
Abstract 
This paper proposes a novel Fault Current Limiter (FCL) for the application on power systems to control voltage sags at the
Point of Common Coupling (PCC) during faults. This new FCL is a resonance transformer, whose primary side is connected
to a series capacitor and transmission line. Also, the secondary side of the transformer is switched by a semiconductor
device to change the impedance of the primary side of the transformer. The main control component is a fast-closing
switch connected in parallel with the secondary side of the transformer, which is driven by the power electronic switch. It
can respond within 1 msec. When a fault occurs, the switch closes and bypasses the transformer secondary side and fault
current is limited by the reactor. So, by increasing the existing resonant frequency, the fault current is limited. The simulated
and experimental results show that it is feasible to develop the FCL with low cost and high reliability. The experimental
results show the capability of the proposed FCL, too.
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1. Introduction
The fault current in the power system tends to increase
over time for different reasons; e.g., electric power demand
increase (load growth) and subsequent increase in genera-
tion, new parallel conducting paths, new interconnections
within the grid and new distributed generation units. The
fault currents, flowing from the source to the fault, lead
to high dynamical and thermal stresses being imposed on
equipments like overhead lines, cables, transformers and
switchgears1–4. Therefore, there is a considerable interest
in devices, which are capable of limiting fault currents.
Also, various types of Superconducting Fault Current
Limiters (SFCLs) have been presented5–7. A Fault Current
Limiter (FCL) can limit the fault current passing through
it within the first half cycle. The simplest way to limit the 

short-circuit current would be the use of an impedance
(ZS) in series with the current path. The drawback of this
solution is that it also obviously influences the system dur-
ing normal operation, i.e. it results in considerable voltage
drops at high load currents8–10. The concept of FCL is lim-
ited to the fault current before its first peak, although the
response speed is of greatest importance. Since the 1970s,
several types of scheme have been applied in power sys-
tems such as the fuse with fault-current limitation and
superconducting FCL11–13. In recent years, power elec-
tronic based FCLs have been proposed6, which has the
features of a series compensation under normal condi-
tions. A new hybrid FCL has been proposed for primary
distribution systems, which is a high temperature super-
conducting element in parallel with two other branches14.
Superconducting Fault Current Limiters (SFCL) can limit 
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paper, is 0.015 time of the fault current. This means that 
the suggested FCL can effectively control the fault current. 
Switching delay is 3 msec in21, while in current paper, this 
delay is decreased to 2 msec. In21, the peak current and 
spark of voltage on the switch is high and causes damage 
to the capacitor, but in this paper there are no spark and 
surge current. During the fault, the current of the switch 
is considerable and can result in switch failure. Also, the 
fault overvoltage on the metal oxide surge arrester can 
cause its failure. In this paper, all of the problems are 
solved using the proposed FCL. During normal operation 
mode of power system, the impedance of the resonance 
circuit includes series capacitor and the primary winding 
of a series transformer. When the fault is happened, the 
semiconductor switch is closed in the secondary side of 
the transformer and causes an increase in the impedance 
of the resonant circuit and as a result the fault current 
limitation. As shown in Figure 1, in the parallel feeder, 
which is connected to the Point of Common Coupling 
(PCC), the downstream fault of the faulty feeders could 
result in large fault current flow, which not only might 
damage the series equipments but also can cause voltage 
drop at PCC. This voltage drop can affect other loads on 
parallel feeders connected to PCC. 

A significant advantage of FCL technologies is their abil-
ity to remain virtually invisible to the grid under nominal 
operation, introducing negligible impedance in the power 
system until a fault event occurs. Ideally, once the limiting 
action is no longer needed, an FCL should quickly return 
to its nominal low impedance state. Also, an ideal FCL 
should have the following characteristics: low impedance at 
normal operation, a very short recovery time, large imped-
ance in fault conditions, fault current limitation before the 
first peak, properly respond to any fault magnitude and/
or phase combinations and finally high reliability and low 
cost. The suggested FCL is shown in Figure 2. There are 

the prospective short-circuit currents to lower levels, so 
that the underrated switchgears can be safely operated15. 
The necessity and procedure for the application of FCL 
and bus sectionalizing system have been discussed in14. A 
rectifier SFCL with non-inductive reactor has been pre-
sented in16. In normal operation mode, the impedance of 
the FCL is much less, while in the current limiting mode, 
the impedance is higher than the impedance of the net-
work17. There are different FCL technologies that have been 
suggested by researchers such as: purely resistive SFCL, 
hybrid resistive SFCL, saturable core SFCL, shielded-core 
SFCL, solid-state (SSFCL-CB), fuses and bridge type FCL. 
The combination of the bridge type FCL and power con-
verter for voltage quality improvement has been suggested 
in18, where common diode bridge Fault Current Limiter 
and power converter have been linked by a common DC 
link in the power system. Fast-closing switch based FCL 
with series compensation has been investigated in19. Also, 
in20, it is mentioned that a DC reactor type FCL in series 
with a downstream circuit breaker can be a solution to 
control fault current levels in electrical distribution sys-
tems. System studies show that the DC reactor type FCL 
can not only limit the fault current to an acceptable value, 
but also can mitigate the voltage sag. In this paper, the 
FCL structure, presented in21 is carefully investigated and 
its problems are solved in a new scheme of FCL, which has 
a fast-closing switch. Its effectiveness is verified by simula-
tions and measurements. It is shown that the fast-closing 
switch based FCL has more advantages, lower cost and 
higher reliability in comparison with other FCLs. It can 
improve the system stability by its fast response after fault 
occurrence and series compensation after fault clearing. 
The results are compared with the FCL proposed in21 too.

2. Proposed FCL
In this section, a None-Superconducting Fault Current 
Limiter (NSFCL) based on resonant structure is investi-
gated and results are compared with21. In21, the impedance 
of the series reactor is very low, so it cannot control the 
fault current. The FCL controlled the fault current and 
decreased it to 50% of its initial value, which is not enough 
and the transient response of the voltage and current of 
the capacitor can cause the dielectric failure and damage 
of devises. Advantages of the proposed FCL to the FCL 
introduced in21 are listed as follows: 

The magnitude of the limited current in21 is 0.65 time 
of the fault current, while the limited current, in this 

Figure 1. System with loads connected to PCC through 
parallel feeders.
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4.  Dynamic Modeling of Proposed 
FCL

In the proposed FCL, the semiconductor switch, Ts, is 
assumed to be an ideal switch. Also, the turn’s ratio of 
the transformer, T1, is equal to 10/1. The proposed FCL 
 transformer model is shown in Figure 4.

The impedance of the load and source is listed in 
Table 1 and we have:

 z R j Ls s s= + w  (1)

 z R j LL L L= + w  (2)

4.1 The FCL Normal Operation Mode
In the secondary winding of the transformer is open 
 circuit and the current of the semiconductor switch is 
equal to zero. By applying Kirchhoff ’s Voltage Law (KVL) 
to the equivalent circuit shown in Figure 3, the nonlinear 
dynamic equation of the power system can be written, as 
follows:

 2 1sinwt Ri L di
dt C

i dtL L= + + ∫  (3)

three FCLs, installed in each phase of the  transmission line 
for controlling the over current of each phase separately, 
where Cs is series capacitors. Also, transformers are pre-
sented by T1 and connected in series with the transmission 
line. In addition, the semiconductor switch, Ts, is connected 
in series with the secondary of transformers. 

In the normal operation mode of the power system, 
the series capacitor and primary winding of the trans-
former have resonance frequency the same as the power 
system frequency, while the secondary side of the trans-
former is open. So, the transformer works as an AC 
reactor and the impedance of the FCL, i.e., Cs and AC 
reactor is near to zero. In order to decrease the flux link-
age of the transformer and voltage of the secondary, this 
equipment is designed by lowest turn of winding up to 
possible value. When the fault occurs, the semiconduc-
tor switches instantly on and the transformer secondary 
side is short circuited. In this mode, the impedance of the 
inductor decreases suddenly, so series capacitor limits the 
fault current and controls the voltage of PCC.

3. FCL Control Circuit 
During fault, the voltage of PCC and the voltage of the 
downstream buses decrease suddenly. The fault detector 
circuit is connected to the point n1 as shown in Figure 3.

It consists of one bridge circuit, capacitor and a resis-
tor. In this circuit, the voltage on the capacitor is compared 
with the DC reference voltage. In the case of decrease of 
the voltage of the capacitor from the reference voltage, 
the fault detector switch turns on the FCL switch. Using 
this control circuit, FCL can successfully control and 
limit the fault current as will be shown in simulation and 
 experimental results.

Figure 1. System with loads connected to PCC through parallel feeders. 
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Figure 2. Proposed FCL and system equivalent circuit.
 
In the normal operation mode of the power system, the series capacitor and primary winding of the 
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3. FCL Control Circuit  
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Figure 3. a) FCL structure and b) Controlling circuit diagram. 
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Then, we have:

 w w2
2

2cos t R
di
dt

L d i
dt

i
C

L L
= + +  (4)

By solving Equation (4), the line current (iL) can be 
written, as follows:
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Where, the equivalent resistance is R R R Rs L p= + +  and 

the equivalent inductance is L L L L Ls L p m= + + + .

5.  Simulation Results of proposed 
FCL

By solving Equation (6), the line current, iL, can be 
determined. In the fault operation mode, the second-
ary winding of the transformer is short-circuited by the 
semiconductor switch. In this mode, the current of the 
secondary side is equal to the line current; in other word, 
iT = iL and iL= i (t=t1). This equivalent circuit is shown in 
Figure 5.

According to Figure 5, Equations are written, as 
 follows:

 R Q Rp s t= +( )1 2   (7)

 x
Q

Q
xp

s

s
t=

+









1 2

2   (8)

 Q
x
Rs

t

t
=   (9)

By using above mentioned Equations, the right 
hand side series branch of Figure 5 is changed to paral-
lel branch. Now, Lm in Figure 5 is paralleled with Lp. The 
reduced equivalent circuit can be driven by changing the 
parallel branch to the series branch, as follows:

 R
Q

Rtt
p
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+

1
1 2  (10)
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21
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Where, x x xpp p m= and R Rp pp . By solving the Equation 
(13) we have:

 w w2
2

2cos t R
di
dt

L d i
dt

i
Ceq

L
eq

L

s
= + +  (13)

Where, 

 R R R Req s p tt= + +  (14)

and then,

 L L Leq p tt= +  (15)

In this study, the fault occurs at t = 400 msec. The 
simulation results indicate that there is no voltage sag 

Table 1. Electrical network parameters

Parameters Value Description
Rs 0.5 Ω Source resistance
Ls 0.009 H Source inductance
Cs 50μf Series capacitor
Lp 0.02 H Primary inductance of transformer
Lm 0.18 H magnetization inductance of 

transformer
Lt 0.002 H secondary inductance of 

transformer
Rp 20 Ω Primary resistance of transformer
Rt 20 Ω secondary resistance of transformer
RL 1200Ω Load resistance
LL 0.01H Load inductance
N1 300 Primary turns ratio
N2 30 secondary turns ratio

Figure 5. Equivalent circuit of system considering 
transformer model.
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Where, mppp xxx and ppp RR . By solving the Equation (13) we have: 
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22 cos L L
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Where,  
eq s p ttR R R R                                           (14) 

 
and then, 
 

eq p ttL L L                                                   (15) 
 
In this study, the fault occurs at t = 400 msec. The simulation results indicate that there is no voltage sag 
during the fault. After fault occurrence, the voltage of the load decreases to zero and because of very 
low impedance of semiconductor switch in on state, the voltage of the secondary winding of the 
transformer almost reaches to zero. There is no any unwanted phenomenon and the system is working 
under normal operation mode. Figure 6 shows the simulated load voltage. In this figure, the fault is 
occurred at 400 msec and the amplitude of the load voltage reached to zero. 
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during the fault. After fault occurrence, the voltage of the 
load decreases to zero and because of very low impedance 
of semiconductor switch in on state, the voltage of the 
secondary winding of the transformer almost reaches to 
zero. There is no any unwanted phenomenon and the sys-
tem is working under normal operation mode. Figure 6 
shows the simulated load voltage. In this figure, the fault 
is occurred at 400 msec and the amplitude of the load 
voltage reached to zero.

Figure 7 shows the line current during normal and 
fault operation modes. Figure 7(a) represents the line cur-
rent when there is no installed FCL in the line. Figure 7(b) 

shows the line current while the suggested FCL is utilized in 
the line. The fault current amplitude depends on the opera-
tion of the FCL component. According to this figure, the 
 amplitude of the fault current reduces from 4 kA to 60 A.

When the fault occurs, FCL limits the fault current 
and the voltage on the Point of Common Coupling (PCC) 
remains in an acceptable level as shown in Figure 8. In 
this application, FCL can successfully control the faults 
current and limit the transient overvoltage. 

6. Experimental Results
In order to verify the FCL effectiveness on the fault  current, 
a low voltage (220Vrms) laboratory prototype is built as 
shown in Figure 9. To verify the simulation results, the lim-
ited fault current and the voltage of the PCC are measured 
in the prototype for normal and fault operation modes. 

Figure 10 shows the line current (lower waveform) 
and load voltage (upper waveform) before and after fault 

Figure 6. Voltage of load during normal and fault operation 
conditions.
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Figure 7 shows the line current during normal and fault operation modes. Figure 7(a) represents the line 
current when there is no installed FCL in the line. Figure 7(b) shows the line current while the 
suggested FCL is utilized in the line. The fault current amplitude depends on the operation of the FCL 
component. According to this figure, the amplitude of the fault current reduces from 4 kA to 60 A. 
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Figure 7. Line current during the normal and fault operation modes a) Without FCL effect and b) With 
FCL effect. 
 
When the fault occurs, FCL limits the fault current and the voltage on the Point of Common Coupling 
(PCC) remains in an acceptable level as shown in Figure 8. In this application, FCL can successfully 
control the faults current and limit the transient overvoltage.  
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Figure 8. PCC voltage during the normal and fault operation modes while FCL is connected in series 
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Figure 9. Laboratory test setup.

 
 
Figure 9. Laboratory test setup. 
 
Figure 10 shows the line current (lower waveform) and load voltage (upper waveform) before and after 
fault occurrence. Before the fault occurrences, the line current amplitude is 1 A and the load voltage is 
220 V. The load voltage and line current are sinusoidal and system works under normal operation mode. 
In this case, power electronic switch is in off state and the voltage drop on FCL is near zero. In the 
instant of the fault inception, the power electronic switch drivers change the gate signal and this switch 
is turn on. So, the series transformer is bypassed and the series capacitor is connected in series with the 
line and fault current is decreased to 2 A as shown in Figure 10. It is assumed that the fault duration is 3 
sec and then the fault is removed. In this case, the fault current is decreased to the normal current and 
again switches turn off simultaneously. After fault removal, the FCL voltage drop is zero and the 
system can work under normal operation mode.  
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Figure 11 shows the PCC voltage during the normal and fault operation modes. This figure clearly 
shows the FCL effect on the fixing the PCC voltage level to an acceptable level during the fault. 
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occurrence. Before the fault occurrences, the line current 
amplitude is 1 A and the load voltage is 220 V. The load 
voltage and line current are sinusoidal and system works 
under normal operation mode. In this case, power elec-
tronic switch is in off state and the voltage drop on FCL is 
near zero. In the instant of the fault inception, the power 
electronic switch drivers change the gate signal and this 
switch is turn on. So, the series transformer is bypassed 
and the series capacitor is connected in series with the line 
and fault current is decreased to 2 A as shown in Figure 10. 
It is assumed that the fault duration is 3 sec and then the 
fault is removed. In this case, the fault current is decreased 
to the normal current and again switches turn off simulta-
neously. After fault removal, the FCL voltage drop is zero 
and the system can work under normal operation mode. 

Figure 11 shows the PCC voltage during the normal 
and fault operation modes. This figure clearly shows 

the FCL effect on the fixing the PCC voltage level to an 
acceptable level during the fault.

In the steady state condition, the voltage drop of the 
FCL is equal to zero. During fault, the voltage drop is 
equal to the source voltage. The voltage drop of the com-
ponent during the fault depends on the structure and 
topology of the FCL. During fault, the semiconductor 
switch turns on and the secondary side of the transformer 
is short circuited. This switch can limit the fault current, 
control the voltage of the PCC and keep the amplitude in 
the acceptable range.

7. Conclusion
In this paper, a new FCL topology has been proposed, 
modeled and simulated. It has been shown that the pro-
posed FCL can limit the fault current and adjust the 
voltage of PCC. The time delay of this FCL operation is 
very low, the fault detection circuit delay is less than one 
msec. So, FCL can limit the fault current before its first 
pick. The simulation results have been compared with 
simulation results. The good agreement between the sim-
ulation and measurement results verifies the effectiveness 
the proposed FCL.
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