
Abstract
Background/ Objective: This article identifies the best feature of the flame video, captured with a camera with frequency 
response in visible spectrum, from which the flame temperature can be estimated. Methods/Statistical analysis: The 
flame videos at different air and fuel inlets with different boiler temperatures were recorded from a diesel fired boiler 
prototype. In the video frames, the flame region was localised by intensity based adaptive thresholding. The correlation 
between boiler temperature and measures of central tendency and dispersion of different colour channels of the video 
frames were investigated. Findings: Among the features of the flame video, Standard deviation of blue channel grey levels 
above 32.95, variance greater than 1293 and mean absolute deviation (MAD) above 30.38 could efficiently represent the 
region of optimum combustion air supply at which boiler temperature is maximum above 684 degree Celsius. Range of 
green channel grey levels, interquartile mean, variance and mean absolute deviation of blue channel grey levels are the 
video features exhibiting maximum correlation (ρ>-0.96) with boiler temperature. Applications/Improvements: The 
features of the flame video which are correlated with its temperature can be utilised to develop non-intrusive methods of 
temperature measurement. This will enable efficient control of combustion process.
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1.  Introduction
Combustion monitoring and control has been vital in 
industrial boilers. Monitoring combustion process has 
always been an area of fascination for researchers over the 
decades. Image processing has been the tool for analysis 
of the flame in most of the non-intrusive approachees1-12. 
An attempt to study combustion process for different 
fuels through analysis of flame image is made by1. 3-D 
reconstruction and visualization of the flame structure 
are done using images captured from multiple directions 
in many of the studies2-5. In3 proposed a multi-camera 
based imaging system for 3-D visualization and char-
acterisation of the flame front structures of a turbulent 
gaseous flame. 

3-D temperature profiling and visualization4,5 is an 
advancement of the mere reconstruction of the 3-D flame 
structure. In6 development of image based online moni-
toring and characterisation of fossil fuel fired flames is 
detailed. In7 the temperature profile and emissivity images 
are derived from a colour image. Temperature estimation 
and distribution in the flame field is detailed in8. Flame 
images taken by high dynamic range cameras processed 
for reconstructing the flame radiance existence field is 
detailed in9. It is challenging to identify the video features 
through which the flame temperature can be measured 
or to identify the range of these features corresponding 
to optimum combustion. Using a commercially available 
video camera of visible spectrum, the task is challenging 
than using an IR camera. Analysis of combustion from 
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air supply to the boiler is supplied by a forced draft (FD) 
fan rotating at 1480 rpm with inlet opening controlled 
by an adjustable damper. The diesel pressure at the outlet 
of fuel injection pump is maintained constant at 12.5kg/
cm2 during the video acquisition. At this constant diesel 
supply, the amount of combustion air into the boiler is 
varied gradually by changing the percentage opening of 
the damper. Simultaneously video of the diesel flame is 
captured. To correlate the flame video features directly to 
the boiler temperature, instead of steam temperature, a 
K-type thermocouple is inserted into the boiler to mea-
sure the flame temperature. Video of flame is captured 
at a frame rate of 30 frames per second by a CCD cam-
era through the sight glass of boiler. By maintaining the 
amount of combustion air at different levels, the boiler 
temperature is noted and corresponding video is captured 
for five seconds each. 

Each video segment corresponding to a particular level 
of combustion air comprises approximately one hundred 
and fifty frames. Features from each frame are extracted 
and cumulative feature of the video segment is estimated 
from the median, arithmetic mean and quadratic mean of 
individual frame features, to eliminate influence of outli-
ers. Schematic of experimental setup is given in Figure 2. 
The figure explains the inlet parameters as air inlet and 
fuel inlet for combustion and a CCD camera is utilised for 
capturing video signals. The temperature measured is fed 
to the computing system for further processing.

3. � Segmentation of Local Flame 
Region

Instead of the global frame features, local features of the 
flame region are extracted. The flame region has been 
segmented from red, green and blue channels of whole 

video using IR camera had been done by10. In11 a radiation 
model was developed to relate the flame images with 
the 2-D temperature distribution. It is worthy if a rela-
tion between boiler temperature and features extracted 
from the flame video, captured with a camera of visible 
spectrum can be established.

The objective of most of the literature had been anal-
ysis of combustion status using features extracted from 
the flame image or video without taking the combus-
tion parameters into account. Combustion parameters 
like air inlet flow rate and fuel flow rate has predominant 
influence on boiler temperature and combustion status. 
Through this experimental research, an attempt has been 
made to analyse the features of flame systematically at 
regular intervals of inlet air variations and thereby at dif-
ferent boiler temperatures. The regular variation of inlet 
air flow in turn generates distinct flame structures and 
intensity features. The investigation is to identify the video 
features which are correlated to the boiler flame tempera-
ture and the range of these features which characterise the 
optimum combustion.

2.  Experimental Configuration
The experiment comprises capturing video of turbulent 
boiler flame, at known combustion conditions and boiler 
temperature for extracting video features. Experiments 
are done in a diesel fired, coil type fully automatic-instant 
steam generating boiler12 which is shown in Figure 1. Inlet 

Figure 1.  Diesel fired boiler prototype. Figure 2.  Experimental Configuration.
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frames, by masking these channels with a multiplication 
mask. This is possible as the grey level intensities at the 
flame region is higher than the other image regions. The 
binary multiplication mask is generated by thresholding 
the greyscale image obtained from the RGB frame. In fact, 
the intensity features of each frame are unique and dif-
ferent hence a constant threshold may not be applicable 
to the entire frames in the video segment. To determine 
the optimum threshold suitable for each frame, Otsu’s 
method13 is employed. The multiplication mask to isolate 
R, G and B channel grey levels in the local flame region 
is generated by thresholding the grey scale version of 
the video frame using the optimal Otsu’s threshold. The 
mathematical strategy adopted for estimating optimum 
threshold is as, 

Let L is the maximum possible grey level in the grey-
scale version of the video frame. The normalised grey 
level histogram of grey scale video frame,
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Where w(k) and m(k) are the zeroth and first order 
cumulative moments of the histogram up to the kth level, 
respectively. 
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mT is the mean of the grey levels in the grey scale version 
of R,G, B video frame. 

	 ω µ ω µ µ ω ω0 0 1 1 0 1 1+ = + =T k, , � (9)

The variances of intensities in the flame and non-flame 
regions respectively are given by,
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To evaluate the performance of the threshold ‘k’, in 
differentiating the flame and non-flame regions in the 
greyscale frame, following discriminant criterion is used, 
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where l, K and h are within class variance, between class 
variance, and variance of total grey levels. At optimum 
threshold k, the object function (12) maximizes 

The discriminant criteria maximizing l, K, h respec-
tively, for k are, however, equivalent to one another; e.g., 
K = l + 1 and h = l/(l + 1) in terms of l, because the 
following basic relation always holds:
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is based on the second order statistics while s2
B is based on 

the first order statistics. Therefore, h is the simplest mea-
sure with respect to k. Thus at the optimum threshold ‘k’, 
the object function h maximises.

The optimal threshold ‘k’ which maximises h or 
equivalently maximises s2

B, is selected through a sequen-
tial search using (6) and (7), or explicitly using (2)–(5):
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and the optimal threshold k* which separates the flame 
and non-flame regions in the greyscale video frame is 
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The multiplication mask used to extract R G and B 
channel grey levels in the local flame region, 
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Where f(i, j) is the grey scale version of the video frame.
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R^ (i j), G^  (i, j) and B^  (i, j) are the grey levels of the R, G and 
B channels in the local flame region. 

The original RGB video frame, its grey scale ver-
sion, the binary multiplication mask generated and the 
segmented flame region is demonstrated in Figure 3 to 
Figure 6 consecutively.

Figure 3.  RGB video frame.

Figure 4.  Grey scale version of Figure 3.

Figure 5.  Multiplication mask.

Figure 6.  Segmented flame region.



Abi P. Mathew, A. Asokan, K. Batri and D. Sivakumar

Indian Journal of Science and Technology 5Vol 9 (6) | February 2016 | www.indjst.org

 Segmentation of flame region from the video frame, 
extraction of local flame features and the analysis of the 
dependency of video features on the combustion air 
supply and boiler temperature are performed in Matlab.

4. � Extraction of Features from 
Flame Video

The video has been captured at various levels of combustion 
and boiler temperature by continuously varying the com-
bustion air flow. The flame region is extracted from the 
video frame. Intensity features and histogram features 
of the local flame region of each frame is computed. As 
mentioned earlier features from individual frames in each 
video segment is extracted. Features of individual frames 
in a video segment are integrated to reflect the features 
of the video segment. The term ‘video segment’ refers to 
the flame video captured for a particular value of boiler 
temperature and combustion air flow. 

Spread is a geometrical feature extracted from the 
frame, which represent the area of the flame. The ‘spread’ 
of the flame in each frame is computed by counting the 
number of ‘1’s in the corresponding binary multiplica-
tion mask. The wavelength of the spectral emissions of 
the flame changes with respect to the temperature. Hence, 
the intensity or histogram features can better reflect the 
combustion efficiency rather than textural or geometri-
cal features. The intensity features extracted from the 
video frames are the measures of dispersion and cen-
tral tendency of grey levels in R, G, and B channels of 
the segmented flame region. These measures of central 
tendency and dispersion computed are mode of local 
intensity, arithmetic mean, quadratic mean, root mean 
square intensity, median, geometric mean, variance, stan-
dard deviation, MAD, range, IQR and interquartile mean 
(IQM). The histogram features extracted are skewness 
and kurtosis.

The median and trimmed mean are robust statistics but 
arithmetic mean, geometric mean and harmonic mean are 
not resistant to outliers. Geometric mean and harmonic 
mean are useful, when the sample is distributed log-nor-
mal. The underlying distribution of local-flame intensity 
in the video frame remains unknown and perhaps, the 
distribution may be different for individual frames as the 
flame is turbulent. The probability density function of the 
variation of local flame features with respect to the index 
of the frames in a video segment corresponding to certain 
air-flow rate obviously may not be normally distributed. 

The probability of interference of outliers is high because 
of the nonlinear behaviour of the turbulent diesel flame 
and inherent design aspects of diesel fired boiler. If the 
sample distribution is normal one, the arithmetic mean 
may be optimal i.e. minimum variance unbiased estima-
tor. The presence of outlier displaces the average away 
from the centre of the rest of the data by an arbitrarily 
large distance. A small fraction of anomalous measure-
ments, with abnormally large deviation from the centre 
may change the mean of the population substantially. 
The trimmed mean is a family of measures of central ten-
dency like arithmetic mean and it is a robust statistics. 
Trimmed or truncated mean is the mean of the popula-
tion discarding given parts of the probability distribution 
or sample at the high or low end, typically five percent-
age, ten percentage or twenty-five percentage based on 
the sample size. Twenty-five percentage trimmed mean is 
known as inter quartile mean. Median can be regarded as 
a fully truncated mean which is most robust. Trimmed 
mean is suitable for mixed distributions and heavy tailed 
distributions like Cauchy distribution. 

Among the popular measures of dispersion, the 
standard deviation and variance are optimal minimum 
variance unbiased estimator for normally distributed data. 
These are heavily sensitive to outliers whereas MAD, to a 
certain extent is immune to outliers. IQR is another mea-
sure of dispersion which is robust to outliers and suitable 
for unknown probability distributions. The mode of local 
flame intensity is the most frequent value or the value 
exhibiting maximum probability density. When there 
are multiple intensities with equal incidence, the mode 
returns the smallest of these intensities. Root mean square 
or quadratic mean is a measure of central tendency most 
suitable for a varying quantity especially when the varia-
tions are sinusoids. Skewness is a histogram feature that 
may oscillate between positive and negative values based 
on whether the local flame intensity histogram of RGB 
channels are right tailed or left tailed. Skewness is the third 
moment of dispersion and expresses the lop-sidedness or 
symmetry of probability density function or intensity his-
togram. Kurtosis is the fourth moment of dispersion and 
it is a measure of ‘peakedness’ of the probability density 
function of R, G and B channel grey levels in the seg-
mented flame region. Range, which is another measure of 
dispersion, is the difference between minimum and maxi-
mum of the samples and it is prone to outliers. The most 
robust measure of dispersion, IQR otherwise called mid-
spread or middle-fifty is the difference between upper and 
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lower quartiles of the R, G and B channel grey levels, in 
the segmented flame region.
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of R, G and B channels in the segmented flame region of 
video frame, i = {1, 2, ….. n} where n is the total number 
of pixels in the segmented local flame region
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Median = xn of a sorted set wof samples x ={x1, x2, 
x3 …x2n}

The number of pixels getting distributed to differ-
ent grey level bins of the R, G and B channels changes 
in response to the variation in furnace temperature. This 
changes the symmetry and peakedness of histogram.

The skewness is given by,
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The kurtosis is given by, 
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To identify the best of statistical video features which 
are robust to outliers and can characterise the efficiency of 
combustion, Pearson correlation coefficient between the 
video features and the boiler temperature is estimated. 
The Pearson correlation coefficient (r) between boiler 
temperature and video features is given by 

	 ρ
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Where x series is the samples of boiler temperature and y 
series is samples of video segment features. The ranges of 
these features corresponding to the optimum combustion 
are also estimated. 

5.  Experimental Results 
As apparent in Figure 19 and Table 1 with the increase 
in combustion air flow, following a transient shoot-up, a 
gradual decay of boiler temperature is observed. A com-
parative evaluation of the relation between features of R, G 
and B channel grey levels and boiler temperature has been 
performed. The blue channel grey-level variations exhibit 
comparatively close relation to the combustion efficiency, 
as obvious in Figure 7 to Figure 18. The maximum of blue 
channel grey levels and the mean of blue channel grey-
levels fall abruptly with increase in temperature as visible 
in Figure 7.

This fall in the average and maximum blue channel 
energy may be in accordance with the increase in IR spec-
tral emission. It has been observed that the features vary 
significantly among different frames of the same video 
segment. Perhaps these significant variations may be a 
reflection of turbulent nature of the flame. Due to this tur-
bulent nature of the flame, some of the frames may have 
features far from majority of the frames in the same video 
segment. 

The quadratic mean, median and arithmetic mean 
‘integrate’ the features of individual frames to form the 
cumulative feature of video segment. The robust statis-
tics, quadratic mean and median eliminate the probable 
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Figure 10.  Standard deviation of blue channel grey levels 
versus boiler temperature.

Table 1.  Range of video segment features and 
corresponding temperature.

Video Segment feature Range of
the feature

Range of 
boiler

temperature

Mean intensity of blue channel 77.76< >660

Geometric mean of blue channel 68.19< >660

Harmonic mean of blue channel 57.95< >660

Quadratic mean of blue channel 84.76< >660

Median of blue channel 77 < >660

Mode of red channel =255 >647

Mode of blue channel 78< >660

Minimum intensity of green 
channel

88< >660

Minimum intensity of blue 
channel

8< >660

Maximum Intensity of blue 
channel

168< >650

Range of green channel >163 >660

Range of blue channel 157< >647

Interquartile range of
blue channel

60< >660

Standard deviation of blue 
channel

32.95< >684

Variance of blue channel 1293< >684

Mean absolute deviation of blue 
channel

30.38<  >684

Figure 7.  Maximum intensity in blue channel grey levels 
versus boiler temperature.

Figure 8.  Mean Absolute deviation of blue channel grey 
levels versus boiler temperature.

Figure 9.  Variance of blue channel grey levels versus boiler 
temperature. 



Comparative Analysis of Flame Image Features for Combustion Analysis

Indian Journal of Science and Technology8 Vol 9 (6) | February 2016 | www.indjst.org

Figure 11.  Minimum intensity of blue channel grey levels 
versus boiler temperature.

Figure 13.  Quadratic mean of blue channel grey levels 
versus boiler temperature.

Figure 16.  Mode of red channel grey levels versus boiler 
temperature.

Figure 12.  Mean intensity of blue channel grey levels 
versus boiler temperature.

Figure 14.  Harmonic mean of blue channel grey levels 
versus boiler temperature.

Figure 15.  Median of blue channel grey levels versus boiler 
temperature.
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influence of outliers, caused by the flame turbulence. 
Even though the influence of outliers due to the turbu-
lence of the flame is expected, quadrature, arithmetic 
mean and median of the individual frame features do not 
exhibits significant deviations. The measures of central 
tendency and dispersion of blue channel grey level decay 
significantly with increase in combustion air flow and 
boiler temperature. More interestingly the slope of decay 
increases substantially as the boiler temperature reaches 
its optimum value.

Maximum intensity of the red channel reaches, its 
saturation, ‘255’, early before the optimum boiler tem-
perature. Hence maximum intensity of the red channel 

cannot be used to identify the optimum combustion air 
flow. But the mode of the red channel reaches its satu-
ration only at optimum airflow and maximum boiler 
temperature. Mode of red channel grey levels is the grey 
level with maximum probability density in the red chan-
nel. From the Figure 16, it is perspective; the feature, 
mode of red channel outperforms the rest of feature vec-
tors in effectively portraying the optimum combustion 
air flow.

From the Figure19, it is evident that the boiler tem-
perature falls after and before 35% opening of the air inlet 
valve. Hence the optimum airflow and optimum combus-
tion is expected to be at 35% air inlet valve opening.

The Table 1 contain the range of video segment fea-
tures corresponding to the optimum boiler temperature 
and combustion air flow. But surprisingly even for a video 
of diesel flame of extreme turbulence, arithmetic mean, 
median and quadratic mean of individual frames in the 
video segment are roughly equal. This means that the pro-
cedure itself is not prone to outliers. The range of features 
of the video segment corresponding to optimum boiler 
temperature shown in Table 1 is the arithmetic mean of 
individual frame features. The numerical values of stan-
dard deviation, variance and MAD of the blue channel 
grey level features of video segments furnished in Table 1 
and visual inspection of the Figure 8 to Figure 10 reveals 
that the optimum boiler temperature is maintained when 
the standard deviation, variance and MAD are below 
32.95, 1293 and 30.38, respectively. Below this thresh-
old, the measured boiler temperature is above 684 degree 
centigrade. The maximum boiler temperature reached is 

Figure 17.  Maximum intensity of blue channel grey levels 
versus boiler temperature. 

Figure 19.  Temperature versus valve opening.

Figure 18.  Range of green channel grey levels versus boiler 
temperature.
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Table 2.  Pearson correlation coefficient between 
boiler temperature and highly correlated flame 
features.

Flame features Pearson correlation 
coefficient

Arithmetic mean of blue channel –0.9302
Geometric mean of blue channel –0.9276
Harmonic mean of blue channel –0.9263
Quadratic mean of blue channel –0.9329

Median of blue channel –0.9166
Median of red channel 0.9298
Mode of red channel 0.9182
Mode of blue channel –0.9242

Minimum grey level of blue channel –0.9318
Maximum grey level of blue channel –0.9059

Range of green channel 0.9679
Inter quartile range of blue channel –0.9630
Standard deviation of blue channel –0.9442

Variance of blue channel –0.9624
Mean absolute deviation of blue 

channel
–0.9503

Table 3.  Pearson correlation coefficient between 
boiler temperature and less correlated flame features.

Flame features Pearson correlation 
coefficient

Arithmetic mean of green channel –0.1772
Arithmetic mean of red channel 0.8976

Geometric mean of green channel 0.8976
Geometric mean of red channel 0.8936

Harmonic mean of green channel –0.2846
Harmonic mean of red channel 0.8884

Quadrature mean of green channel –0.1410
Median of green channel –0.2823
Mode of green channel 0.4451

Minimum grey level of green channel –0.6735
Minimum grey level of red channel 0.7325

Maximum grey level of green channel –0.8208
Maximum grey level of red channel 0.8628

Range of blue channel –0.8926
Range of red channel –0.5804

Inter quartile range of green channel 0.8602
Inter quartile range of red channel 0.1870

Standard deviation of green channel 0.8732
Standard deviation of red channel –0.1365

6930C. The optimum boiler temperature is an arbitrarily 
defined range between 6840C and the maximum boiler 
temperature. 

The spread is not an apt feature to characterise the 
combustion efficiency in diesel fired boiler and the 
spread exhibit an inter frame dispersion with a mean 
of 99862 pixels and standard deviation of 44861. Fall in 
standard deviation and variance of grey levels in the blue 
channel conform that the blue intensities get converged 
to the minimum range as the emission spectrum get 
shifted to IR.

Pearson correlation coefficients among boiler tem-
perature and flame features are exhibited in Table 2 
and Table  3. Table 3 comprises Pearson Correlation 
Coefficient for video features which are less correlated 
with boiler temperature and Table 2 demonstrates 
Pearson Correlation Coefficient for highly correlated 
video features. The video features exhibiting Pearson 
Correlation Coefficient above 0.9 is referred as highly 
correlated in this context. The video features of blue 
channel grey levels are linearly correlated to boiler 
temperature. Range of green channel grey levels, IQR, 
variance and MAD of blue channel grey levels exhibits 
correlation close to -0.96. 

6.  Conclusion
The correlation between the features extracted from flame 
video and the boiler temperature is statistically evalu-
ated. The measure of central tendency and dispersion of 
blue channel grey levels are correlated more linearly to 
boiler temperature than red and green channel grey lev-
els. However the range of green channel grey levels and 
mode of red channel grey levels exhibited appreciable 
correlation, almost similar to the blue channel features. 

The value of the Pearson correlation coefficient 
ensures that the video features are linearly related to the 
boiler temperature. Hence these features can be employed 
for flame temperature measurement and video based 
combustion control.

7.  Future Scope
The boiler temperature depends equally on combustion 
efficiency and the rate at which the heat is swept away 
from the boiler. The latter is directly related to air flow rate. 
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Hence, the boiler temperature alone, is not an effective 
indicative for optimum combustion, rather, flue exhaust 
analysis along with the boiler temperature would be an apt 
solution, to identify the optimum airflow which offers per-
fect combustion of air-diesel mixture and maximum flame 
temperature. The temperature profile of any flame is heav-
ily correlated to the IR spectrum, emitted from the flame 
than the visible energy. The dependency of blue channel 
grey level variations over the IR spectral changes may 
also be evaluated further. A mathematical relation can be 
established between correlated video features and boiler 
temperature. The relationship between features extracted 
from the video of the flame and boiler temperature may be 
confirmed at different fuel inlet rate also.
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