
Abstract
This paper presents the comparative analysis of various level of multilevel inverter for induction motor torque ripple 
minimization. The neutralpoint clamped (NPC) inverter is used an adequate solution in AC drives application. The 
Conventional inverters compared to multilevel inverters have many limitations in high-voltage and high-power applications 
like poor power quality, high voltage stress, EMI/EMC issue etc. Also proposed the Space Vector neutral point clamped 
inverter for Torque ripple reduction in induction drive. The Simple Space vector control scheme is applied to neutral point 
clamped inverter by reference torque estimation. In this proposed topology offer an improved performance in the form of 
torque ripple reduction scheme. The Classical direct torque control of two-level VSI scheme is compared with proposed 
three-level NPC scheme. The main aim of this paper to provide a significant method and control scheme to obtained torque 
ripple reduction in induction motor Drive. The result shows the performance of neutral point clamped inverter using CB-
PWM on induction drive. In this paper three levels VSI based Neutral Point Clamped (NPC) multilevel inverter fed induction 
motor drive is simulated, analyzed and compared with two levels VSI based NPC inverter drives. Torque of the motor is 
controlled by using space vector based direct torque control (DTC) method. The simulation results are carried out by using 
MATLAB/SIMULAINK environment.
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1.  Introduction
Recently, the growth of high power, low cost and authentic 
power electronic converters causes an opportunity of 
using medium or large induction machines in advanced 
industrial drive applications1. The Direct torque control 
is a powerful control scheme for induction motor torque 
ripple control. The conventional hysteresis based DTC 
algorithm for voltage switching method has relative mer-
its of simple structure and easy implementation2. 

Currently various decades of investigation, many 
DTC strategies have been proposed so far. The four 
major categories such as band-constrained technique3, 

Space Vector Modulation (SVM)-based control of the 
switching frequency4,5 and strategies using predictive con-
trol schemes6 and finally the hybrid PWM (Pulse Width 
Modulation) technique7. The Power Factor Correction 
(PFC) based control strategies used for torque ripple of 
BLDC Drive8. Nonetheless, the improved performance is 
federal to significant growth of implementation schemes.A 
direct torque control of two-level inverter for switching 
frequencies control ranges 2–3 kHz, theSwitching fre-
quency is operated below 1 kHzcauses some limitation in 
torque ripple reduction9.Two-level Inverter switching fre-
quency is restricted in variable switching frequency andit 
is not applicable in high power drive applications10.
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Present work deal with comparison in performance of 
Torque ripple reduction fed induction motor drive using 
two levels VSI and three-level neutral point clamped 
inverter schemes11. The basic problemsare associated 
with the conventional DTC control methods because of 
high torque ripple, variable switching frequency and per-
formance deterioration at low, near to zero speed basic. 
Limitation of classical controller has two to three control 
loops are presented for torque and flux control12,14.

The standard multilevel inverter topology discussed 
with two-level inverter topology, multilevel inverter is 
a most prominent solution for induction motor drive. 
The Multilevel must be used to reduce the harmonics 
and high switching frequency with low switching losses. 
Three-level inverter is popularly used in high power 
drives application15,16. A lot of research have been done 
in neutral point clamped multilevel inverter topology 
and a numerous of control methods have been presented 
in the literature stand on ripple minimization in induc-
tion motor17,18. An active Neutral Point Clamped inverter 
(NPC) fed BLDC drive used to analysis the minimization 
of torque ripple and reduction of harmonics19.

The modeling of induction machine20, 21 is referred by 
using the reference frame of theory. The total harmonic 
distortion of neutral point diode clamped inverter is 
analyzed for solar power applications. The comparative 
analysis of multilevel inverter is carried out under various 
PWM techniques22, 23. The optimized harmonic elimina-
tion is analyzed by phase disposition and phase shifting 
PWM method24.

In this paper analyzed the suitable topology for torque 
ripple minimization by comparing the direct torque con-
trol of two level VSI(Voltage Source Inverter) and three 
level NPC-VSI(neutral point clamped- voltage source 
inverter). In principle, DTC method based on simple 
space vector modulation scheme is introduced for torque 
ripple reduction. Additional factors of proposed control 
scheme are DC-Link balancing control, current ripple 
reduction and flux control. A simple space vector scheme 
is changes in same direction with respect to level of posi-
tive and negative variation over DTC two-level scheme. 
The rest of the paper is organized as follows: sections II 
described about the induction machine and DTC with 
two-level VSI. Sections III described about DTC with 
the three-level NPC-VSI topology. The DTC based SVM 
strategy is discussed at section IV so the comparison 
simulation results are exposed at the next section. Finally, 
conclusions are given in the last section.

2.  Theory

2.1  Modeling of Machine
An induction Machine is modeled using voltage and 
flux equations which are referred to a general reference 
frame, denoted by the superscript “g” and are shown as 
follows17,18.

Stator voltage equation:
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Stator flux equation:
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By referring to a stationary frame, denoted by the 
superscript “a,” which is with d -axis attached on the sta-
tor winding of Phase “ A,” the mathematical equations of 
induction motor can be rewritten as follow

Stator voltage equation:

	 v i R ps s s s
a b al= + � (7)

Rotor voltage equation:

	 0 = − +i R jw pr r r r r
a a al l � (8)

Stator flux equation:

	 la a a
s s s m rL i L i= + . � (9)

Rotor flux equation

	 la a a
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Mechanical equation:
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e ds qs qs ds= −

3
4

( )l l l la a a a � (12)

Substituting (9) and (10) into 12, yields

^



P. Rajasekaran and V. Jawahar Senthilkumar

Indian Journal of Science and Technology 3Vol 9 (7) | February 2016 | www.indjst.org

	 T P L
L Le

m

s r
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3
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Where s = Total leakage factor, s ≡ −1 2L L Lm s r/

2.2  DTCBasis
DTC topologies allows a direct control of the motor 
variables through a suitable selection of the inverter 
control signals, the stator flux and torque are need to be 
increased, decreased, or maintained for fulfill the require-
ment of drive. These decisions are made by output cj of 
the flux dynamic of Fs is governed by the stator voltage 
equation expressed in the stationary reference frame, as 
follows

	 d
dt

s V r is s sΦ = − � (14)

where, Vs stator voltage vector, is and rs are the current 
vector and resistance respectively. Neglecting the volt-
age drop rsis across the stator resistance, and taking into 
account that the voltage vector is constant in each sam-
pling period (Ts ), stator flux vector variation turns is 
proportional to the applied voltage vector.

For Constant value of stator flux, the changing of the 
electromagnetic torque Tem based on the applied voltage 
vector’s directions, such that:

	 T N M
l l Mem p
r s

s r
s

=

−
2 || || ||Φ Φ sin d � (15)

where, Fr
s, named as rotor flux is referred to the stator, d 

is the angular shift between the stator and rotor flux, Np is 
the number of polesand ls, lr are the stator self-inductance 
and the rotor self-inductance respectively. The mutual 
inductance denoted by M.

2.3 � DTC Scheme for Two Level VSI 
Topology

Stator flux is derived from equation7 is given by

	 ˘ (˘ ˘ )l ia a a
s s s sv R dt= −∫

^ ^ ^ � (16)

where, v^s
a and ı^s

a are the measured the voltage and current 
respectively. The classical control of DTC with two level 
inverter is shown in Figure 1. Electromagnetic torque is 
derived from equation13 is given by 

	
^

T P
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4
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The operating status of the switches in the two-level 
inverter shown in Figure 2 can be represented by switch-
ing states. Switching states are defined by torque error and 
flux errors shown in Table 1 and Table 2.

Reference voltage is derived from a and β reference 
frame below18.
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By equating the real and imaginary parts derived by,
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Figure 1.  Classical DTC scheme with two-level inverter.
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3. � DTC Scheme for Three level 
NPC Topology

Switching states that are shown in Figure 3 can constitute 
the operating status of the switches in the three-level 
inverter. When switching state is ‘1’, it is specified that 
upper two switches in leg A connected and the inverter 
terminal voltage VAZ, which means the voltage for terminal 
A with respect to the neutral point Z, is +E, whereas ‘–1’ 
denotes that the lower two switches are ON, which means 
VAZ = –E. When switching state ‘0’, it indicates that the inner 
two switches S2 and S3 are connected and VAZ = 0 through 
the clamping diode and load current directions. Switching 
status for leg A. Leg B and leg C shown in Table 3.

4. � A Simple SVM (Space Vector 
Modulation Scheme)

The three-level Voltage Vector diagram is shown in 
Figure 4. There are six sectors (S1-S6), four triangles (D0-D3) 
in a sector, and a total of 27 switching states in this space 
vector diagram shown in Figure 5. As a method outlined 
in22 advices, proposed space vector topology in each sec-
tor is segregated by four triangles, indexed as shown in 
Figure 6 every triangle examine as a single sector in two 
level hexagon scheme with the same sacking at the origin.

In this method, the triangle that hurdle the reference 
vector is indentified based on correlates thetip of the ref-

Table 3.  Switching State of NPC

Switching
State

Device switching status 
(phase A)

Inverter terminal 
voltage

VAZS1 S2 S3 S4

1 on on off off E

0 off On on Off 0

–1 on off on on -E

Table 2.  Switching State of Space Vector

Space vector Switching state
(three phases)

ON-state 
switch Definition

Zero 
vector



V1
[1 1 1] S1, S3, S5 0
[0 0 0]  S4, S6, S2
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

V V ed
j

1
02

3
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1
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p
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V V ed
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3
=

p

Table 1.  Switching State of VSI

State Leg A Leg B Leg C

S1 S4 Van S3 S6 Vbn S5 S2 Vcn

1 on off Vd on off Vd on off Vd

0 off on 0 off on 0 off on 0

Figure 2.  Space vector diagram for two level inverter.
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erence vector. The triangles are obtained by calculating 
auxiliary parameters k1 and k2 which are defined as:

	 K V
V

1 3
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
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b � (22)
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where, Va and Vb are correlates the tip of the space vector, 
k1 founds whether the small triangle is in the right-hand 
side (k1 = 1) or in the left-hand side (k1 = 0). k2 Founds if it 
is in the upper half (k2 = 1) or in the lower half (k2 = 0).

While reference vector is shifted to the new set of axes 
that intersect at the main crestof the triangle. In single trian-
gle, the coordinates of the tip of the shifted reference vector 
A Pi , where P = Va, Vb is the tipoff the original space vector 
and Ai is the origin of the triangle, are found as follows,

	 V V K kia a= − +1 2
1
2

� (24)

	 V V kib b= − 3
2 2 � (25)

The triangle index is obtained by D = +k k1
2

22

ta (duration of the space-vector aligned with the 
α-axis), tb (duration of the space-vector at 60˚ from the 
α-axis) and tZ (duration of zero space-vectors) can be 
obtained by shifted coordinates follows.
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The three neighboring space vectors are used to inte-
grate the reference vector. These vectors resembled with 
vertices of the bounding triangle. The vector sequence in 
the first sector is determined through analysis. In other 
sectors, the states are obtained from the mapping of 
switching states between the first sector and other sectors. 
The switch states are remains constant for the first sector, 
but other sectors are negligible accordingly so that they 
use the available space-vector in other sectors.

In this paper the DTC-SVM scheme applied instead 
of hysteresis band, regulate the torque and the magnitude 
of flux is utilized by means of three-level inverter. Figure 7 
shows the block diagram of the DTC-SVM with PI regulators 

Figure 4.  Space vector diagram of three-level inverter.
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Figure 7.  Sector Division to Four Triangles.
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and three- level inverter. proposed method control both the 
torque and the magnitude of flux, thereby generating the 
voltage command for inverter control. mainly no decou-
pling mechanism is required as the flux magnitude and the 
torque can be regulated by the PI controllers. DTC based 
two-level and DTC-SVM three level schemes are imple-
mented in simulation shown in section-5. 

5.  Simulation Results
DTC scheme are introduced which is Improve the 
induction motor performances via torque ripple reduc-
tion. Phase voltage and current waveform for two-level 
shown in Figure 8 (a,b). Torque and flux ripple perfor-
mance and with speed and current waveform shown in 
Figure 8 (c,d,e).The Proposed DTC-SVM for NPC inverter 
fed induction motor simulation results are which is cur-
rent and voltage waveform shown in Figure  9  (a,b).The 
Torque Ripple and flux performance with stator current 
and speed for three-level NPC inverter scheme shown in 
Figure 9 (c,d,e). The comparison performance shows that 
proposed scheme has an adequate solution to minimizing 
the torque with high speed operations.

6.  Conclusions
This paper deal with comparison and study about two 
level inverter DTC scheme and a simple space vector 
based three-level NPC inverter fed Induction motor 

for Torque Control. Proposed three level neutral point 
clamped inverter obtained the better torque and flux 
response through a simple space vector scheme. A simple 
space vector is generated using torque reference gen-
eration. NPC inverter scheme is improved the torque 
response by controlling the phase current over two level 
inverter scheme and easy control of DC-Link capacitor 
voltage balancing and torque control loop. Simulation 
results are obtained in both topologies. A simple space 
vector Three-level NPC inverter scheme obtained bet-
ter torque control over Two-level inverter scheme using 
single control loop. 

7. Appendix
The parameters of Induction Motor

0.5hp, 50Hz, 1500rpm, p = 4
Rs = 24, 6W, Rr = 17.9W
Ls = 984mH, Lr = 98.4mH, Lm = 914mh
J = 2.5kg.m2, b = N.m.s
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