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Abstract
The current study considers the theoretical transient treatment of pressurized thick-walled hollow spheres while they are 
subjected to arbitrary boundary and initial conditions. Under generalized assumptions and using the basic thermoelasticity 
theory, the thermoelastic problem is solved. By utilizing the Eigen function method, generalized Bessel function and 
separation of variables, an attempt is made to analyze the transient temperature in the one-dimensional state. In this paper, 
the resultant relations of the present study are capable of being applied to any arbitrary boundary and initial conditions. 
Temperature, displacement and thermal stresses are plotted in some figures. In this study, the values are arbitrarily chosen.
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1.  Introduction

Shell structures are used in such engineering applications 
as military, shuttle, marine, automotive, oil, water, and 
major manufacturing industries. Different types of shells 
commonly used in the industry are pipes, vessels, fuselages, 
wings, rockets, car hoods, dome roofs, projectiles, nuclear 
reactor vessels, silos, bow dams, parachute aircrafts and 
many more. Stress problems for hollow cylinders and 
spheres subjected to transient thermoelastic loads are 
theoretically and practically important. Thus, many 
research have been carried out in this subject. In solved, 
the problem of elastic thermal stresses in the transient 
condition in an elastic solid. In2 studied transient thermal 
stress in the spherical shell. In the other study, In3 
investigated the dynamic thermoelastic problem in thick 
spheres. In4 studied the thermo-elastic stresses in a non-
homogeneous orthotropic solid continuum having a cavity 
with spherical form. In5 investigated the dynamic thermo-
elastic displacement and stresses distribution in spherical 
thick shells having fixed boundaries. In6 scrutinized the 
thermo-elastic waves in a FG sphere applying the Green-

Lindsa theory. In7 came up with a new approach which 
could be applied for the purpose of stress analysis of 
pressurized FGM cylinders, disks or spheres. In8 studied 
thermo-elastic analysis in the transient condition for a 
multilayered thick-walled sphere. In a study by9, thermo-
elastic response in the transient condition of rotating 
thick-walled cylinder subjected general boundary 
conditions was obtained. In10 provided the transient 
thermoelastic analysis of pressurized rotating disks under 
arbitrary boundary and initial conditions. Among other 
things, they obtained transient thermoelastic stresses of 
homogeneous and isotropic thick spheres under general 
boundary and initial conditions.

2.  �Transient Heat Conduction 
Analysis

In an isotropic hollow sphere with inner and outer radii 
a  and b, respectively in spherical coordinate, the one-
dimensional transient heat conduction equation, without 
heat source, for isotropic bodies is:
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in which the temperature distribution and thermal
diffusivity are represented by T(r,t). Moreover, specific
heat capacity, mass density and thermal conductivity are
represented by c, ρ and k respectively.

The boundary and initial conditions are as:
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Here Ti (r) is the given initial condition and  gm (m =
1,2) and Cmn (m,n = 1,2) are constants. 

The Equation (3) can be solved applying the
separation of variables method, Eigen-function method,
and generalized Bessel function
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The boundary conditions for Equation (4) may be
defined as follows:
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With Integrating Equation (4):
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The integral constants in Equation (7) are applied as
follows:
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or:
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The boundary conditions for Equation (5) may be
defined as follows:
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( ),hT r t  is obtained as follows:
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where,
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( ), nf r l  (Eigen-function) is as follows:
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Where, 1 1
2 2

J and J
-  are Bessel functions of the first-

kind and of order 1 1, ,
2 2

æ ö æ ö÷ ÷ç ç- ÷÷÷ ÷÷÷ç çè ø è ø
 respectively. 

In addition, λn (eigenvalues) are positive roots of the
Equation (15).
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The constant parameters A and B are defined as:

( ) ( )

( )

( ) ( )

12
11

12

1 311 12
2

1

2

1

2

2

n

n n

n n n

C
A C J

C J

B C J a C J

a
a

a

a

l

l l

l l l

-= -

-

=- +

ìïïïïïïïíïïïïïïïî

			   (16)

or:
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The norm of Eigen-function ( )
2

, nf r b  is obtained in 
the following way:
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Finally, the temperature distribution is obtained as 
follows:
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3.  �Transient Thermoelastic 
Formulation

In the spherical symmetry condition, the strain-
displacement equations are:
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and the stress-strain equations are:
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Where, E, α, υ are young modulus, coefficient of linear 
thermal expansion, and Poisson’s ratio, respectively. In 
addition, σrr and σϕϕ are radial and circumferential stresses 
components, and T0 is reference temperature which in 
this study is assumed having zero value. 
The equilibrium equation is as follows:
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Using Equations (20),(21) and (23):
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With integrating Equation (24):
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σrr and σϕϕ are obtained with substituting Equation 
(25) into Equation (20),(21):
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In this paper, the hollow sphere is subjected to 
pressures Pa and Pb at the inner and external surfaces, 
respectively:
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With substituting boundary conditions (Equation 
(29)) into Equation (26), and* *

1 2C C  are obtained as follows:
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4.  Results and Discussion

Consider a sphere with properties as follows
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Assume that the internal and external surfaces of the 
shell are under heat flux and convection, respectively. In 
addition the initial condition is also as a linear function in 
terms of the radius. Therefore:
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Using Equation (6)-(9) and Equation (33) the 
temperature distribution is obtained as follows:
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Here λn are positive roots of the following equation:
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The numerical parameters are presented as follows:
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Figure 1 shows temperature distribution for the 
course of 3600 seconds. The distribution of temperature 
at 𝑡 = 3600sec is shown in Figure 2. The temperature 
distribution for different radii versus time is indicated 
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in Figure 3. The temperature decreases whereas radius 
increases. The temperature distribution for different 
times versus radius is indicated in Figure 4. This Figure 
show that temperature increases as time increases.

Figure 1.    Distribution of temperature versus time for 
r = 0.45 m.

Figure 2.    Distribution of temperature versus radius 
at t = 3600sec.

Figure 3.    Distribution of temperature for various 
radii versus time.

Figure 4.    Distribution of temperature for various 
times versus radius.

Figures 5 to 7 provide an illustration of the distributions 
of radial displacement, radial and circumferential 
stresses vs. radial direction. Moreover, Figure 8 to 10 
shows the distributions of radial displacement, radial 
and circumferential stresses vs. time. As could be seen 
in Figure 8, the radial displacement increases when time 
increases. Figure 9 shows that at first, radial stresses 
decreases and then it increases as time increases whereas 
in Figure 10 for circumferential stress this situation is 
reversed.

Figure 5.    Distribution of radial displacement versus 
radius at t = 3600 sec.
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Figure 6.    Distribution of radial stress versus radius 
at t = 3600 sec.

Figure 7.    Circumferential distribution of stress 
versus radius at t = 3600 sec.

Figure 8.    Distribution of radial displacement versus 
time in r = 0.45 m.

Figure 9.    Distribution of radial stress versus time in 
r = 0.45 m.

Figure 10.    Distribution of circumferential stress 
versus time in r = 0.45 m.

The comparison distribution of radial displacement 
and stress for various time and radii are shown in Figures 
11 to 14. In these Figures, radial displacement, radial and 
circumferential stresses decrease in as radius increases 
whereas this situation for different times is reversed.
Figures 15 and 16 show that values change of radial and 
circumferential stresses are very small while the time 
increases.



Vol 8 (36) | December 2015 | www.indjst.org Indian Journal of Science and Technology 7

Sanaz Mohammadi, Mohammad Zamani Nejad and Azam Afshin

Figure 11.    The compare of distribution of radial 
displacement for various radii versus time.

Figure 12.    The compare of distribution of radial 
displacement for various times versus radius.

Figure 13.    The compare of distribution of radial 
stress for various radii versus time.

Figure 14.    The compare of distribution of 
circumferential stress for various radii versus time.

Figure 15.    The compare of distribution of 
circumferential stress for various times versus radius.

Figure 16.    The compare of distribution of 
circumferential stress for various times versus radius.
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5.  Conclusions

In this paper, using the infinitesimal theory of elasticity, 
thermo-elastic analysis in the transient condition of a thick 
pressurized sphere under general boundary conditions 
is presented. The material properties are isotropic and 
homogeneous. The temperature distribution is versus 
time and radius. The numerical results show that time and 
temperature has a significant effect on displacement and 
stresses.

6.  References
1.	 Cheung JB, Chen TS, Thirumalai K. Transient thermal 

stresses in a sphere by local heating. Journal of Applied Me-
chanics. 1974; 41(4):930–4.

2.	 Tanigawa Y, Takeuti Y, Ueshima K. Transient thermal 
stresses of solid and hollow spheres with spherically isotro-
pic thermoelastic properties. Archive of Applied Mechan-
ics. 1984; 54(4):259–67.

3.	 Toshiaki H. Thermal shock in hollow sphere caused by rap-
id uniform heating. Journal of Applied Mechanics. 1991; 
58(1):64–9.

4.	 Abd-Aalla AM, Abd-Alla AN, Zeidan NA. Transient ther-
mal stresses in a spherically orthotropic elastic medium 
with spherical cavity. Applied Mathematics and Computa-
tion. 1999; 105(2-3):231–52.

5.	 Jordan PM, Puri P. Thermal stresses in a spherical shell un-
der three thermoelastic models. Journal of Thermal Stress-
es. 2001; 24(1):47–70.

6.	 Bagri A, Eslami MR. Analysis of thermoelastic waves 
in functionally graded hollow spheres based on the 
green-lindsay theory. Journal of Thermal Stresses. 2007; 
30(12):1175–93.

7.	 Tutuncu N, Temel B. A novel approach to stress analysis of 
pressurized FGM cylinders, disks and spheres. Composite 
Structures. 2009; 91(3):385–90.

8.	 Ootao Y. Transient thermoelastic analysis for a multilayered 
hollow sphere with piecewise power law nonhomogeneity. 
Composite Structures. 2011; 93(7):1717–25.

9.	 Nejad MZ, Afshin A. Thermoelastic transient response of 
rotating thick cylindrical shells under general boundary 
conditions. International Research Journal of Applied and 
Basic Sciences. 2013; 4(9):2796–809.

10.	 Nejad MZ, Afshin A. Transient thermoelastic analysis of 
pressurized rotating disks subjected to arbitrary bound-
ary and initial conditions. Chinese Journal of Engineering. 
2014. DOI: 10.1155/2014/894902.


