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Abstract
The paper attempts to develop a methodology to obtain Best Compromised Schedule (BCS) of Multi-Objective Unit 
Commitment (UC) Problem. The UC Problem is formulated to minimize both the fuel cost and Emission. The traditional 
weight method may not offer equal significance to both the Fuel Cost and Emission. The proposed methodology was a 
normalized objective function with a view of providing equal significance to both the objectives there by obtaining BCS. 
The solution methodology use the recently suggested Teaching Learning  Based Optimization Algorithms (TLBO) and is 
tested on various test system ranging upto 100 units. The results on six tests system have clearly illustrated that the 
proposed  method is better than weight  method. The performance can be improved by combining the algorithms with 
Classical Legrangian Relaxations Method. 

Nomenclature 
CSTi	 Cold startup cost of unit i ($) 
UC	 Unit commitment
TLBO	 Teaching learning based optimization
BCS	 Best compromised schedule
atlbo	 Adaptive TLBO
WM	 Weight method
PM	 Proposed method
a, b, c	 Fuel cost coefficients
d, e, f	 Emission coefficients

( )k
i GiE P 	 Emission function (lb/h) 

( )k
i GiF P 	 Generator fuel cost function ($/h) 

( , )FE GP U 	� Objective function to be minimized 
over the scheduling period 

HSTi 	 Hot startup cost of unit i ($) 
itermax	 Maximum number of iterations
N	 Total number of generating units  
NNGC	 Normalized net generation cost ($/h)
NNEC	 Normalized net emission cost ($/h)
NGC	 Net generation cost ($/h)

NEC	 Net emission cost ($/h)
max

GiP 	� Maximum real power generation of unit 
i (MW)  

min
GiP 	� Minimum real power generation of unit 

i (MW) 
t
iP 	� Generation output power of unit i at 

k-th interval (MW)  
k
DP 	 Load demand at k-th interval (MW) 

Pi,t	� Performance index of i-th student at 
t-th iteration

Pteacher,t	� Performance index of the teacher at t-th 
iteration

Rk	 Spinning reserve at k-th interval (MW) 
rand 	� A random number generated in the 

range [0,1]
k
iST 	 Startup cost of unit i at k-th interval ($)

T	 Total number of hours   
cold
iT 	 Cold start hour of unit i (hours) 
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down
iT 	 Minimum down time of unit i (hours)
off
iT 	 Continuously off time of unit i (hours)  
on
iT 	 Continuously on time of unit- i (hours)
up
iT 	 Minimum up time of unit-i (hours)
,i t
ft 	� Teaching factor of i-th student at t-th 

iteration
Ui,k	� Status of unit-i at k-th interval (on = 1, 

off = 0) 

1.  Introduction
Unit Commitment (UC) determines the optimal sched-
uling of the generating units along with their genera-
tion levels at minimum operating costs while satisfying 
the system and unit constraints. It can be formulated as 
a non-linear, large-scale, mixed-integer combinatorial 
optimization problem, which is quite difficult due to its 
inherent high dimensional, non-convex, discrete and 
nonlinear nature. Besides, the dimension of the problem 
increases rapidly with the system size and the scheduling 
horizon1. 

The fossil fuel based power plants emit several con-
taminants and greenhouse gases that pollute the atmo-
sphere and cause global warming as well. Operating at 
absolute minimum generation cost can no longer be the 
only criterion for dispatching electric power as it poses 
increasing concern over environmental considerations. 
There is thus a need to reduce the pollutants with a 
view of keeping the air clean and reducing the effects 
of global warming by including the emissions either 
in the objective or treating as additional constraints 
of UC problems2. The UC problem thus becomes a 
multi-objective problem with conflicting objectives 
since emission minimization conflicts with fuel cost 
minimization. 

Between the two extremes, there are Lagrangian Relax-
ation (LR) methods8,9, which are efficient and appear to 
be a desirable compromise, and well suited for large-scale 
UC. However under certain constraints such as crew con-
straints, these methods demand additional heuristics det-
rimental to efficiency of the method.

It is an algorithm-specific parameter-less algorithm, 
as it requires only common controlling parameters like 
population size and number of generations for its work-
ing. Since its introduction, it has been applied to a variety 

of problems including parameter optimization of mod-
ern machining processes16, optimal reactive power flow17 
and optimal power flow18 and found to yield satisfactory 
results.

The effort in this article encompasses a solution strat-
egy using an adaptive TLBO (ATLBO) with a view of 
obtaining the Best Compromised Schedule (BCS) for 
multi-objective UC problem to explore its applicability 
for emerging power systems. The paper is divided into 
six sections. Section 1 gives the introduction, section 2 
outlines the UC problem, section 3 overviews the TLBO, 
section 4 suggests an adaptive scheme, section 5 describes 
proposed method, section 6 discusses the simulation 
results and section 7 concludes the article.

2.  Problem Description
The main objective of UC problem is to minimize the 
overall emissions of all the generating units over the 
scheduled time horizon under the spinning reserve and 
operational constraints of generator units. This con-
strained optimization problem is formulated as 
Minimize

  ,
1 1 , 1

( ) (1 ) ( )
( , )

1

k k kT N i Gi i Gi
FE G i kk

k i i i k

F P h E P
P U U

ST U

 

  

      
   

 � (1)

Subject to, Power balance constraint

	 ,
1

0
N

k k
D Gi i k

i
P P U



  � (2)

Spinning reserve constraint:

	 max
,

1
0

N
k k
D Gi i k

i
P R P U



   	 (3)

Generation limit constraints:

	 min max
, , 1,2, ,k

Gi i k Gi Gi i kP U P P U i N    � (4)

Minimum up and down time constraints:

	 ,

1

0
0 1

on up
i i

off down
i k i i

if T T

U if T T
or otherwise




 



� (5)

Start-up Cost:

	

down off cold down
i i i i i

i off cold down
i i i i

HST if T T T T
ST

CST if T T T

    
 

� (6)
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Where,

	 2( )k k k
i Gi i Gi i Gi iF P a P b P c   � (7)

	
2( )k k k

i Gi i Gi i Gi iE P d P e P f   � (8)

3.  TLBO
TLBO, inspired from teaching–learning process in class 
rooms, is suggested for solving multimodal optimiza-
tion problems. In this approach, each student compris-
ing grade points of different subjects represents a solution 
point and his/her performance is analogous to fitness 
value of the problem. The best student in the population is 
considered as the teacher. A group of students comprising 
a teacher forms the population and the solution process is 
governed by two basic operations, namely teaching and 
learning phases, which are briefed below:

3.1  Teaching Phase
The teaching phase represents the global search property 
of the TLBO algorithm. During this phase, the teacher, 
who is the most experienced and knowledgeable person 
in the class, imparts knowledge to all the students with 
a view of improving the performance of the whole class 
from initial level to his own level. The teaching increases 
the mean grade point of the subject. The change in the 
grade point of the student can be expressed as 

	  (0,1)j t j t j t ave
teacher fS rand S t S    � (9)

Where,
	 S jt ave is the mean grade of the j-th subject at t-th 
iteration and computed by

	
1

1 nS
j t ave j t

i
i

S S
nS 

  � (10)

tj
teacherS  is the grade point of the j-th subject of the teacher  

at t-th iteration
tf is the teaching factor, which decides the value of 

mean to be changed and can be either 1 or 2,   evaluated 
by

	
([1 (0,1){1,2}]ft round rand  � (11)

The new grade point of the j-th subject of the i-th stu-
dent, as a result of teaching, is mathematically modeled by 

	
1j t j t j t

i iS S S    � (12)

The grade points of all the students at the teaching 
phase are further improved by the learning phase.

3.2  Learning Phase
In this phase, the students enrich their knowledge by 
interaction among themselves, which helps in improv-
ing their performances. The influence on the grade points 
due to the interaction of p-th student with q-th student 
may be mathematically expressed as follows:

 
 

1
j t j t j t
p p q p qj t

p j t j t j t
p q p p q

S rand S S if PI PI
S

S rand S S if PI PI


     
   

� (13)

pp and pq  is the performance, indicating the fitness, of the 
p-th and q-th student respectively.

4. Adaptive TLBO
The teaching factor of TLBO, narrated in section 3, 
decides the value of mean to be changed. It is adaptively 
modified at t-th iteration as19 

	

,
,

, , 0

1

i t
teacher t

i t teacher t
f

PI if PIt PI
otherwise


 



� (14)

It does not require the factor to be specified at the 
beginning of the optimization process. The TLBO with 
adaptive mechanism is hereafter represented as adaptive 
TLBO (ATLBO) throughout the thesis. 

5.  Proposed Method
In multi-objective optimization problems, the objec-
tives are blended by Weight Method (WM) using weight 
parameter ω., as given in Equation (1).  The relative sig-
nificance given to each of the objectives can be varied by 
changing the value of ω. When ω is 1, the technique offers 
the best fuel cost. The fuel cost increases and the emission 
cost decreases when ω is reduced in steps from 1 to 0. It 
provides the best emissions when ω equals 0.  

In UC problem, the Best Compromised Schedule 
(BCS) may be defined as the one with equal percent devi-
ations from the optimal solutions corresponding to best 
generation cost and best emissions besides lying nearer to 
both of the best solutions20. It is to be noted that the gen-
eration cost includes both the fuel cost and start-up cost. 
Setting a ω value of 0.5 in the WM may not yield BCS, as 
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the EED solution methodology does not include the start-
up cost. Besides the chosen h parameter does not make 
the fuel cost and emissions cost components to the same 
level in the objective function.  There is thus a need for a 
methodology to address the above mentioned drawbacks 
in obtaining the BCS of the UC problem. 

The prime objective of the PM is to make the net-
generation cost and net-emission components of the cost 
function equal to the possible extent over the scheduling 
period in addition to minimizing the cost function of the 
UC problem using the ATLBO, while satisfying the sys-
tems’ equality and inequality constraints. This can be real-
ized by treating ω as a real valued variable in the range of 
(0,1)  in addition to the usual binary UC variables. If ω is 
treated as a variable, it will directly control the compo-
nents of fuel cost and emissions, thereby eliminating the 
h-parameter.  

5.1  Representation of Grade Points
The grade points S of each student in the PM is repre-
sented to denote the binary UC variable, Ui,t which repre-
sents on/off status of i–th unit at k–th interval in matrix 
form as shown in Figure 1.

1 2 …… N
1 U1,1 U1,2 …… U1,t

ω
2 U2,1 U2,2 …… U2,T

S  = .
.

.

.
.
.

.

.
.
.

T UN,1 UN,2 …… UN,T

Figure 1.  Representation of a student.

5.2  Generation of Initial Population
It is difficult to generate feasible solution when initial 
population is generated at random. All units are almost 
committed at heavy load while most of them are decom-
mitted at light load. The initial population is therefore 
generated from the load curve as shown in Figure 2.

5.3  Binary Conversion Mechanism
The binary conversion mechanism, suggested by Kennedy 
and Eberhart21 for PSO, enables the algorithm to operate 
in binary spaces. The same mechanism can be employed 
in the ATLBO for converting the real valued grade points 
of the students in the population into binary 0’s and 1’s as 
outlined below.

	  1
1 1

0

j tT
j t p
p

if B G S
S

otherwise


   


� (15)

Where,     	           

	    
1

1

1
1 exp

j t
p j t

p

G S
S





 

� (16)  

5.4  Repair Algorithm
Spinning reserve, minimum up/down time constraints 
are important in UC problems. During iterative process, 
these constraints are often violated and the system may 
suffer from deficiency in units. At this stage, a repair algo-
rithm can enhance the solution process. The proposed 
repair algorithm is outlined below.

•	 If spinning reserve constraint is not satisfied, ran-
domly change an off status unit to on (0 → 1). 

•	 If the net minimum power generation of on status 
units is greater than the power demand, randomly 
change an on status unit to off (0 → 0). 

•	 If minimum up/down time constraint is violated, 
identify the stream of bits that causes violation and 
alter them in order to overcome this violation. For 
example a string of 1111001111 may be modified 
either as 1111111111 or 1110001111 or 1111000111. 
However, the one that requires least bit changes is cho-
sen for repair.

•	 Repeat steps 1-3 till all the constraints are satisfied.

 1500 
 1300 
 1100 
   900 
   700 
           0         5        10        15        20        25  
 
              1234   …         ….     ….      ….   T        
   1 
 
 
 
   i 
 
    
   N 

    0000  0111 1111 1111 0011  1100  

    0000  1111 1111 1110 0001 1100  

    0001  1111 1111 1111 0011 1110  

       


                


                 


 

Figure 2.  Initial Population.



K. P. Balasubramanian and R. K. Santhi

Indian Journal of Science and Technology 5Vol 9 (2) | January 2016 | www.indjst.org 

5.5  Non-Iterative Technique for EED
The EED is an intensive computational part in UC prob-
lem. It is solved using a time consuming λ iteration 
method1 based on the principle of equal incremental 
cost as the fuel cost is represented by   a quadratic cost 
function. The PM uses a non-iterative EED22 in order to 
improve the computational speed.  

Based on the bi-objective function of EED, the fuel 
cost and emission coefficients are combined as 

	
' (1 )
' (1 )
' (1 )

i i i

i i i

i i i

a a hd
b b he
c c h f

 
 
 

  

  

  

	 (17)

The co-ordination equation of the conventional λ–
iteration method at interval-k can be written as,

	 2 ' ' ; 1,2....kik
i Gi i k

Gik

F a P b i N
P




   


� (18)

Rearranging Equation (18) for optimal generations, 

	

'
2 '
k ik

Gi
i

b
P

a
 

 � (19)

The above equation can be written in terms of k
DP   as 

	 '
2 '

k
D ik

Gi
i

P b
P

a
 


 
 � (20)

Where,         

	
1

'
2 '

N
i

i i

b
a




 � (21)

	 1

1
2 '

N

i ia




 � (22)

Equation (17) provides optimal generations that mini-
mizes bi-objective function of Equation (1).  Substituting 
Equation (17) in Equation (1) and rearranging

	
2

, ( ) k k
F k G k D k D kMin P A P B P C    � (23)

Where,

	 2
1

1
4 '

N

i i

A
a 

 � (24)  
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1 2 '

N

i i

B
a


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2
2

1

1 ' '
4 '
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i i
i i

C b c
a




         
 � (26)

The demand k
DP  must be supplied by all the generating 

plants, that is,

	
1

N
k k k
G Gi D

i
P P P



  � (27)

Replacing DkP  by GkP   in Equation (23)

	 2
, ( ) k k

F k G k G k G kP A P B P C    � (28)

Differentiating and equating Equation (28) to zero 

yields the optimal λ that minimizes )(, GkF PF .

	
, ( )

2F k Go k
k G kk

G

P
A P B

P



  

 � (29) 

The individual unit generation can be obtained by

	
'

1,2, ,
2 '

o
ik

Gi
i

b
P i N

a
 

   � (30)

The algorithm is obtained below:
•	 Read the system data
•	 Calculate the cost coefficients  ia ' , ib '  and ic '
•	 Evaluate the constants  ρ, σ, А, В and С
•	 Evaluate ol  using Equation(29) and then solve Equa-

tion(30) for all generating plants at all intervals
•	 Stop 

5.6  Performance Index Function
The algorithm searches for optimal solution by maximiz-
ing a performance index function, which is so tailored 
that it gives equal significance to both the generation cost 
and emission components through normalizing the net-
generation cost and net-emission components as 

1
1 ( ) *

Maximize PI
NNGC NNEC PF NNGC NNEC


   

� (31)

Where,

NNGC =

   min
, 1 ,

1 1
max min

( ) 1
100

T N
t t

i Gi i i t i t
t i

F P ST U U NGC
NNGC

NGC NGC


 

      
   
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 
 
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� (32)
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1 1
max min

( )
100

T N
t

i Gi i t
t i

E P U NE
NNEC

NE NE
 

     
   
 
 
 


� (33)

Equation (31) eliminates the use of h parameter, but 
requires the values for NGCmin, NGCmax, NECmin and 
NECmax, which can however be obtained through solving 
UC with EcD and UC with EmD. 

5.7  Solution Process
An initial population of students is obtained by generating 
random values within their respective limits to every indi-
vidual in the population using the procedure described in 
section 5.2. The P is calculated by considering grade points 
of each student; and the teaching and learning phases are 
performed for all the students in the population with a view 
of maximizing their performances. The iterative process is 
continued till convergence. The flow of the proposed PM 
for obtaining the BCS of UC problem is shown in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Start 

Read the data for UC problem 

Choose the ATLBO parameters 
such as Itermax  and nS 

Generate the initial population of 
students using the procedure 

described in section 5.2 

Set  the iteration counter iter=0   
 

for i =1:nS  

Convert the grade points of i-th 
student Si into binary form by Eq. (15) 

and set them as UC schedule  

Repair the grade points of  
i-th student to satisfy the spinning 

reserve and minimum up/down 
constraints by following the procedure 

in section 5.4. 

Perform EED using the procedure 
narrated in section 5.5 over the 

scheduling period and then evaluate PI 
using Eq. (31)  

Choose the best student possessing 
the largest PI in the population as 

the teacher  

Evaluate the mean grade point 
for each subject by Eq. (10) 

    i  

   iter=iter+1 
 

The best student with highest PI 
in the population is the optimal 

UC schedule 

Stop 

Is 
iter>itermax 

 

Define the binary UC variables as 
grade points of each student Si   

Calculate the teaching  
Factor for all the students  

Using Eq. (14) 

Perform the Teaching phase to 
modify the grade points of each 

student by Eq. (12) 

Perform the Learning phase to 
update the grade points of each 

student by Eq. (13) 

Yes 

No 

Figure 3.  Flow chart of PM.
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6.  Simulation Results
The PM has been tested on systems with 10, 20, 40, 60, 
80 and 100 generating units. The unit data and load 
demand data for 24 hours for the system with 10 units 
are available in23. The emission coefficients are taken 
from24. The data for other larger systems are obtained 
by duplicating the data of 10 unit system and adjusting 
the load demand in proportion to the system size. The 
population size is chosen as 30 for all the test problems. 
The maximum number of generations for convergence 
check is taken as 200, 300, 500, 700, 900 and 1000 for 
10, 20, 40, 60, 80 and 100 unit systems respectively. 
The spinning reserve requirements are assumed to be 
10% of the load demand. For each test system, totally 
50 trials are performed to study the performance of the 
PM. The normalized objective function values, NNGC 
and  NNEC that represent how far the solution is away 
from the individual best points20, is used for studying 
the goodness of the solution.  A solution is said to be 
BCS if the NNGC and  NNEC are in the same range, 
which can be assessed through calculating the differ-
ence between them DNOV = NNGC - NNEC. The best 
and worst values of the individual objectives, required 
for evaluating theNNGC,   NNEC, DNOV and P are 
given for all the test systems in Table 1. The detailed 
results comprising UC schedule, fuel cost and emis-
sions at each interval, net start-up cost, net generation 
cost and net emissions of 10-unit system, obtained 
by PM, are presented in Table 2. The generations of 
UC schedule over the scheduling period are shown in 

Figure 4. The net fuel cost, net start-up cost, net gen-
eration cost and net emissions for of 10, 20, 40, 60, 80 
and 100 unit systems of the PM are given in Table 3.  
The table also includes the results of WM with a view 
of comparison.  

Figure 4.  BCS for 10 unit system by PM.

The quality of the BCSs, in terms of NNGC, NNEC and 
DNOV, obtained by PM and WM, are pictorially com-
pared in Table 4 for all the test systems. It is obvious that 
the PM offers  DNOV of 0.324, which is much lower than 
that of the WM for 10 unit system, thereby indicating that 
PM is able to offer BCS. The same can be observed for the 
remaining test systems. These results clearly indicate that 
the PM offers the BCS that simultaneously optimizes the 
generation cost and emissions for all the test systems. The 
UC schedule along with the optimized weight value (ω) 
of the PM for 10, 20, 40, 60, 80 and 100 unit systems are 
given in Table 5. 

Table 1.  Best and Worst Objective Function Values

Test System

Fuel Cost ($/h) Emissions (lb/h)

Best Worst Best Worst

10-units 563937.687070 601601.784227 32872.500348 44519.972826

20-units 1124587.481774 1198110.751007 65513.164896 89627.171383

40-units 2243372.503499 2392404.201865 130773.588955 177312.704025

60-units 3361567.962523 3581010.286946 195689.171817 265721.535026

80-units 4482079.070863 4774575.495765 260862.040743 352993.674834

100-units 5600754.764095 5975383.453642 326410.540027 442191.145025
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Table 3.  Comparison of Results for BCS of 10 unit system by PM-5

Test System Method Fuel cost Start-up cost Net cost Net Emission

10-units
PM 574525.322800 4090.000000 578615.322800 37373.760886

WM 581818.593321 4540.000000 586358.593321 36242.409549

20-units
PM 1146242.235376 8180.000000 1154422.235376 75382.671833

WM 1157131.876983 7620.000000 1164751.876983 73465.079738

40-units
PM 2286461.577617 14940.000000 2301401.577617 148892.440978

WM 2302520.400996 15000.000000 2317520.400996 144228.014578

60-units
PM 3425339.604787 21300.000000 3446639.604787 222666.143067

WM 3452338.035506 22380.000000 3474718.035506 216086.270295

80-units
PM 4559564.044551 31580.000000 4591144.044551 295645.731979

WM 4596095.854733 29880.000000 4625975.854733 290110.555829

100-units
PM 5708146.070639 34680.000000 5742826.070639 371208.836981

WM 5725227.005635 37320.000000 5762547.005635 367393.121495

Table 2.  UC Schedule over scheduling horizon for 10 unit system by PM

Unit Fuel Cost
$/h

Emissions
lb/h1 2 3 4 5 6 7 8 9 10

Interval

1 1 1 0 0 0 0 0 0 0 0 13765.138 855.823
2 1 1 0 0 0 0 0 0 0 0 14615.868 996.998
3 1 1 0 0 1 0 0 0 0 0 17306.960 1000.825
4 1 1 0 0 1 0 0 0 0 0 19008.935 1289.154
5 1 1 0 1 1 0 0 0 0 0 20507.698 1139.086
6 1 1 1 1 1 0 0 0 0 0 22889.438 1284.902
7 1 1 1 1 1 0 0 0 0 0 23739.734 1421.016
8 1 1 1 1 1 0 0 0 0 0 24591.020 1568.631
9 1 1 1 1 1 1 1 0 0 0 28159.287 1794.062

10 1 1 1 1 1 1 1 1 0 0 31046.975 2181.673
11 1 1 1 1 1 1 1 1 1 0 33124.753 2441.024
12 1 1 1 1 1 1 1 1 1 1 35219.489 2712.841
13 1 1 1 1 1 1 1 1 0 0 31046.975 2181.673
14 1 1 1 1 1 1 1 0 0 0 28159.287 1794.062
15 1 1 1 1 1 0 0 0 0 0 24591.020 1568.631
16 1 1 1 1 1 0 0 0 0 0 22019.441 1164.032
17 1 1 1 1 1 0 0 0 0 0 21114.297 1058.381
18 1 1 1 1 1 0 0 0 0 0 22889.438 1284.902
19 1 1 1 1 1 0 0 0 0 0 24591.020 1568.631
20 1 1 1 1 1 1 1 1 0 0 31046.975 2181.673
21 1 1 1 1 1 1 1 0 0 0 28159.287 1794.062
22 1 1 0 0 1 1 1 0 0 0 23459.785 1661.088
23 1 1 0 0 0 1 0 0 0 0 18004.916 1280.918
24 1 1 0 0 0 0 0 0 0 0 13765.138 1149.673

Start-Up Cost ($/h) 4090.000 ---
Net Fuel Cost ($/h) / Net Emissions (lb/h) 578615.322 37373.760
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Table 4.  Comparison of Performance Metrics

Test System Method NNGC  NNEC  DNOV

10-units
PM 38.970 38.646 0.324
WM 59.529 28.933 30.596

20-units
PM 40.579 40.929 0.35
WM 54.628 32.976 21.652

40-units
PM 38.937 38.933 0.004
WM 49.753 28.910 20.843

60-units
PM 38.767 38.521 0.246
WM 51.563 29.125 22.438

80-units
PM 37.288 37.754 0.466
WM 49.196 31.746 17.45

100-units
PM 37.923 38.692 0.769
WM 43.187 35.397 7.79

Table 5.  Weight Parameters by PM

Test System 10-units 20-units 40-units 60-units 80-units 100-units

Weight parameter ω 0.16 0.205 0.195 0.192 0.19 0.205

It is very clear from the above discussions that the per-
formance of the PM is in general superior to that of WM. 
However, it is to be noted that the PM cannot exactly 
make the DNOVs zero, due to the nonlinear nature of the 
objectives considered in the UC problem and the unavail-
ability of the solution that makes respective NNGC and  
NNEC exactly equal. 

7.  Conclusions 
An elegant algorithm involving ATLBO for obtaining BCS 
of multi-objective UC has been proposed. The method uses 
a new mechanism for converting real values into binary 
besides adaptively adjusting the teaching factor. The repair-
ing strategy has ensured feasible solution in the population. 
The method has employed a non-iterative EED that reduces 
the computational burden during the ATLBO iterations. 
The results on various test systems have clearly exhibited 
the superior performance of the PM and indicated that the 
method is ideally suitable for practical applications.
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