first question which any designer would encounter
is that which language should be used for system level
hardware design? There are possible choices such as
SystemC, System-Verilog, Ada and etc. The answer to this
question is very dependent on the purpose of system level
modeling but some tradeoffs from inside and outside of
the language, such as language constructs and semantics,
tool support, third-party IP availability and access to
knowledgeable engineers are also interfered in this choice.
The most popular languages which are used in hardware
design nowadays are VHDL and Verilog which both are
suitable for RTL and have substantial disabilities to cover
system level. System-Verilog is a system level language
from Verilog family with verification purpose in mind
from first advent. VHDL is used for high level design, but
it lacks abstract timing and communication, genericity
and Object Oriented modeling. Some groups like SUAVE

have proposed some extensions to VHDL to cover system
level. Most of the extensions are added from Ada95 as
the base language of VHDL from early development. It
shows that Ada has potentials to be used as an HDL. Ada
as an HDL has a long history which is out of scope of this
paper5–7.

Among all of the languages mentioned above, SystemC
and System-Verilog are more common. The base language
of System-Verilog is Verilog and its main focus is on RTL
modeling like Verilog. The main purpose of this language
is verification. The enhancements related to directed test
generation, assertion definitions and coverage metrics are
all very valuable capabilities and all are closely tied to the
RTL implementation domain.

SystemC is a class library in C++ and TLM is patched
after on top of SystemC. Due to lots of patches, there
are many problems with debugging which are the most
common user problems with this language. Ada is the
base language of VHDL and it has inherent concurrency
as well as object oriented structures, so it has been chosen
to extend VHDL for System-Level modeling in some
previous works. The most important advantages of Ada
over SystemC are listed as below:
•	 High readability and well descriptive language.
•	 Faster and more convenient debugging.
•	 Inherent concurrency and interface types (not being

patchy).
•	 Having the link to RTL.
•	 Capability to export and import to/from foreign

languages.
•	 Shorter simulation time8–10.

2.1 VHDL Unique Advantages
There are lots of benefits of using VHDL in hardware
description. Some more significant ones are summarized
as below:
•	 Executable specification.
•	 Validate spec in system context.
•	 Functionality separated from implementation.
•	 Simulate early and fast (Manage complexity).
•	 Explore design alternatives.
•	 Get feedback (Produce better designs).
•	 Automatic synthesis and test generation (ATPG for

ASICs).
•	 Increase productivity (Shorten time-to-market).
•	 Technology and tool independence (though FPGA

features may be unexploited).
•	 Portable design data (Protect investment).

Vol 9 (7) | February 2016 | www.indjst.org Indian Journal of Science and Technology 3

Negin Mahani

3. �VHDL System Level Challenges
and High Level Structures

The first problem in system-level modeling by VHDL is
about how to get rid of signals. Signals as a sign of low level
hardware description has no place in high level modeling.
The second characteristic required for supporting system
level in VHDL is addition of object orientation features,
since in every system level HDLs like TLM there are
roots of object orientation basics. OO-VHDL is a name
of a project which has worked on this issue11. Other
researches for extending VHDL in system level is done by
Ashenden called SUAVE project. In these works because
of the similarity to Ada syntax they have tried to rent high
level structure from Ada programing language. They have
presented some requirements document called SUAVE
specification for entities called channels for data transport
and using function calls for sending and receiving data just
like the features which really exist in TLM nowadays12,13.

There are more constructs and features for high-level
modeling in VHDL than there are in most of HDLs.
Abstract data types can be used along with the following
statements:
•	 Package statements for model reuse.
•	 Configuration statements for configuring design

structure.
•	 Generate statements for replicating structure.
•	 Generic statements for generic models that can be

individually characterized, for example, bit width.
All these language statements are useful in

synthesizable models14.

4. �Techniques for Increasing the
Abstraction Level/Simulation
Speed

An important step towards a more efficient design
methodology is to increase the abstraction level in the
design process. Describing an adder with a ’+’ rather
a network of AND, OR and XOR gates is much more
readable and also less error-prone.

No matter how fast a simulator gets, the HDL
developer can further improve performance by applying
a few simple guidelines to the coding style. The key to
higher performance is to avoid code that needlessly creates
additional work for the HDL compiler and simulator. The

following are the general techniques that have a high
performance impact; some of them also increase the
abstraction level of the design:
•	 Use Optimized Standard Libraries.
•	 Use Loop statement (The loop statement is supported

by most synthesis tools as long as the loop range is
constant).

•	 Reduce Process Sensitivity.
•	 Reducing waits.
•	 Reduce or Delay Calculations.
•	 Limit File I/O (Reading or writing to files during

simulation is costly to performance, because the
simulator must halt and wait while the OS completes
each transaction with the file system).

•	 Multiplexing using integer conversion.
•	 Use State machines.
•	 Integers vs. Vectors (Arithmetic operations on

Standard Logic Vectors (SLVs) are expensive
compared to integer operations).

•	 Avoid Slicing Signals.
•	 Avoid the “Linear Testbench”.
•	 Use sub-programs.
4.1 �Resolution Function an Example of

Special Sub-Programs
Using sub-programs (procedures and functions) is
a powerful method to hide complexity and improve
readability. Tested and reusable sub-programs can be kept
in a separate package and use as an IP library of small
algorithms (Figure 1).

Figure 1. Resolution function.

A resolution function defines how values from multiple
sources, multiple drivers, are resolved into a single value.
A type may be defined to have a resolution function.
Every signal object of this type uses the resolution
function when there are multiple drivers. A signal may be
defined to use a specific resolution function. This signal

Vol 9 (7) | February 2016 | www.indjst.org Indian Journal of Science and Technology4

Pseudo-System-Level Network-on-Chip Design and Simulation with VHDL: A Comparative Case Study on Simulation
Time Trade-Offs

uses the resolution function when there are multiple
drivers. A resolution function must be a pure function
that has a single input parameter of class constant that is
a one dimensional unconstrained array of the type of the
resolved signal.

5. �VHDL System Level Modeling
of Noc Infrastructure
(Accelerating Simulation
Approach)

In this section we have tried to implement a NoC as
high level as possible. To reach this aim we have tried to
eliminate using signals when it was possible and try to use
high level structures including resolution functions.

In order to accelerating simulation we have done the
following steps where it was possible to overcome the
overhead of using resolution function and resolved signal.
•	 Minimizing the number of signal assignment(using

variable assignment instead).
•	 Reducing the number of signals (including implicit

signals, Variables should be used instead of signals).
•	 Avoiding large vectors/ complex records.
•	 Minimizing the number of concurrent

statements(grouping common functions within
processes, all registers can be updated in a single
process, operations sensitive to the same signals can
be grouped in a same process).

•	 Avoid repeated codes or function calls(reduce
computations in the redundant paths by saving
temporary results in variables).

•	 Using numerical data types such as Integers rather
than Std_Logic and St_Logic_Vector and Bit Vector.

•	 Avoid type conversions.
•	 Enumerated types have better simulation speeds than

constrained15.

5.1 NoC Switch Design
We have designed and implemented a high level model for
NoC switches with five identical ports, routing logic and
a routing table (here it is a function). Each port contains
an input buffer for storing the incoming packets (link
list FIFO). Each packet must be a record that includes a
header which determines the destination address and a
data payload. When a packet arrives, it will be stored in
the input buffer. The router continuously checks received

packets and according to their destinations routes
them to the appropriate output port. The input buffer
is a circular FIFO for storing input packets of neighbor
switches. We have put an extra field in the packet for an
indication of how long it has taken the packet to arrive
at its destination. In our parametric design we have used
high level structures of VHDL (Figure 2, Figure 3)16,17.

Figure 2. NoC switch block diagram.

Figure 3. Two NoC switch relation.

5.2 NoC Switch Implementation
In our NoC we have routing function that according to the
destination of the packet routs it. If we have some packets
from different ports that want to go out from the same out
port, we call a resolution function to decide between them.
This decision could be based on the life time or based on
the order of the ports. We have chosen ‘left attribute. Each
packet which has been removed from the input FIFO,
should be kept to be routed next time. Because of this
fact, we have a function to tick the remained packets in

Vol 9 (7) | February 2016 | www.indjst.org Indian Journal of Science and Technology 5

Negin Mahani

order to be valid and not be destroyed. (The array that
shows the port has a valid packet and it has not been
routed yet is rout_full when rout full (1) Is one it means
that we should not request to the FIFO and a packet is
ready, before a request), As it was told before we call the
resolution function when we have some packets for the
same out port. The code of this function has come below
(Figure 4).

Figure 4. Resolution function for routing.

Figure 5. Resolved type.

To use this function we have defined resolved_packet_
vector as resolved type of packet_vector (Figure 5).

5.3 IP Blocks Implementation
There are six different IP blocks in the NoC. All of them
are simple processor units. P1, P9 (Master processors)
read the input data from a specified file and send it to all
other processors. Also these processors gather responses
and write them in separate output files. P2, P4, P6, P8
(Slave processors) get the received packet and process it.
Then they make new packet as processing result packet
and send it to the proper destination that is mentioned in
incoming packet. Processing task of each slave processor
is not so important they just put their number instead of
the payload of the packet which is going to be processed.
Here the processes are not important we have done this
for simplicity. Each slave processor sends the incoming
packet after processing to one of the master processors
according to the following list:
P2, P4 = >P9
P6, P8 = > P1

Figure 6 shows sending packets from P1 to all other
processors and gathering responses (dotted lines) in P1
and P9. Also P1 sends the data packets to P9. In this case
P9 writes received packets in an output file. P9 processor
application is like P1 processor.

Figure 6. NoC switch scenario.

5.4 Packet Format
Packets must contain the following fields at least in
addition to any extra field that is required for computing
number of packets that each switch pass and the delay.

Source address => the source node that generates and
sends the packet.

Destination address => the destination address for
that packet.

Response node address => the address of the node
that the response must send to it.

Data => the data payload of each packet (And other
necessary fields).

 There are two different input files each of which
belongs to one of the master processors.

5.5 Output Files Format
Each master processor makes an output file for each
of processors that send their responses to it. Master
processor writes the information of each received packet
in corresponding response file according to the source
address field. Information of each packet is kept separately
and it contains some information about delay, number of
switches and the processed data and some other useful
information.

6. Simulation Results

The simulation result wave form is illustrated in Figure
7. By comparing the simulation speed of our NoC model
and the one without resolution function and accelerating

Vol 9 (7) | February 2016 | www.indjst.org Indian Journal of Science and Technology6

Pseudo-System-Level Network-on-Chip Design and Simulation with VHDL: A Comparative Case Study on Simulation
Time Trade-Offs

techniques (both models were closed to system level
with eliminating signals where it was possible) we have
yield about 28% speed up. Resolution function is a high
level structure which is used for hardware purposes,
it is preferable than simply implementing the routing
algorithm by other common statements. Again we have
done the simulation time comparison between our NoC
and the other one without eliminating possible signals
(in the latter). This time we have gained 35% speed up.
It was not possible for us to eliminate all signals in the
project so the gained speed up was not the real speed up
in TLM over lower levels but by decreasing the number
of signals we must have reached a significant speed up
though. This speed up is because that signal modification
due to lots of attributes is a time consuming work but
variable modification is not the same and some other
high level structures are processed more quickly than low
level ones. To say more precisely the overhead of each
signal is as follows (for useful information about impact
of description language, abstraction layer and value
representation on simulation performance refer to18,19):

•	 Each signal requires one or more drivers.
•	 Specific handling and event scheduling.
•	 Memory storage.
•	 More instructions to execute.

7. Conclusion

The reason for the importance of being able to model
hardware in VHDL is clear. Hardware modeled in one
language can also be modeled in the other. The choice
of HDL is shown not to be based on technical capability,
but on personal preferences, EDA tool availability and
commercial, business and marketing issues. VHDL
simply addresses the hardware-related characteristics of
parallelism and structure. Standard VHDL have good
facilities for extending the level of abstraction, attempts
to use it for any of the higher levels requires non-standard
additions or interpretations of its existing facilities. The
amount of code to be written for the design decreases
as the level of abstraction increases, which reduces
the probability of coding errors. The simulation speed

Figure 7. Simulation results of NoC switch.

Vol 9 (7) | February 2016 | www.indjst.org Indian Journal of Science and Technology 7

Negin Mahani

increases as the level of abstraction increases. In addition,
the generality of writing code at higher levels can result
in a more general implementation. Using sequential
VHDL statements to code the algorithm also allows the
use of complex statements and a higher abstraction level.
Debugging and analysis is simplified due to the serial
execution of statements, rather than the parallel flow used
in dataflow coding. In this paper we have summarized
VHDL challenges which we have encountered in our
NoC design. We have utilized some high level VHDL
structures to model our NoC close to system level. Then
we have made a simulation time comparison between
two equivalent models of the NoC one with using high
level structures specially resolution function in routing
algorithm the other without using them. Often small
changes to a handful of code lines can yield a large
performance benefit. Resolution function can decrease
simulation speed as in the literature mentioned so we
have applied some improving techniques for simulation
accelerating to see the result of these tradeoffs. All in all
the one with resolution function and other high level
structures besides applying improving speed rules has
better performance and we have gain about 28% speed
up and 35% speed up in contrast to the latter one without
eliminating possible signals.

8. References
1.	 Paul J, Thomas D, Cassidy A. High-level modeling and sim-

ulation of single-chip programmable heterogeneous mul-
tiprocessors. ACM Transactions on Design Automation of
Electronic Systems. 2005 Jul; 10(3):431–61.

2.	 Karim E. Modeling of a multi-core Micro-Blaze system
RTL and TLM abstraction levels in SystemC. Master Proj-
ect Nr. 2013 Mar; 3395:1–77.

3.	 Glass R. Reuse: What’s wrong with this picture? IEEE Soft-
ware. 1998 Mar; 15(2):57–9.

4.	 Skillicorn D, Talia D. Models and languages for par-
allel computing. ACM Computing Surveys. 1998 Jun;
30(2):123–69.

5.	 Haobo Y, Domer R, Gajski D. Embedded software genera-
tion from system level design languages. Design Automa-
tion Conference, Asia and South Pacific; 2004 Jan 27-30.
p. 463–68.

6.	 Mahani N. Making Alive Register Transfer Level and Trans-
action Level Modeling in Ada. ACM SIGAda Adaletters.
2012 Aug; , 32(2):9–16.

7.	 Ecker W, Boettger J. Evaluation of Ada’95 and VHDL for
system level modeling. Proceedings of the VIUF ‘97 Spring
Meeting. VHDL the next 10 years; 1997. p. 15–29.

8.	 Calazans N, Moreno E, Hessel F, Rosa V, Moraes F, Carara
E. From VHDL Register Transfer Level to SystemC trans-
action level modeling: A comparative case study. 16th Sym-
posium on Integrated Circuits and Systems Design, IEEE;
2003 Sep 8-11. p. 355–60.

9.	 Douglas J. VHDL and Verilog compared and contrast-
ed plus modeled example written in VHDL, Verilog and
C. 33rd annual Design Automation Conference; Las Ve-
gas.1996 Jun 3-7. p. 771–6.

10.	 Ussery C. VHDL is the Phoenix burning. VHDL the next
10 years. 1997. p. 29–35.

11.	 Pandharpurkar N, Ravi V. Design of BIST using self-check-
ing circuits for multipliers, Indian Journal of Science and
Technology. 2015 Aug; 8(19):1–7.

12.	 Ashenden PJ, Wilsey PA, Martin DE. SUAVE: Extending
VHDL to improve data modeling support, IEEE Design
and Test of Computers. 1998 Apr-Jun; 15(2):34–44.

13.	 Mills M, Peterson G. Hardware/Software Co-design:
VHDL and Ada 95 code migration and integrated analysis.
Annual ACM SIG Ada International Conference on Ada;
Washington, D.C., United States. 1998. p. 18–27.

14.	 van den Hurk J, Semicond P, Dilling E. System level design,
a VHDL based approach. European Design Automation
Conference; Brighton. 1995 Sep 18-22. p. 568–73.

15.	 Cohen B. VHDL Answers to Frequently Asked Questions.
Springer; US. 1997. pp. 222–37.

16.	 Elhaji M, Boulet P, Zitouni A, Meftali S, Dekeyser J. Sys-
tem level modeling methodology of NoC design from
UML-MARTE to VHDL, design automation for embedded
systems. Springer Verlag; Germany. 2012. p. 1–27.

17.	 Marzbanrad J, Soleimani G, Mahmoodi‑k M, Rabiee A H.
Development of fuzzy anti‑roll bar controller for improv-
ing vehicle stability. Journal of Vibroengineering. 2015;
17(7):3856–64.

18.	 Sinthuja S, Kumar J, Manoharan N. Energy efficient voltage
conversion range of multiple level shifter design in multi
voltage domain, Indian Journal of Science and Technology.
2014 Oct; 7(S6):82–6.

19.	 Ecker W, Esen V, Schonberg L, Steininger T, Velten M, Hull
M. Impact of description language, abstraction layer and
value representation on simulation performance. Design,
Automation and Test in Europe; Nice, France. 2007 Apr 16-
20. p. 767–72.

