
Indian Journal of Science and Technology, Vol 9(5), DOI: 10.17485/ijst/2016/v9i5/87173, February 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

Abstract
Objective: Verification of the Slave Block in Ethernet Management Interface using UVM. Methodology: Management Data
Input Output (MDIO) and Management Data Clock (MDC) is a two-wire interface used by Ethernet Station Management
Entity to configure as well as read status from various PHY devices connected to it. Universal verification methodology
is used to verify integrated designs. Verification of the Slave block in Ethernet Management Interface is done through
UVM. Findings: Verification environment for the Slave Block in Ethernet Management Interface is built using UVM.
94.44% functional coverage and 97.96 code coverage is achieved. Applications: Ethernet protocol is used in the computer
communication.

Keywords: Ethernet Management Interface, System Verilog, UVM, Verification

Design and Verification of Slave Block in Ethernet
Management Interface using UVM

K. Jagannadha Naidu* and M. Srikanth

VLSI Division, School of Electronics Engineering, VIT University, Vellore - 632014, Tamil Nadu, India;
jagannadhanaidu.k@vit.ac.in, srikanth20k@gmail.com

1. Introduction

Nowadays, transistors in a single device are increasing
from millions to billions which are integrated on a
chip. As hardware designing became more and more
complex, Semiconductor industry started building
Intellectual Property cores (IP) which are designed by
many Semiconductor vendors. These all IP cores are
integrated into a system on chip designs for multipurpose
applications.

In designing IP core from the specifications, it may
slightly deviate from the specifications. If deviations are
neglected then small deviations leads to bugs in real time
scenarios. So compared to designing, verification also
plays a major role in verifying the designs for eliminating
bugs. This can prevent the semiconductor company from
many losses.

Networking technologies are approaching more and
more. That can be a wired network or wireless network.
In both the cases speed and interconnections play a vital
role. In the wired network, Ethernet is the communication
factor for Local area networks and other area networks. It

is standardized as IEEE 802.3. The devices communicate
through Ethernet by dividing the stream of data into
frames. The information stored in frame are source
addresses, destination addresses and error checking
mechanisms for proper transmission and reception.

Management Data Input and Output interface is
specified in the IEEE 802.3 standard, for providing a
serial interface to transfer management data between
Ethernet Media Access Controller (MAC) and a Physical
Layer (PHY). Ethernet management interface entity is the
device that handles MDIO and MDC. The Slave Block in
the Ethernet Management Interface entity translates the
Management Data Input and Output/Management Data
Clock transactions to access the Registers in the Physical
(PHY) device.

As the bugs are increasing in the complex design,
verifying the designs through conventional techniques
is time consuming in identifying the bugs. Many
methodologies have been developed by Semiconductor
companies for verification of the design. They are Open
Verification Methodology (OVM), Universal Verification
Methodology (UVM)1, etc.

Vol 9 (5) | February 2016 | www.indjst.org Indian Journal of Science and Technology2

Design and Verification of Slave Block in Ethernet Management Interface using UVM

These Methodologies are currently used in industry.
Universal Verification Methodology is derived from Open
Verification Methodology and few other Methodologies.
The Universal Verification Methodology has class
libraries which brings automation for the verification
environment. These class libraries are built using System
Verilog2.

The Hardware Description Language (HDL)
simulators and Hardware Verification Language (HVL)
verification applications are used to be different. System
Verilog integrates this HDL and HVL into Hardware
Description Verification Language (HDVL). It combines
all the design and verification features like assertion based
verification, constrained randomization and coverage.

Design the Slave Block in Ethernet Management
interface entity using Verilog Hardware description
language. Verifying the design Slave Block in Ethernet
Management interface entity using UVM Methodology.
To achieve 100% code coverage and functional coverage

2. �Universal Verification
Methodology

The integrated circuits should comply with the
specifications as improper verification of the design
leads to disasters in the industry. Many industrial
methodologies have been introduced by Semiconductor
Vendors. OVM by Mentor and Cadence, eRM by Verisity,
VMM by Synopsys and AVM by Mentor graphics.

To make standardization in the methodology
Universal Verification Methodology (UVM) has been
introduced for verification by Accellera3 i.e. jointly
with the semiconductor companies like Synopys,
Mentor, Cadence. This is now current industry standard
methodology.

It has features like constrained random verification,
coverage driven verification, reconfigurable, flexible
environment, Verification Intellectual Property (VIP)
reusability, Transaction Level Communication (TLM),
Layered stimulus and Register layer4. As it developed from
OVM, it has object oriented design and some methodology,
these all can be applied to any UVM project. The UVM has
built-in class libraries5 which provide the building blocks
for developing verification objects, components in System
Verilog. It provides open source library from Accellera
which is compatible with any EDA simulator which
supports System Verilog. The other features of UVM are

reusability and portability. This is portable with any EDA
simulator that supports System Verilog.

2.1 UVM Classes
The classes are derived from inbuilt class libraries6 which
have been shown in the Figure 1. For generating data
items a sequence class must be derived from “uvm_
sequence_item” and routing the sequences, the sequencer
class must be derived from “uvm_sequencer”, similarly
the driver, monitor and other components are derived
from their respective class libraries.

Each class has its own useful methods and the user
decides which class to use for verifying the design of
the DUT. There are class libraries for the objects and
components which is shown in the Figure 1.

Figure 1. UVM class library.
The UVM verification environment comprises of

many objects and components. Objects are Transaction,
Sequence_item and Sequence. Components are
Environment, Test case, Sequencer, Monitor, Driver,
Agent and Scoreboard7.

2.1.1Agent
It has three components which are Sequencer, Driver and
Monitor.

2.1.2 Sequence item
In this the transactions are created. The variables,
constraints for sequences are declared in this class.

Vol 9 (5) | February 2016 | www.indjst.org Indian Journal of Science and Technology 3

K. Jagannadha Naidu and M. Srikanth

2.1.3 Sequencer
It arranges the sequence items sequentially in particular order.

2.1.4 Driver
The drivers convert the packet data inside the sequence
items into transactions i.e. pin level. These pin level
transactions are sent to the DUT through the interface.

2.1.5 Monitor
Through the same interface it takes the transactions and
observes pin level activities. These pin level transactions
are observed and these observations are converted into
sequence items. These sequence items are sent to the
components like scoreboard through analysis ports for
analysing the test cases.

2.1.6 Environment
It has the collection of all blocks agents, scoreboards,
config.

2.1.7 Test Case
In this all test case sequences are called. Each test case
checks for each feature in the design or works according
to the user defined code.

2.2 UVM Phases
For consistent order of test cases execution the UVM uses
these phases during the simulation. The important phases
of the UVM are:

2.2.1 Build Phase
This is the first phase of the simulation. When the test cases
are simulated this phase is executed. In the build phase, test
case component hierarchy are constructed through top to
down. During this phase, components are constructed by
the factory. In the Environment, components like agents
and scoreboard8 are built and similarly in the Agent,
components like sequencer, driver and monitor are built.
This is declared as “function void build phase” which
means all the components are built in zero simulation time.

2.2.2 Connect Phase
After execution of build phase, this phase starts for
connection of components. In this phase, various

components of the class are connected. It follows the
order as agent is connected to driver and the driver to the
sequencer. The monitor is connected to analysis ports.
This also is declared as “function void connect phase”
which means all the components are connected within
zero simulation time.

2.2.3 Run Phase:
After the connection of the components, the run phase is
executed. This is the main phase for executing test cases.
In this the simulation code starts. This is declared as “task
run phase” which means it takes some simulation time.

2.2.4 Report Phase
From the monitor component, the data is collected through
the analysis ports for analysing and reporting purpose.
This is useful for further processing the data for storing in
database. The following Figure 2 shows the partial phases.

Figure 2. Partial phases.

2.3 UVM Macros
The UVM macros are useful for many classes, variables.
With these macros, reporting, registering in factory and
some more can be done. Few of them are listed below:

2.3.1 uvm_object_utils
This macro is used with classes derived from uvm_object.
This also registers the new class in factory.

2.3.2 uvm_component_utils
This macro registers the new class type in the factory. It
is usually used when deriving new classes from uvm_
component.

2.3.3 uvm_field_int
This macro is used for registering a transaction variables
in the UVM factory and implements operations.

Vol 9 (5) | February 2016 | www.indjst.org Indian Journal of Science and Technology4

Design and Verification of Slave Block in Ethernet Management Interface using UVM

2.3.4 uvm_info
This is a very useful macro to print messages from the
UVM environment during simulation time.

2.3.5 uvm_error
This macro is responsible for sending messages with an
error tag to the output log. This is immune to verbosity.
This can be controlled by a message ID or severity.

2.3.6 uvm_fatal
This macro is responsible for stopping simulations. This
can be controlled by a message ID or severity.

2.3.7 uvm_warning
This macro is responsible for displaying warning
messages. This is set by verbosity from the environment.e,
there are many more phases.

3. �Design of Slave Block in
Ethernet Management
Interface

3.1 Slave Block
The Slave Block in the Ethernet Management Interface
entity translates the Management Data Input and Output/
Management Data Clock transactions to access the
Registers in the Physical device. There are 31 Physical
devices in each Physical device there are 32 registers
and any register can be accessed. While translating the
Management Data Input and Output/Management Data
Clock transactions if the Physical (PHY) address of the
transaction matches with the device own address (CFG_
PHY_ADDR) then only the Physical device responds.
The ratio of the MDC period to “CLK” period is assumed
to be greater than or equal to 4.

The Master can send any type of transactions i.e. with
preamble or without, the Slave Block should capable of
understanding MDIO/MDC transactions with or without
the preamble from Master. The Figure 3 shows the slave
block and Figure 4 shows the host block.

Figure 3. Slave Block.

Figure 4. Host block.

3.2 Host Block
The Host Register block consists of 32 registers. Each
register width is 16-bit which can be read and write by
the Slave Block. Once MSB_REG_REQ is asserted in a
clock cycle then the Host register block acknowledges and
completes the accesses by asserting REG_MSB_ACK for
one clock cycle at cycle no. N (where N is the cycle time of
the read/write transactions) and returns read data along
with acknowledge for read access and writes data into the
corresponding register for write access.

4. Verification Methodology

The Verification plan for a Slave Block in Ethernet

Vol 9 (5) | February 2016 | www.indjst.org Indian Journal of Science and Technology 5

K. Jagannadha Naidu and M. Srikanth

Management Interface is described in this section. The
driver component will act as the Master for the Slave
Block.

4.1 Verification Plan
This defines what all features in the design have to be
tested and metric coverage for that feature. It has been
divided as Features, Input generation, Checking and
Coverage scenarios. The completion of the verification
plan depends on these parts. If all are covered then
Verification is successfully completed.

4.1.1 Features
This list gives the complete features of the design to be
verified. Check whether transaction is with preamble or
without preamble. Single write and read transactions.
Multiple write and read transactions. Response when read
transaction is done. Depth of the host data. Generation of
Acknowledgements from the host.

4.1.2 Input Generation
Serially send 64 bits of transaction through MDIO with
preamble. Serially send 32 bits of transaction through
MDIO without preamble. Randomize Reg addresses and
Phy addresses with constraints. Randomize Data with Reg
address and Phy address as constraint. Randomize Read
and write operations. Corrupt the serial transmission of
64 bits transaction and similarly for 32 bits i.e. without
preamble.

4.1.3 Checker
Use a memory in Monitor where it stores while writing the
data. When reading it compares the data of corresponding
address.

4.1.4 Coverage
Appropriate Cross groups, Cross points, Bins are built for
the functional coverage of the design.

4.2 Verification Environment
This verification environment gives the purpose of test
bench and working of objects and components. The
environment for the Slave Block mainly comprises
of objects and components. Objects are Transaction,

Sequence_item and Sequence. Components are
Environment, Test case, Sequencer, Monitor, Driver,
Agent and Scoreboard. The agent comprises of drivers,
sequence, monitor. The verification environment is shown
in the Figure 5.

Figure 5. Verification enivironment.

Each one of the objects and components individually
are described below:

4.2.1 Transaction
This class is extended from the class library “uvm_
sequence_item”. The user defined class is registered in the
factory. In this class, random variables are created and
other variables for monitor. In this constraints are also
added for sequences and have post_randomize methods.

 4.2.2 Sequence
This class is extended from the class library “uvm_
sequence”. The user defined class is registered in the
factory. This generates series of transaction which in turn
are routed to the sequencer.

4.2.3 Sequencer
This class is extended from the class library “uvm_
sequencer”. The user defined class is registered in the
factory. This class controls the transaction flow from the
sequences. This routed sequences are sent to driver.

Vol 9 (5) | February 2016 | www.indjst.org Indian Journal of Science and Technology6

Design and Verification of Slave Block in Ethernet Management Interface using UVM

4.2.4 Driver
This class is extended from the class library “uvm_driver”.
The user defined class is registered in the factory. The
routed sequences are aligned in proper order through the
sequencer. This driver class directly takes the sequences
from the sequencer through port. These sequences are
interfaced to the DUT. Then the output from the DUT
is monitored through same interface. The driver class is
built in the agent with build phase and in the environment
sequencer and driver is connected in the connect phase.

4.2.5 Monitor
This class is extended from the class library “uvm_monitor”.
The user defined class is registered in the factory. This
samples the signals from the interface. One monitor for
displaying the transactions. It collects the transactions and
displays accordingly. The other monitor is used for checking
the transactions and for functional coverage. For checking a
memory element is created to store the received data. It checks
with the memory and read data from the DUT and displays
error messages if any error occurs. Functional coverage is
achieved through creation of cover groups, cover points and
bins for the variables. In a simple meaning the bin checks
whether it is filled or not. If it is filled then it is covered.

4.2.6 Agent
This class is extended from the class library “uvm_agent”.
The user defined class is registered in the factory. In this
sequencer, driver, monitor are build in the build phase. In
the connect phase of the agent class, driver is connected
to sequencer through port and exports.

 4.2.7 Environment
This class is extended from the class library “uvm_env”.
The user defined class is registered in the factory. This
class builds the verification environment. It builds agents,
scoreboard. In the build phase agent, scoreboard is
created. In the connect phase the agent is connected to
the scoreboard with the ports.

4.2.8 Test Cases
This class is extended from the class library “uvm_test”. The
user defined class is registered in the factory. In this class,
sequence is randomized through the randomize function.
The sequence is started here through environment, agent
and sequencer.

5. Results

The verification environment is built accordingly using
UVM. Different combinations of test cases are generated.
All these test cases are with preamble and without
preamble. Few of the test cases are constraint randomized
so that the constraints are added. All the test cases reports
are merged to one single report. The following table
shows the functional and code coverage metrics for the
DUT. The simulation result of simple read and write
transactions is shown in Figure 6. From the above Table 1,
code coverage did not reach 100% as some of the variables
in the design are fixed at one value which means toggling
did not happen for the few variables. The functional
coverage achieved is 94.44% covering the features.

Figure 6. Simple read and write transactions.

Table 1. Coverage metrics
Coverage Achieved
Code Coverage 97.96%
Functional Coverage 94.44%

6. Conclusion

The main objective of this project was to design the
Slave Block in Ethernet Management Interface entity
and develop the Verification Environment using UVM
Methodology. As in the previous chapters the design part
and verification of the design are explained. Through
conventional test bench the design was checked. Then
through the Verification Environment, the total design is
verified.

7. References
1.	 Mentor Graphics, Verification Academy. UVM Cookbook.

Mentor Graphics; 2012. p. 1-569.
2.	 Spears C. System Verilog for Verification: A guide to learn-

ing the testbench language features. 2nd ed. Springer: Busi-
ness Media LLC; 2007.

3.	 Accellera Universal Verification Methodology (UVM) 1.1
User’s Guide. Accellera; 2011. p. 1–300.

4.	 Bergeron J. Writing testbenches using System Verilog. USA;
Springer Business Media LLC: 2006.

Vol 9 (5) | February 2016 | www.indjst.org Indian Journal of Science and Technology 7

K. Jagannadha Naidu and M. Srikanth

5.	 Yun YN, Kim JB, Kim ND, Min B. Beyond UVM for prac-
tical Soc verification. International SoC Design Conference
(ISOCC); Jeju. 2011 Nov 17-18. p. 158–62.

6.	 Siddharth R, Singh V. Review on UVM concepts for func-
tional verification. International Journal of Electrical, Elec-
trical and Data Communications. 2014 Mar; 2(3):101–7.

7.	 Priyadharson ASM, Joshua SV, Thilip Kumar C. PLC –

HMI and Ethernet based monitoring and control of mimo
system in a petrochemical industry. Indian Journal of Sci-
ence and Technology, 2015 Oct; 8(27):1–5.

8.	 Rosenberg S, Meade KA. A practical guide to adopting the
Universal Verification Methodology (UVM). San Jose CA,
USA: Cadence Design Systems Inc; 2010.

