
Abstract
Background/Objectives: In this study we have investigating light propagation in the electro-optic modulators based on 
graphene-slot silicon waveguides. Methods/Statistical Analysis: In this simulation, μc = 0 eV and 0.515 eV is considered 
and the dielectric constants of the graphene for each μc is taken from the reference above. Since we consider a single 
telecom wavelength at 1550 nm, we use (n, k) material model to input the optical constant of the graphene. The materials 
in the material database correspond to the chemical potential of 0 eV and 0.515 eV, respectively. Findings: The field profiles 
are drastically changed as a function of a chemical potential. The field profile for μc = 0 eV keeps almost the same intensity 
after traveling 800 nm, while that for μc = 0 eV is considerably decayed. The results are about 96% and 45 % for μc = 0 eV 
and 0.515 eV, respectively and finally the loss for μc = 0.515 is considerably higher than that for μc = 0 eV.
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1.  Introduction
One of the most important devices in optoelectronic 
integrated circuits is the Electro-Optic (EO) modulator1,2, 
which converts electronic signals into high bit-rate pho-
tonic data. Recent years have witnessed breakthroughs in 
the development of EO modulators3–7. However, the lack of 
ultra high speed compact EO modulators remains a criti-
cal technical bottleneck impeding the wide deployment 
of the on-chip optical interconnects. Because of the poor 
EO properties of regular materials8, a conventional EO 
modulator has a very large footprint3,5,7,9. Employment of 
a high-Q resonator may significantly reduce the footprint, 
but it simultaneously decreases the operation bandwidth 
and thermal stability4, which demand additional compo-
nents to improve10,11. Hybrid of novel semiconductors12–16 
using sophisticated techniques may partially resolve these 
issues, but the involved waveguides are still tens to hun-
dreds of micrometers long. Plas MO Stors17 can be very 
compact, but have inherently large insertion loss and 
limited operation speed. Recent research on graphene 

has provided unprecedented opportunities to meet the 
challenges.

Graphene18,19 has attracted a great deal of interest 
because its exceptional electronic transport properties 
show great potential applications in the field of nano-
electronics20 with the highest intrinsic mobility21 and the 
largest current density at room temperature22. Graphene 
also has remarkable flexibility, robustness and envi-
ronmental stability, as well as extraordinary thermal 
conductivity23. Research on graphene has revealed its 
unique optical properties 24, including strong coupling 
with light25, high-speed operation26 and gate-variable 
optical conductivity27, which promise to satisfy the needs 
of future EO modulators. The application of graphene 
in EO modulation was studied in28 at long wave infrared 
frequencies. A more recent work29 demonstrated a broad-
band EO modulator at telecom wavelengths based on the 
inter band absorption of grapheme with overall length 
only 40 μm. However, compared with the size of on-chip 
electronic components it is still bulky. On-chip optical 
interconnects require EO modulation at the nanoscale. 
The key to achieve nanoscale graphene EO modulation 
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is to greatly enhance light–graphene interaction based on 
novel waveguides and platforms.

Integrated optical modulators with high modulation 
speed, small footprint and large optical bandwidth are 
poised to be the enabling devices for on-chip optical 
interconnects30,31. Semiconductor modulators have there-
fore been heavily researched over the past few years. 
However, the device footprint of silicon-based modu-
lators is of the order of millimeters, owing to its weak 
Electro-Optical properties32. Germanium and compound 
semiconductors, on the other hand, face the major chal-
lenge of integration with existing silicon electronics and 
photonics platforms33–35. Integrating silicon modulators 
with high-quality-factor optical resonators increases the 
modulation strength, but these devices suffer from intrin-
sic narrow bandwidth and require sophisticated optical 
design; they also have stringent fabrication requirements 
and limited temperature tolerances36. Finding a 
Complementary Metal-Oxide Semiconductor (CMOS)-
compatible material with adequate modulation speed 
and strength has therefore become a task of not only sci-
entific interest, but also industrial importance. Here we 
experimentally demonstrate a broadband, high-speed, 
waveguide integrated electro absorption modulator 
based on monolayer grapheme37,38. By electrically tuning 
the Fermi level of the graphene sheet, we demonstrate 
modulation of the guided light at frequencies over 1 GHz, 
together with a broad operation spectrum that ranges 
from 1.35 to 1.6 under ambient conditions. The high 
modulation efficiency of graphene results in an active 
device area of merely 25 , which is among the smallest 
to date. This graphene-based optical modulation mecha-
nism, with combined advantages of compact footprint, 
low operation voltage and ultrafast modulation speed 
across a broad range of wavelengths, can enable novel 
architectures for on-chip optical communications.

2.  Simulation Setup
The modulator we’re considering is show in the Figure 1. 
A 800 nm long graphene sheet is embedded in a silicon 
waveguide and an external bias is applied to adjust the 
chemical potential μc of the graphene sheet. In this simula-
tion, μc = 0 eV and 0.515 eV is considered and the dielectric 
constants of the graphene for each μc is taken from the 
reference above. Since we consider a single telecom wave-
length at 1550 nm, we use (n, k) material model to input 
the optical constant of the graphene. The materials in the 

Figure 1.  The modulator we’re considering.

material database correspond to the chemical potential of 
0 eV and 0.515 eV, respectively.

3.  Results
The Figures 1-3 show electric field profiles on the cross 
section of the waveguide when the light travels half a 
way along the graphene sheet. A field profile monitor 
records this profile. The Figures 2 and 3 shows the profile 
when the chemical potential is set to 0 eV and 0.515 eV, 
respectively. The field profiles are drastically changed as a 
function of a chemical potential.

The Figures 4 and 5 show the electric field distribution 
inside the graphene sheet. A field profile monitor records 
this profile. The field profile for μc = 0 eV keeps almost 
same intensity after traveling 800 nm, while that for μc = 0 
eV is considerably decayed.

Figure 2.  Profile when the chemical potential is set to 
μc = 0 eV.
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Figure 3.  Profile when the chemical potential is set to 
μc = 0.515 eV.

Figure 4.  Field profile for μc = 0 eV.

Figure 5.  Field profile for μc = 0.515 eV.

Using two power monitors located at the edges of the 
graphene sheet, transmission thorough the graphene-
embedded part can be calculated. The results are about 
96% and 45 % for μc = 0 eV and 0.515 eV, respectively.

If we use MODE solutions, we can analyze the mode 
properties of the Si waveguide which include a graphene 
sheet. The Figures 6 and 7 show the mode profiles and the 
losses calculated by MODE Solution. As we can expect 
from the figures above, the loss for μc = 0.515 is consider-
ably higher than that for μc = 0 eV.

Figure 6.  Mode profiles and the losses calculated μc = 0 eV, 
loss = 1638 dB/cm.

Figure 7.  Mode profiles and the losses calculated μc = 0.515 
eV , loss = 40890 dB/cm.
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4.  Conclusions 
In this simulation, μc = 0 eV and 0.515 eV is considered 
and the dielectric constants of the graphene for each μc 
is taken from the reference above. Since we consider a 
single telecom wavelength at 1550 nm, we use (n, k) mate-
rial model to input the optical constant of the graphene. 
The materials in the material database correspond to the 
chemical potential of 0 eV and 0.515 eV, respectively. The 
field profiles are drastically changed as a function of a 
chemical potential. The field profile for μc = 0 eV keeps 
almost same intensity after traveling 800 nm, while that 
for μc = 0 eV is considerably decayed. Using two power 
monitors located at the edges of the graphene sheet, 
transmission thorough the graphene-embedded part can 
be calculated. The results are about 96% and 45% for μc = 
0 eV and 0.515 eV, respectively and finally the loss for μc = 
0.515 is considerably higher than that for μc = 0 eV.
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