
Abstract
Background/Objectives: In this study we have investigating Evaluation of Climate Change Impact on runoff. Methods/
Statistical Analysis: In this study, outputs of HADCM3 (Hadley Center Coupled Model, version 3) GCM (General Circulation 
Model) under A2 scenario is used to investigate the climate change impact on runoff of Gaveh Rood catchment in western 
Iran. The SDSM (Statistical Down Scaling Model) is employed to statistically downscale climate variables of temperature 
and precipitation. A runoff-rainfall Hydrological Model, named HYMOD is used for developing runoff time series under 
climate change impacts regarding the downscaled climate variables. Findings: The performance of calibrated SDSM model 
shows its well performance in rainfall and temperature downscaling in the study area. The downscaling results show 
considerable changes in temperature and precipitation in future under climate change impacts. In the period of 2020-2099, 
the mean temperature and precipitation is increased by 5-8.5% and 3-5%, respectively, relative to the observed period of 
1989-2000. The calibration and validation results of the developed HYMOD show that it the mean runoff decreased by 
7-16% (11.5%, on average) in the predicted period relative to the observed period. Applications/Improvement: These 
changes highly affect the water resources systems and special attention should be given to them in future planning of water 
resources.
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1.  Introduction
Climate change parameters, especially precipitation and 
temperature, are very important in optimal planning of 
water dams fed with river and runoff water flows. The 
fourth assessment report of the Intergovernmental Panel 
on Climate Change (IPCC) says that the annual aver-
age river runoff and water availability are projected to 
increase by 10-40% at high latitudes and in some wet trop-
ical areas and decrease by 10-30% over some dry regions 
at mid-latitudes and in the dry tropics, some of which 
are presently water-stressed areas1,2. General Circulation 
Models (GCMs) are commonly used for climate change 
impacts study3. The low spatial resolution (typically of 
the order of 50,000 km2) of these models is capable of 
simulating large-scale data, which greatly limits their 

usefulness for local impact studies4. Therefore, downscal-
ing of large-scale meteorological variables (precipitation 
and temperature) is necessary for investigation of climate 
change impact on regional hydrological characteristics5. 
Two approaches of dynamical and statistical down-
scaling methods are used for this purpose. Dynamical 
downscaling models are like GCMs but their horizon-
tal resolutions are much finer than GCMs. In6 used 
RegCM3 and RegCM4 for different climate variables 
downscaling. Statistical downscaling uses equations to 
convert global-scale output to regional-scale conditions. 
Regarding the less computational effort of the statistical 
approach, it offers the opportunity for testing scenarios 
for many decades, rather than the brief “time slices” 
of the dynamical downscaling approach. Developed 
Statistical Downscaling Model (SDSM) for downscaling 
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precipitation and temperature data using statistical 
methods7. Compared different downscaling techniques 
including SDSM, radial neural network and multi-layer 
neural network to predict precipitation in different 
regions of UK. The results suggested the superiority of 
SDSM in precipitation simulation3. Explored uncertain-
ties in downscaled precipitation and temperature data 
obtained from three downscaling models namely SDSM 
LARS-WG (Long Ashton Research Station Weather 
Generator) and ANN (Artificial Neural Network). The 
results indicated that the SDSM, LARS-WG and finally 
ANN have maintained different statistical characteristics 
of the observed data5. According to the previous studies on 
several downscaling methods, this study employed a sta-
tistical downscaling technique-based model using GCM 
outputs for precipitation and temperature downscaling. 
Considering that precipitation and temperature are the 
most effective meteorological variables that affect runoff, 
variety of models have been developed to project run-
off based on precipitation and temperature data. In8 used 
SWAT model to investigate the changes in the quality and 
quantity of runoff in the Ali Efenti Basin in the central 
Greece and showed flow rate reduction and increase in 
nitrogen density. Analyzed climate change and its impact 
on the flow regiment of the river catchments in the arid 
region of northwestern China. They used hydrometric 
statistics of the mean annual runoff in eight catchments 
and showed a declining trend in five of them9. Used small-
scale methods and the outputs of CGM3 and HadCM3 
under A2 scenarios to predict catchment runoff outflow, 
employing HBV and Xinan-jiang. The results suggested 
that regarding the precipitation difference obtained from 
different small-scale techniques used to feed hydrologi-
cal methods, the simulation results differed10. HYMOD 
is another hydrological model with diverse applications 
in modeling rainfall-runoff, as well as flood warning sys-
tems. This is a non-linear conceptual model developed 
on the basis of Probability Distributed Model (PDM)11,12. 
This model was used in different areas13. 

This study investigates the effect of climate change 
on the runoff of Gaveh Rood catchment. For this pur-
pose, rainfall-runoff of the Gaveh Rood catchment 
was modeled using HYMOD. After the calibration 
and validation of the model and ensuring its accept-
able efficiency, the model was fed with precipitation 
and temperature data, downscaled by SDSM under 
SRES-A2 scenario and the effect of climate change on 
runoff was simulated.

2.  Methods and Materials

2.1.  Statistical Downscaling Methods
This study used SDSM for temperature and precipitation 
downscaling. It also employed large-scale meteorological 
signals, as well as daily observed temperature and rainfall 
data recorded in different rain gauges across the catch-
ment for the period of 1989-2000. The precipitation and 
temperature recorded in meteorological stations are used 
as prediction variables in SDSM. Large-scale climatic sig-
nals are predictors were obtained from the National Center 
for Environmental Prediction (NCEP) and Hadley Center 
Coupled Model, version 3 (HadCM3). This information 
was obtained from the website of Canadian Climate 
Impacts Scenarios (CCIS), whose regional divisions 
have a grid-spacing of 2.50° latitude by 3.75° longitude. 
Among the available downscaling models, the SDSM was 
used for its superiority over other statistical models such 
as LARS-WG and ANN in regeneration of different sta-
tistical indexes of observed data with the confidence of 
95%14. The steps required for downscaling and generating 
climatic scenarios in SDSM are presented in Figure 1.7. 
The meteorological signals of NCEP were used for devel-
opment of the downscaling model. These signals belong 
to the observation period of 1971-2000. This study used 
HadCM3 under A2 scenario to generate meteorological 
variables such as precipitation and temperature in the 
next periods. The NCEP data were employed to ensure 

Figure 1.  SDSM Version 4.2 climate scenario generation.
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Figure 1. SDSM Version 4.2 climate scenario generation. 
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the stability and strength of the model in downscaling. 
They were also used to set the size of HadCM3 output 
network in the observed period.

2.1  Hydrological Models (HYMOD)
In HYMOD, a catchment is divided into an infinite 
number of small points with no interaction between them. 
Each point has a certain water storage Capacity (C) that 
is filled by storing rainfall [Figure 2]. Other features of 
these points are rainfall and potential Evapotranspiration 
within a specified time period. When water level in a cer-
tain point exceeds the water storage capacity of that point, 
the excess water becomes a surface runoff.

Water storage capacity differs due to the spatial distri-
bution of such parameters as soil structure. Therefore, the 
frequency distribution function of different water storage 
capacities of the catchment soil is defined as follows:

	 F C
C

C
b

(C) ,
max

max

exp

= − −






< <1 1 0 C � (1)

Where, F shows the cumulative probability of a given 
point in the catchment with the water storage capacity 
equal to C. Cmax(in millimeter) expresses the maximum 
water storage capacity within the catchment’s points. 
Finally, bexp ranging from 0.1 to 2, determines the degree 
of spatial variability in the water storage capacity between 
different points of the catchment.

The HYMOD is comprised of a relatively simple 
rainfall excess model that is connected with two series 
of linear tanks including three quick-flow tanks and one 
slow-flow tank. This model has five parameters. Figure 3 
schematically shows how HYMOD functions. The inputs 
of the model, namely potential Evapotranspiration, pre-
cipitation and river flow were measured to calibrate 
the model. The model’s parameters and their scope of 

Figure 2.  The schematic of the watershed and the Moore 
conceptual model.
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Figure 2. The schematic of the watershed and the Moore conceptual model. 
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Figure 3. The schematic of HYMOD. 
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Figure 3. The schematic of HYMOD. 

change are presented in Table 1. The optimal value of 
these parameters is obtained using genetic algorithm and 
regarding the given change scope in a way that the error 
rate between the observed and simulated runoffs was 
minimized by HYMOD.

The input data of HYMOD are Precipitation (P), 
Temperature (T), potential Evapotranspiration (ET) and 
Runoff (R) as presented in Equation 2. The observed run-
off model is considered as the model input. Precipitation 
and temperature data during calibration are extracted 
from the information obtained from rain-gauge stations. 
The observed runoff data are also extracted from run-
off stations. PET is also determined using Thornthwaite 
relation as per Equation 315.

Where, PET as the potential Evapotranspiration 
(mm), T as the mean monthly temperature (°C) and I as 
the annual heat index are obtained from Equation 4; a as 
the experimental constant is obtained from Equation 5; 
and as the correction factor for the number of daylight 
hours and days-per-month are extracted from the table 
according to latitude.

	 R f(ET + P )t t t= � (2)

	 PET L
T

Ia
a

t

a

=






16

10 � (3)

	 I i i
T

t m
m

a= =





=
∑

1

12 1 514

5
;

.

� (4)

	a I I It t t= × − × + × +− − −6 75 10 7 71 10 1 792 10 0 49247 3 5 2 2. . . . � (5)

2.2  Assessment Criteria
To investigate the model performance and compare the 
results, the indices PBIAS (Percent Bias), RSR (RMSE-
Observations Standard Deviation Ratio) and NSC (Nash–
Sutcliffe Efficiency) were selected. 
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Table 1.  Prior ranges and description of the 
HYMOD parameters

Parameter Unit Description Minimum Maximum

Cmax mm
Maximum storage 

capacity in 
watershed

1 500

bexp –
Spatial variability 
of soil moisture 

distribution
0.1 2

α –
Distribution factor 

between two 
reservoir

0 1

Rs day–1
Residence time of 
the slow release 

reservoir
0.001 0.5

Rq day–1
Residence time of 
the quick release 

reservoir
0.5 1.2

	 PBIAS =
X

X

i
obs.

i
sim.

i

n

i
obs.

i =1

n

X −( )
×=∑

∑
1 100 � (6)

	 RSR = RMSE
STDEV

=
X

Xobs.

i
obs.

i
sim.

i

n

i
obs.

mean
obs.

i

X

X

−( )
−( )

=∑ 1

2

==∑ 1

2n
� (7)

	 NSC =1
X

X

i
obs.

i
sim.

i

n

i
obs.

mean
obs.

i

n
−

−( )
−( )

=

=

∑
∑

X

X

1

2

1

2 � (8)

Where Xi
obs.  the ith month is observed data, Xi

sim.  is the 
ith month simulated data, Xmean

obs. . Average of all observed 
data and n is the total number of month in the data series. 
In hydrological simulation models, when the assessment 
indices are applicable to the following values (NSC>0.5; 
RSR<0.7; and PBIAS=±25%), the results are usually 
satisfactory16–18.

2.3  Case Study
This study used data from rain stations and runoff station 
#1 located in the catchment of Gaveh Rood river in western 
Iran (Figure 4). The catchment of Gaveh Rood is located in 
the southwestern slopes of Zagros, southern Kurdistan and 
northern Kermanshah. Longitude and latitude of Gaveh 
Rood catchment is 34°45'–35°10'N and 46°49'–47°58'E 

Figure 4.  The location of the study area.
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respectively.The average altitude of the catchment is 1944m 
above sea level. It is a semiarid region with mean annual 
precipitation of 457mm. The maximum monthly precipita-
tion occurs in March and April (in total, 44% in winter). 
The mean temperature of the investigated region is 14.2°C. 
The hottest and coldest months are January and July, respec-
tively. The location of the rain station and runoff station #1 
is presented in Figure 4. The drainage basin covers an area 
of 2081 km2. The 11-year observed data of the period 1989-
2000 was used19,20. The data of the first eight years (73%) and 
the remaining three years (27%) were used for calibration 
and validation, respectively.

3.  Results and Discussion

3.1 � Precipitation and Temperature 
Predicted using SDSM Model

3.1.1  Calibration and Validation of SDSM 
For development of SDSM model, the observed data of 
precipitation and temperature are divided into two peri-
ods, namely calibration period for development of the 
downscaling model and validation period for testing the 
model and comparing the downscaling results. The pre-
cipitation and temperature data are normalized to be used 
in downscaling model. Table 2 shows the assessment indi-
ces (PBIAS, RSR and NSC) considered for SDSM in the 
calibration and validation period for both precipitation 
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Table 2.  The PBIAS, NSC and RSR of monthly 
precipitation and temperature simulations by using 
SDSM during the period of calibration (1989–1996) 
and validation (1997–2000)

Indicators
Precipitation Temperature

Calibration Validation Calibration Validation

PBIAS(%) 1.9 –15.9 2.05 3.05

RSR 0.49 0.37 0.18 0.11

NSC(%) 76 86 97 99

and temperature variables. These indices were measured 
for actual data, not for normalized data; therefore, they 
indicate that the performance of SDSM in predicting 
temperature and precipitation is very good and good, 
respectively.

In SDSM, to consider the correlation between pre-
cipitation and temperature (the prediction variables) 
with meteorological variables (the predictors), the pre-
dictions of climatic scenarios obtained from GCMs were 
used. In the last stage, artificial linear simulation of daily 
precipitation and temperature was done using GCM 
(HadCM3) outcomes under A2 scenarios. SDSM usu-
ally performs better in generating temperature data than 
precipitation data, but the rainfall data generated by this 
model is still satisfactory5. This fact is supported by the 
results of this study. Table 3 depicts the assessment crite-
ria between the variables simulated by climate scenarios 
with precipitation and temperature data downscaled 
by NCEP and the values of observed precipitation and 
temperature.

Figures 5 and 6 compare the results obtained 
from the simulation of precipitation and tempera-
ture for future periods with HadCM3-A2 using SDSM 
and NCEP predictors. Figure 5 shows the observed 
precipitation versus the precipitation simulated by 
HadCM3-A2 as well as NCEP predictors. According to 
this diagram, the future precipitation decreases in the 
majority of months, except March, May and April when 
the rainfall rate increases. Figure 6 demonstrates the 
observed temperature versus the temperature simulated 
by HadCM3-A2 as well as NCEP predictors. According 
to this diagram, the future temperature follows an 
increasing trend in all months of the year. However, in 
some months like March, April and May, this trend is 
negligible.

Figure 5.  Observation rainfall values vs. rainfall simulations 
values obtained SDSM model.
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Figure 6.  Observation temperature values vs. temperature 
simulations values obtained SDSM model.
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Figure 7. Observational runoff values vs. computational values obtained from HYMOD model. 
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Table 3.  The PBIAS, RSR and NSC of rainfall 
and temperature simulations by using scenario A2, 
downscaling rainfall and temperature by using NCEP 
variables and rainfall and temperature observation 
during the period of 1989–2000

Options compared
Precipitation Temperature

PBIAS(%) RSR NSC(%) PBIAS(%) RSR NSC(%)

A2 
scenario(HadCM3) – 

Observation
2 0.48 77 -2.16 0.18 97

A2 
scenario(HadCM3) – 
Downscaling(NCEP)

3.7 0.34 89 -1.56 0.09 99

3.2.  Hydrological Models (HYMOD)
In HYMOD, 73% and 27% of data were used for calibra-
tion and validation, respectively. The results are presented 
in Table 5 and Figure 7 illustrates the observed values 
versus simulation values, showing a good match between 
them.

To assess HYMOD, NSC, RSR and PBIAS indices were 
used according to the Equations 6, 7 and 8. MSE index 
was used for validating the model and as the objective 
function for minimizing the error rate based on Equation 
9 in genetic algorithm. 



Evaluation of Climate Change Impact on Runoff: A Case Study

Indian Journal of Science and Technology6 Vol 9 (7) | February 2016 | www.indjst.org

Figure 7.  Observational runoff values vs. computational 
values obtained from HYMOD model.

Figure 6. Observation temperature values vs. temperature simulations values obtained SDSM model. 
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Figure 8.  Observation runoff values vs. runoff simulations 
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Table 4.  Values of the HYMOD optimum parameters

Cmax βexp α Rs Rq

427 1.23 0.98 0.5 0.94

Table 5.  The PBIAS, NSC and RSR of runoff 
simulations by using HYMOD during the period of 
calibration (1989–1996) and validation (1997–2000)

Indicators Calibration Validation

PBIAS (%) 4.99 10.1

RSR 0.49 0.55

NSC (%) 76 70

	 MSE =
N

R Ri
Obs

i
Sim

i

N1 2

1

. .−( )
=
∑ � (9)

In these equations, Ri
Sim.  and Ri

Obs.  are the simulated 
and observed flow rates in month i and N is the total 
number of month in the data series.

Accordingly, the optimal values of HYMOD param-
eters, whose variation range is presented in Table 1 
were obtained. The evaluation results are presented 
in Table 5. The values of PBIAS, RSR and NSC for the 
calibration data of this model are 4.99%, 0.49 and 76%, 
respectively. The values of PBIAS, RSR and NSC for 
the calibration data of this model are 10.1%, 0.55 and 
70%, respectively. These results show relatively good, 
reliable performance of HYMOD in simulation of the 
river flow.

The HYMOD-simulated effect of climate change on 
runoff is presented in Figure 8. According to this fig-
ure, the runoff in the future periods follows a decreasing 
trend. This decline mainly occurs in the time of peak 
flood discharge. (Table 4)

4.  Conclusion
This study depicted the effect of climate change on the 
runoff of Gaveh Rood catchment for future and in differ-
ent periods. To do so, SDSM was used for downscaling 
precipitation and temperature series under climate 
change scenario. The future series of daily precipitation 
and temperature were generated using GCM (HadCM3) 
outcomes under A2 scenario. Based on the future time 
series of precipitation and temperature, the runoff of 
Gaveh Rood catchment was predicted, using HYMOD. 
The results are as follows:

Decreased mean of runoff for future periods is 7-16% •	
(11.5% on average), relative to the observation period. 
This decline is greater in March, May, October, 
November, December and April, on top, when the 
peak flood discharge occurs. This indicates that cli-
mate change has greater impact on extreme events. 
Increase in water consumption due to population 
growth and industrial and agricultural development 
on the one hand and decrease of inflow of runoff into 
dams on the other hand, necessitate planning for the 
exploitation of reservoirs to ease the damage of [water] 
shortage to the system.
The predicted precipitation in the catchment shows •	
its decreasing trend in the majority of months except 
March, April and May. The mean decrease in precipi-
tation in the future periods is 3-5% (4% on average), 
relative to the baseline period. 
The mean temperature in the future periods shows •	
a rising trend relative to the baseline period in the 
catchment. The results show an increasing trend in all 
months of the year. This trend is negligible in some 
months like March, April and May. The mean increase 
in temperature in the future periods is 5-8%, relative 
to the baseline period.
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