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Abstract
Measurement of market risk requires lots of computational resources when the Value-at-Risk (VaR) is computed using 
the historical simulation approach as it involves full revaluation of the portfolio for the considered data points. Although 
approximations can be done using the delta-normal, delta-gamma and delta-gamma-theta approaches, historical simulation 
approach alone is straight forward method that uses past data to generate future values without assuming any distribution 
for the underlying returns. The requirement of intensive computational effort in case of historical simulation hinders it’s 
usage for applying to real time VaR calculation. In this work we propose a methodology that doesn’t forego the benefits of 
historical simulation approach but can be applied to calculate market risk VaR in real time. The VaR calculated using the 
proposed methodology converges as the range of the portfolio returns is increased. The proposed methodology is also 
superior to the historical simulation approach in terms of usage of the computational resources and applicability to real 
time without sacrificing accuracy obtained using historical simulation approach.
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1.  Introduction

Managing market risk has the following objectives:
•	 Compute the exposures against counterparties at 

various aggregation levels.
•	 Compute the regulatory capital charge for each 

instrument based on Market-To-Market (MTM) 
value and risk.

•	 Allocate scarce resources like capital, risk limits, 
accounting capital to various facilities.

•	 Introduce the firm’s financial reliability and risk-
management technology to regulators, pledged 
counterparties, rating agencies, auditors, the 
financial press and others whose knowledge improves 
regulatory conduct and the firm’s terms of instrument 
and compliance.

•	 Enhance the performance of facilities by improving 
the risk reward ratio.

•	 Protect the firm from bankruptcy costs.
Market risk is measured in terms of VaR which is 

computed as the maximum loss that a portfolio can suffer 
at a presumed confidence over a given time horizon. The 
risk appetite of the firm can be defined by introducing 
VaR limits to allocate capital to different business areas at 
various facilities. Financial institutions use the historical 
simulation approach for computing market risk VaR 
as it is the most straight forward method that has no 
assumptions regarding the distribution of portfolio 
returns either implicitly or explicitly. By following this 
approach the complete portfolio of financial instruments 
has to be valued at each data point of the specified time 
window. Heavy load is put on the valuation engines for 
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calculating 99% one day VaR using market data of the 
underlying risk factors at N data points by historical 
simulation as it requires complete revaluation of the 
portfolio N times. This limitation makes it unsuitable for 
real time checking against VaR limits. The methodology 
proposed in this work involves usage of stored closing 
prices of the instruments within in the portfolio for N 
past data points. The portfolio is revalued only once using 
the current market data of the risk factors. This is taken 
as (N+1)th data point. The prices at the (N+1)th data 
point in conjunction with the stored historical prices of 
the instruments is used in the proposed VaR calculation 
algorithm. The proposed algorithm can be used in real 
time as the computational complexity of the proposed 
algorithm is always much less than the historical 
simulation approach.

The remaining part of the paper is organised as 
follows: Section 1 gives an overview of literature survey 
on the VaR methodologies, Section 2 describes the 
conventional historical simulation approach for VaR 
calculation, Section 3 describes the proposed algorithm, 
Section 4 compares historical simulation and proposed 
method, Section 5 evaluates the proposed algorithm for 
measuring VaR, Section 6 concludes the work with the 
findings. 

2.  Literature Survey

The widely accepted measure for calculating market 
risk during the 1990’s is VaR. In 1922 New York Stock 
Exchange enforced capital requirements on member firms 
which required calculation of losses that the portfolio can 
have for a set time horizon. A quantitative example based 
on the “spread between probable losses and gains proposed 
Leavens10 is considered as the first VaR measure ever 
published. Markowitz11 published VaR measures based 
on the covariance between risk factors for market risk 
measurement. Tobin17 calculated VaR measures based 
on liquidity preference theory. The theory explains the 
distribution of wealth among cash and other alternative 
monetary assets. The cash component doesn’t yield any 
interest and is used to absorb the losses that occur on the 
other monetary assets. William Sharpe14 described his 
VaR measure using relatively few parameters without 
losing much information making it a low cost analysis. 
The measure is used in deriving the Sharpe’s15 Capital 
Asset Pricing Model (CAPM) that establishes the risk 
and return relationship. 

The more volatile markets in the 1980’s resulting 
due to multiplying sources of market risk demanded 
development of more sophisticated VaR measures. 
During this period proprietary VaR measures were 
developed by financial institutions. The explosion of 
derivative instruments and disclosed losses in the early 
1990’s stimulated the arena of financial risk management. 
JP Morgan’s Risk Metrics service to measure VaR was 
revealed to experts at financial organizations and 
businesses. Further the Basel Committee promoted 
the use of proprietary VaR models for calculating 
regulatory capital. A “VaR debate” emerged regarding 
the subjectivity of risk based on the issued identified by 
Markowitz. Studies on the Japanese and Singaporean data 
made by Halton6 Tse18 and Tse and Tung19 revealed that 
volatility forecasts using the ARCH models are inferior 
compared to the Exponentially Weighted Moving Average 
(EWMA) model. The performance of Risk Metrics is 
analysed by Pafka and Kondor12. Their studies revealed 
that due to the presence of fat tails in financial data the 
risk is underestimated by assuming normally distributed 
returns. Fan et al.3 did experiments using the EWMA 
and Simple Moving Average (SMA) for calculating 95% 
VaR on two stock indices of Shenzhen and Shanghai. The 
studies exposed that the optimal decay factor for both the 
indices is less than value determined via Risk Metrics (0.9 
< λ <1). The fluctuations in the Chinese stock market and 
their memory lengths are better reflected by calculating 
the decay factor with EWMA method. Studies by So and 
Yu16 on estimation of value at risk at various confidence 
levels using IGARCH (1, 1), Risk Metrics, GARCH (1, 
1) and FIGARCH (1, d, 0) on 4 exchange rates and 12 
stock indexes disclosed that the effect of volatility modes 
for estimating value at risk is less significant in the forex 
market in comparison to the equity market. Empirical 
results of efficiency presented in Galdi and Pereira4 by 
calculating VaR using EWMA, GARCH and Stochastic 
Volatility (SV) models using 1500 observations for a 
sample proved that VaR computed by EWMA model 
has lower exceptions than by GARCH and SV models. 
Investigations of Patev et al.13 for volatility forecasting 
on the thin emerging Bulgarian stock markets suggested 
that both EWMA with GED distribution and EWMA 
with t–distribution have good performance to model and 
forecast volatility of stock returns. Most research in the 
VaR literature emphasize on the computation of the VaR 
for financial assets like equities or bonds, usually dealing 
with modelling for negative returns. Recent studies on 
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VaR include the books of Jorion8 and Dowd2, papers by 
Danielsson and de Vries1, van den Goorbergh and Vlaar20, 
Giot and Laurent5 and Vlaar21.

Among the methodologies discussed above historical 
simulation shows better unconditional coverage 
compared to sophisticated methods like GARCH. The 
regulatory back tests favour unconditional coverage 
performance measures of VaR estimates, providing 
no incentives to adopt different VaR methodology for 
better conditional coverage. Hence most of the banks 
implement the historical simulation methodology for 
VaR calculation. In this work we come up with a new 
methodology to calculate VaR using historical simulation 
that requires less computational resources compared to 
the conventional historical simulation approach. 

3.   Conventional Historical 
Simulation

Historical simulation approach involves identifying the 
risk factors that affect the instruments within the portfolio 
and generating the scenarios of the risk factors for the 
data point ahead depending on historical data using the 
formula:

Rf(t+1) = Rf(t) * Rf(i+1) /Rf(i)        (1)

Where: 
Rf (t+1) is the risk factor valueat next data point.
Rf (t) is the risk factor value on the data point of 

calculation.
Rf (i) and Rf (i+1) are the risk factor values on 

successive data points
(i = 1 to N).

The value of each instrument with the set of possible 
scenarios is determined and the prices calculated using 
the scenarios are aggregated to get N different portfolio 
values. The difference between the current value and the 
N different values of the portfolio is calculated to get N 
different portfolio returns. These returns are sorted and the 

{floor [(1-α)*N]}th term is reported as the α% one day VaR.

4.  Proposed Algorithm

The proposed algorithm is divided into seven steps as 
below:
•	 Calculation of volatility of returns.
•	 Calculation of Lower and Upper bounds of the future 

data point using the current data point.
•	 Calculation of the fractional distance from the upper 

bound to the actual value.
•	 Calculation of the differences in consecutive 

fractional distances.
•	 Generation of possible fractional distances using 

the current fractional distance and the differences 
calculated in above step.

•	 Calculation of the losses using the bounds on returns 
and possible fractional distances.

•	 Sort the losses and get the loss at required percentile.

4.1 Notations
Sn – Closing value of portfolio on data point “n”.
Rn – Portfolio Return on data point “n”.
σ – Volatility of portfolio returns.
μ – Mean of portfolio returns.
dn– Fractional distance from Lower boundary on data 
point “n”.
∆dn – Difference in fractional distances on data point “n”.
LBn – Lower boundary on data point “n”.
UBn – Upper boundary on data point “n”.
Li – ith expected loss.
N – Number of past data points. 

4.2 Example
σ = 30.8288619
k = 5
k σ = 147.4507425

Table 1 shows the calculations related to parameters 
used in the mathematical expressions and Table 2 shows 
the calculations related to VaR
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Table 2.    VaR calculation
Generated Distances D 
= 0.642074658 + ∆dn

Li d* (-k σ) + 
(1-d)* k σ

Sorted Losses

0.722681 -65.6689 -95.7054
0.762903 -77.5305 -88.2441
0.582553 -24.3449 -77.5305
0.441775 17.1705 -70.2605
0.799233 -88.2441 -65.6689
0.738251 -70.2605 -47.7331
0.498378 0.47829 -41.3719
0.640291 -41.3719 -24.3449
0.824534 -95.7054 0.478288
0.661861 -47.7331 17.17054

90th percentile VaR = -88.2441

5.   Comparison between 
Historical and Proposed 
Approach 

The calculations that are done as a part of VaR calculations 
can be divided into valuations and computations. 
Valuations involve instrument pricing that require lot 
of computational power. Computations involve simple 
arithmetic like adding instrument prices to get portfolio 
values etc. Therefore our objective should be to reduce the 
number of valuations. 

Consider a portfolio of “I” instruments. The proposed 
algorithm is compared with the historical simulation 
approach considering the four cases as described below:
•	 The instruments within the portfolio doesn’t not 

change compared with previous data point.
•	 Inew new instruments are added to the portfolio 

compared to previous data point.
•	 Idel instruments are expired and deleted from the 

portfolio compared to previous data point.
•	 Inew new instruments are added and Idel instruments 

are expired and deleted from the portfolio compared 
to previous data point.

The comparisons made between the Historical 
Simulation and proposed algorithm are shown in the 
Table 3.

Table 3.    Number of valuations
Case Valuations using 

Historical Simulation
Valuations Using 

Proposed Algorithm
1 N*I I
2 N*(I+ Inew) I + N* Inew

3 N*(I- Idel) I- Idel

4 N*(I+ Inew- Idel) I+ N*Inew- Idel

In each of the above mentioned cases the price of 
each instrument for N data points is to be stored in the 
database for implementing the proposed algorithm. 
However in case of historical simulation there is no such 
requirement. The expired instruments are deleted from 

Table 1.    Calculation of required parameters
S n R
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n 

)/
2k

 σ

∆
d n

1946.05 33.80 1758.10569 2066.39431 0.390362479
1955.00  08.95 1791.90569 2100.19431 0.470968763 0.080606284
1926.70 -28.30 1800.85569 2109.14431 0.591797096 0.120828333
1916.75 -09.95 1772.55569 2080.84431 0.532274951 -0.059522145
1968.55 51.80 1762.60569 2070.89431 0.331975633 -0.200299317
1971.90 3.35 1814.40569 2122.69431 0.489133559 0.157157926
1945.60 -26.3 1817.75569 2126.04431 0.585309669 0.09617611
1963.60 18 1791.45569 2099.74431 0.441613154 -0.143696514
1982.15 18.55 1809.45569 2117.74431 0.439829112 -0.001784043
1944.45 -37.7 1828.00569 2136.29431 0.622288004 0.182458892
1900.65 -43.8 1790.30569 2098.59431 0.642074658 0.019786653
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the portfolio before starting the valuation process. In 
case of the proposed algorithm, the new instruments are 
valued assuming that the instrument is traded on that 
particular data point with the corresponding market data 
of risk factors.

These prices are stored in the database against the 
corresponding data point for using them at a future data 
point. When an instrument expires its historical prices 
stored in the database are deleted. From Table 3 it can 
be inferred that the number of valuations required for 
historical simulation approach is always much greater 
than that required for the proposed algorithm. Therefore 
the proposed algorithm is much faster and requires less 
computational resources than the historical simulation 
approach and can be used in real time. The storage space 
required to store the data of a portfolio.

5.1 Evaluation of the Proposed Algorithm
To evaluate the model VaR is calculated for 100 data points 
using both historical simulation and proposed approach 
for S&P CNXNIFTY index. The accuracy of the proposed 
algorithm is validated by applying Kupiec9 test and Mixed 
Kupiec test. Kupiec’s test measures whether the number of 
exceptions where the actual loss exceeded the measured 
VaR is in line with the confidence level. Kupiec’s test also 
called as POF-test (Proportion of Failures). POF-test 
requires information regarding the number of exceptions 
(e), number of observations (X) and the confidence level 
(c) for its implementation. The test static is given by 
Equation (2).

LRPOF = -2ln { [(1-p)X-epe] / [ (1- (e/X))X-e (e/X)e] }      (2)

Where p = 1-c
LRPOF should be asymptotically χ² distributed with one 

degree of freedom. When the test static is less than the 
critical value the model passes POF test. The computations 
achieved using Kupiec’s Test is shown in the Table 4.

From Table 4 it can be observed that the test static 
exceeds the critical value of 6.635 during the year 2013 for 
both historical simulation and proposed method for VaR 
calculation. In all the other years the test static is less than 
the critical value and the proposed model passes POF test. 
Also the number of exceptions in the proposed approach 
is less than the historical simulation approach.

Table 4.    Kupiec’s test for 99% one day VaR
Year Number of 

Exceptions 
Historical 

Simulation 
(99%)

Number of 
Exceptions 
Proposed 
Method 
(99%)

Historical 
Simulation 

LRPOF 

(99%)

Proposed 
Method 

LRPOF 

(99%)

2005 7 6 5.424052 3.498777
2006 8 4 7.733551 0.769138
2007 7 4 5.533804 0.781362
2008 7 2 5.645647 0.092812
2009 1 1 1.092701 1.092701
2010 5 3 1.936586 0.090944
2011 6 2 3.670885 0.092812
2012 1 1 1.176491 1.176491
2013 12 12 19.09467 19.09467

Haas7, proposed the mixed Kupeic’s test that measures 
both the independence and coverage. The test static for 
independence is given by Equation (3).

vi 1 vi 1
ind i i

v 1 v 1

n
LR [ 2 In ((p * (1 p) )/(1/V ) * (1 1/ lV ) )))]

i n

2ln((p * (1 p) )/((1/ v) * (1 1/ v) )))

- -

- -

=å - - -
=

- - -

      (3)

Where: 
vi the time between exceptions i and i−1.
v is the time to first exception.
n is the number of exceptions.

The computations resulted through application of 
Kupec’s test that measures the independence and coverage 
is shown in the Table 5.

The LRind -statistic is χ² distributed with n degrees of 
freedom and the LRMix -statistic is χ² distributed with n + 
1 degrees of freedom. When the test if the test static is less 
than the critical value the model passes mixed Kupiec test. 
From Table 3 it can be inferred that the proposed model 
breached the critical value of the test for independence 
and mixed Kupiec test only for the year 2013. In all the 
other years the test static is less than the critical value and 
the proposed model passes the test.

5.2 Mining Rule for 1-day VaR
The 99th percentile one day VaR calculated using the 
proposed method is converted as a percentage of the 
current closing value of the Nifty index as given in 
Equation (4). 
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%VaR(t) = {VaR(t)/S(t)}*100        (4)

Where: 
VaR(t) is the VaR calculated using the proposed method.
S(t) is the Closing value of Nifty index.

The one day percentages of actual returns are 
calculated using Equation (5) over the same period. The 
99th percentile, one day, percentage of actual returns 
when sorted in ascending order is equal to 4.384%.

%R (t) = { R (t) / S (t1)}*100        (5)

Where: 
R(t) = S(t2) - S(t1).
S(t1) is the closing value of Nifty index on t1.

S(t2) is the closing value of Nifty Index on t2.

t1 – t2 = 1 for one day VaR and 10 for ten day VaR.
Computing the 99th percentile loss percentage from 

the actual daily returns of Nifty Index.

•	 Compute the daily returns of the Nifty index which 
is the difference between value of the Nifty Index for 
recent successive trading days as specified by window 
size, i.e, 100 trading days.

•	 Convert the returns as a percentage of closing value 
of index using the Equation (5) for each time point in 
the specified window size (100 trading days).

•	 Sort the values computed in step 2 in ascending order.
•	 Take the 99th percentile loss percentage (L99) of 

sorted values which corresponds to floor 2nd element 
from the top in the sorted list of step 3.

Computing the average 99th percentile loss percentage: 
•	 Compute the 99th percentile VaR.

•	 Convert the VaR obtained as a percentage of closing 
value of index using the Equation (6.1).

•	 Take the mean of the values calculated in step 2 for 
the specified time period. 

•	 The mean calculated in step 3 represents the average 
99th percentile loss percentage (L99) calculated using 
the proposed method.

Figure 1.    1:250 day moving average of percentage 
VaR for the period 03-Jan-00 to 31-Oct-01.

Figure 2.    2:250 day moving average of percentage VaR 
for the period 03-May-07 to 31-Aug-09,

Table 5.    Mixed Kupiec test for proposed model for 99% one day VaR
Year Number of Exceptions 

Proposed Method (99%)
Proposed Method 

LRind (99%)
Critical value For 

LRind (99%)
Proposed Method 

LRMix= LRPOF +LRind 

(99%)

Critical value For  
LRMix= LRPOF + LRind 

(99%)
2005 6 2.311869 16.812 5.810646 18.475
2006 4 7.798117 13.277 8.567255 15.086
2007 4 3.161443 13.277 3.942805 15.086
2008 2 -1.42182 9.210 -1.32901 11.345
2009 1 -0.132848 6.635 0.959853 9.210
2010 3 2.674885 11.345 2.765829 13.277
2011 2 -1.05561 9.210 -0.9628 11.345
2012 1 -0.23815 6.635 0.938341 9.210
2013 12 36.30045 26.217 55.39512 27.688
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5.3 Mining Rules
One day and two day over 250 days moving avarage of 
percentage of VaR are shown in the Figures 1 and 2. 
From Figures 1 and 2, it can be observed that during 
stock market crash the 250 day moving average of 99th 
percentile oneday VaR expressed as a percentage of 
closing value of the Nifty index continuously increased in 
magnitude. Therefore we can say that during the period 
of stock market crash the VaR shows a trend. Therefore 
the data corresponding to one crash period can be used to 
determine the parameters for the following crash period. 
The period 02-May-00 to 30-Apr-01 represents the stock 
market crash due to the dotcom bubble and the period 
10-Oct-07 to 06-Apr-09 represent the stock market crash 
due to the subprime crisis. 

H0: The average 99th percentile one day percentage 
VaR during the period of stock market crash calculated 
using the proposed method represents the 99th percentile 
or above VaR during the following stock market crash.

In order to check the above rule the average 99th 
percentile one day percentage VaR during the period 02-
May-00 to 30-Apr-01 is calculated an is validated against 
the data of the period 10-Oct-07 to 06-Apr-09. The null 
hypothesis is accepted if the LRPOF for the period 10-Oct-
07 to 06-Apr-09 is below the critical value. The average 
99th percentile one day percentage VaR during the period 
02-May-00 to 30-Apr-01 calculated using the proposed 
method is equal to -6.0534% and using the actual data 
is equal to -4.7929%. The LRPOF calculated for both the 
cases is equal to 0.46 and 17.29 respectively. The test 
static (LRPOF) exceeds the critical value of 6.635 when the 
actual data is used to calculate the 99th percentile one day 
VaR. However when the average 99th percentile one day 
percentage VaR is calculated using the proposed method 
the test static (LRPOF) is less than the critical value. Hence 
the null hypothesis is accepted when the average 99th 
percentile one day percentage VaR is calculated using the 
proposed method.

6.  Conclusions

The model proposed in this work requires much less 
number of valuations than the historical simulation 
approach without sacrificing the accuracy comparable 
to the historical simulation approach. The number of 
valuations required is dependent on the number of new 

instruments added to the portfolio and is independent 
of the number of instruments already existing in the 
portfolio. The proposed model uses less computational 
resources and can be used in real time measurement 
of market risk VaR. However there is a cost to store the 
historical prices of the instruments within the portfolio 
which are used in the VaR calculation algorithm.
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