
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(30), DOI: 10.17485/ijst/2016/v9i29/90830, August 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

An Improved VLSI Algorithm for Modular Operation
in Cryptography

G. G. Bremiga*, M. Malleswari and Sharmini Enoch

Department of Electronics and Communication Engineering, Noorul Islam University, Kumaracoil,
Kanyakumari District - 629180, Tamil Nadu, India; bremigagg@gmail.com, malleswarim@gmail.com,

sharminienoch@gmail.com

Keywords: Public-Key Cryptography, Modular multiplication, Classical Algorithm, Montgomery Algorithm, Bipartite
method, Tripartite Method.

Abstract
Objectives: This paper presents a new proposed algorithm which performs an efficient modular multiplication method
which is advantage because of its reduction in hardware and software. This proposed method implies a systematic approach
which increases the parallelism level when compared to the previous versions. Methods/Analysis: Two conventional
methods are effectively used to find the modular multiplication output. The previous work effectively combines the first
conventional and next two algorithms which are invented to overcome the disadvantages of the first two algorithms. The
proposed method effectively eliminates one conventional method. Findings: This process reduces the number of iterations
hence, reducing the time consumption required to synthesis the entire algorithm. Thus, the above mentioned method
efficiently condenses the hardware utilization for implementing the conventional and previous algorithm so far practiced
before. Application/Improvements: This paper replaces the classical algorithm by other method which effectively
reduces the number of iterations. This reduction in computation makes a drastic reduction in hardware and time delay to
execute the algorithms. This paper shows a modification in the existing parallelism method which further shows a great
improvement in reduction of hardware and time delay.

1. Introduction
The vital nucleus in the domain of cryptography is the
modular operation. This modular operation is widely used
in many public-key cryptographic applications. The world
wide practicing cryptosystems such as RSA scheme1,
ElGamal2 and Diffie-Hellman key exchange3 extensively
use larger number of modulus value which further makes
the modular operation more complex and time consum-
ing to get the final value. The modular operations in
cryptography involve either repeated modular multiplica-
tion or repeated modular division or both which involves
larger modulus value. For higher level cryptosystems, the
cryptographic algorithms are implemented in higher per-
formance hardware and the utilization of parallelism is
exploited to accomplish maximum throughput.

Modular multiplication is the process of multiply-
ing two operands and then attaining its modular value.
There are many algorithms which are accomplished
to calculate this modular value. Of these, the Classical
and Montgomery algorithm are widely used to find the
modular value in the twentieth century times. Later, both
the Classical and Montgomery algorithms are combined
together into a single method known as Bipartite Method
and are then used to find the modular value of the multi-
plied operands. Here both the Classical and Montgomery
computation are done in parallel and they are finally
added together. At present, the Tripartite method is
currently put into practice. In this method, the level of
parallelism is further increased so that the computation of
both the Classical and the Montgomery method dealt out
are performed in a faster way. The classical method is the

Indian Journal of Science and TechnologyVol 9 (30) | August 2016 | www.indjst.org 2

An Improved VLSI Algorithm for Modular Operation in Cryptography

most time consuming and hardware utilizing algorithm.
This paper shows an approach of completely replacing
the Classical method by the Interleaved Multiplication
Algorithm. This proposed method shows a significant
advantage when compared to the previous algorithms in
provisions to hardware utilization and time delay for syn-
thesizing and implementing the algorithm.

Figure 1. Simulation results of Classical Method.

2. Materials and Methods

2.1 Classical Modular
Multiplication Algorithm
The first algorithm which was followed so far is the
Classical algorithm proposed by G. R. Blackey in 19834.
The brief explanation of the same algorithm is explained
in the work done by K.R. Sloan5. This method is the con-
ventional way of computing the modular value for the
multiplication of two input operands. It is mandatory that
these input operands should be in residue class ring of
integers. Assume the two k bit operands whose modular
value has to be obtained are R and S which are in resi-
due class ring of integers, where k is an integer. The k bit
modulus value is taken as T, which should be consider-
ably chosen between wk-1 to wk, where w is the radix of
each digit in modulus T and k is the number of bits. The
value of k is usually chosen to be 2r, where r is the word
size. The second operant S can be written as S = j* rj
for computation purposes.

For two integer inputs R, S and k digit odd modulus
value T, the Classical Modular Multiplication method is
defined as,

O = R * S mod T

Figure 2. Simulation results of Montgomery Method.

2.1.1 Algorithm
Input: T: w k-1 ≤ T < wk, where k is the number of bits.

 R, S: 0 ≤ R, S < T
Output: O = R * S mod T
Algorithm:
 O = 0;
 for j = k − 1 downto 0 do
 O = w * O + sj * R;
 Uc = [O / T];
 O = O – Uc * T;
 End for

2.2 Montgomery Modular Multiplication
Algorithm
The second algorithm Montgomery Modular
Multiplication Algorithm was introduced by P. L.
Montgomery in 19856. The hardware and time consump-
tion of the previously practiced algorithm is larger since
the processing is based on the k bit modulus value T. The
procedure of calculating Uc = [O/T] is an typical time
consuming and expensive operation. This operation can
be overcome by using the Montgomery method as its pro-
cessing is based on the radix w. The two operands R and S
should be in residue class ring of integers. The two input
elements H and N are converted into residue class ring
of integers modulo M and are taken as R and S. These
converted integers are entitled as image or Montgomery
residue. This image R and S are then given as input to the
Montgomery algorithm.

Indian Journal of Science and Technology 3Vol 9 (30) | August 2016 | www.indjst.org

G. G. Bremiga, M. Malleswari and Sharmini Enoch

For a given k bit modulus and image inputs R and S,
the Montgomery Modular Multiplication is described as,

O = R * S * W-1 mod T

Figure 3. Simulation results of Bipartite Method.

Figure 4. Simulation results of Tripartite Method.
The transformation of integer set to Montgomery resi-

due is done using the Classical method by calculating R
= H * W mod T and S = N * W mod T. The term W is

obtained from W = wk, where w is the radix of each digit
in the operands and k is an integer. The same transforma-
tion can be done by applying the Montgomery method
to H and W2 mod T, where W2 mod T is pre-computed.
Similarly the next image is obtained by applying the
Montgomery method to R and W2 mod T. The result
obtained is always in Montgomery residue or in image
form. The reverse transformation from Montgomery
residue or image to original integer set is achieved by
applying the Montgomery method to this result obtained
and integer 1

2.2.1 Algorithm
Input: T: w k-1 ≤ T < wk, where k is the number of bits.

 R, S: 0 ≤ R, S < T
Output: O = R * S * W-1 mod T
Algorithm:
 O = 0;
 for j = 0 to n − 1 do
 O = O + sj * R;
 UM = ((O mod w) T′) mod w;
 O = (O + UM * T) / w;
 endfor
 if O ≥ T then O = O − T;
 This algorithm uses a pre-computed value T′

whose value is to be produced from T′ = − T −1 mod w
. For simple level of computation, the radix w value is
always assumed to be W = wk, where k the radix of each
digit. The value of k is given by k = 2r where r is the cor-
responding word size (usually r = 1). The condition D >
N is always used in the method to assure G is bounded
within 2N. The Montgomery method implies the condi-
tion of W > T to make sure that the output T is bounded
between 2W. This condition completely reduces any extra
arithmetic operation to stabilize the integer output.

Table 1. Comparison of modular multiplication algorithms

Hardware Parameters
 Classical Montgomery Bipartite Tripartite Proposed
No. of Slices 1141 960 603 465 388
LUTs 2022 1744 1045 808 677
Adders/Subtractors 213 173 115 93 53
Comparators 194 97 90 70 32
Time Delay Parameters
Path Delay 358.443ns 259.023ns 156.693ns 140.753ns 99.794ns
CPU 84s 58.30s 28.94s 21.06s 17.13s

Indian Journal of Science and TechnologyVol 9 (30) | August 2016 | www.indjst.org 4

An Improved VLSI Algorithm for Modular Operation in Cryptography

2.3 Bipartite Modular Multiplication
Method
The third algorithm is the Bipartite Modular Multiplication
Method proposed by Marcelo E. Kaihara and Naofumi
Takagi in 20087. In this method one of the input elements
S is split into two halves as SH and SL. The condition D
< N should be satisfied with W = wn where n is chosen as
0 < n < k. For ease of computation n is always taken as n
= k/2. It is represented as S = SH * wk + SL where SH <
wk-n and SL < wn. The upper half calculation R * SH mod
T is done by using the Classical method and the lower
half calculation R * SL * W-1 mod T is done using the
Montgomery method. These two values are finally added
into a single value. All the calculations are done in image
or Montgomery residue format.

Figure 5. Simulation results of Proposed Method.

For a given k bit modulus and image inputs R and S,
the Bipartite Modular Multiplication Method is described
as,

O = R * S * W-1 mod T
 = (R * (SH * W + SL) * W-1 mod T
 = (R * SH mod T + R * SL * W-1 mod T) mod T
The image form R and S from integer set H and N

can be obtained by giving R = H * W mod T and S = N
* W mod T to the classical algorithm. The same trans-
formation can also be obtained from Bipartite Modular
Multiplication method by computing R = H * W2 and
S = N * W2, where W2 = w2k mod T is pre-computed.
These Montgomery residues are given as input to the
Bipartite method and result obtained hence is in image
or Montgomery residue form. The inverse image conver-
sion from Montgomery residue to original integer set can
be calculated either by giving the Bipartite algorithm to
this result obtained along with integer 1 or by calculat-

ing H = Output * 1 * wk mod T using the Montgomery
algorithm. This value gives the final result which is the
modular value of two input operands that are multiplied
together. Since one of the operand is partitioned into half,
half the number of iterations is enough to compute the
entire process. This shows a greater advantage when the
cryptosystems encompass with higher level of bits.

2.4 Tripartite Modular Multiplication
Method
The latest method so far practicing is the Tripartite algo-
rithm proposed by Kazuo Sakiyama, Miroslav Knezevic,
Junfeng Fan, Bart Prenee, and Ingrid Verbauwhede in
20118. This method shows more parallelism that makes the
computation of Modular Multiplication more efficiently.
Here, both the operands are split into two halves and they
are divided into three components of computation. The
processing of these three components are done separately
and finally all the three valued attained are added together
to get the final modular value. As the computations are
done in three ways this parallel processing will consume
least amount of time delay and hardware.

All the input elements should be in the residue class
ring of integers. The condition of D < N must be satis-
fied with W = wk where k is chosen as 0 < n < k. Both the
operands are split into upper half and lower half as R =
RH * wk + RL and S = SH * wk + SL where RH, SH < wk-n
and RL, SL < wn.

For the k digit odd modulus and two input operands
split into upper half and lower half, the tripartite method
is given as,

O = R * S * W-1 mod T
 = (RH * W + RL)(SH * W + SL) * W-1 mod T
 = (RH * SH W + (RH * SL + RL * SH) + RL * SL

W-1) mod T
 = { z1 * W mod T + (z2 + z0 +z1) mod M + z0 *

W-1 mod T } mod T
where,
 z0 = RL * SL, z1 = RH * SH and z2 = (RH + RL

) (SH + SL).
The computation of z1 * W mod T and z0 * W-1 mod T

is done using the Classical method and the Montgomery
method. The computation of (z2 + z0 +z1) mod M
involves merely a modular program. The Tripartite
method directly implies the value of W = wn, where n can
be determined from n = k/2. This makes the estimation
of hardware much lesser when compared to conventional
means.

Indian Journal of Science and Technology 5Vol 9 (30) | August 2016 | www.indjst.org

G. G. Bremiga, M. Malleswari and Sharmini Enoch

2.5 Proposed Modular Multiplication
Method
The proposed method startlingly decreases maximum
amount of hardware utilization and trim down the time
consumption required for the processor to synthesis and
simulate the hardware description language inscribed
to process the modular multiplication algorithm. This
change is due to complete elimination of the Classical
algorithm which involves one division algorithmic step
which is expensive while constructing the cryptosys-
tem hardware. The Classical method is replaced using
Interleaved Modular Multiplication which completely
replaces the heavy division step by repeated subtraction
method.

2.5.1 Issue
The general tripartite modular multiplication method
involves three parts of computation. The first part z1 * W
mod T employs the Classical method and the second part
z0 * W-1 mod T uses the Montgomery method while the
third part apply the basic modular operation. Of these,
the Classical method is the most complex algorithm in
which the difficulty be positioned in the following step,
Uc = [O/T]. This step needs a division program which has
a complexity in the order of n2. If the input operands are
taken in radix 2 and for initial k value as 4, the intermedi-
ate quotient calculation needs a division program which
runs for O(n2). This higher level of iteration for execut-
ing O(n2), produces greater number of iterations to get
the quotient value Uc. This in turn increases the number
of hardware and time delay needed for the calculation of
Uc. This is one considerable disadvantage on using the
Classical method.

2.5.2 Solution
The conventional algorithm computation is replaced
using Interleaved Modular Multiplication Method. This
method directly subtracts the divisor by dividend repeat-
edly until getting a value lesser than the dividend instead
of implementing a repeated division program which runs
until the iteration ceases to O(n2). This method com-
pletely replaces set of instructions needed for performing
the division with recurring subtraction. The important
aspect lies in the point that these repetitive subtraction
need not to be in the order of O(n2). The computation of
subtraction can be done twice or thrice to get the final

value and this working out is more than essential to get
the modular value using the classical method

2.5.3 Algorithm
The Classical algorithm has been replaced by a simple
Interleaved Modular Multiplication program which is
similar to normal way multiplication which will be a ini-
tially

•	 a bit by bit multiplication (LSB bit of second mul-
tiplied by the first operand),

•	 a shift operation to accommodate the next level
partial product,

•	 addition for the parallel level partial products
and

•	 finally subtracting the final value from the mod-
ulus to obtain the final modular value of the
multiplication of to operands.

2.5.4 Advantage
The following are the advantages on implementing the
above level modification.

•	 The procedure for calculating the division prob-
lem is eliminated

•	 i.e.., Uc = [O/T].
•	 As this procedure is a time consuming opera-

tion, on doing this repeated multiplication by
modulus T by increasing integers to precede
multiplication is completely eliminated.

•	 This in turn reduces consequent small level
operations too (subtraction and addition used to
perform division), thereby lowering the number
of adders and subtractions.

•	 Apart from this as total operand size multipli-
cation is completely eliminated, this in turn
drastically reduces the number of slices and
Look-up-tables used to perform the entire mul-
tiplication.

In short, this new method replaces Classical algorithm
by new and simple way of modular multiplication which
reduces the number of multiplications, additions and sub-
tractions used for division program. This improvement
shows the following significant advantage in reduction
of number of slices, adders/subtractions and compara-
tors. On implementing this both Bipartite Algorithm
and Tripartite Algorithm itself will become the Proposed
Algorithm.

Indian Journal of Science and TechnologyVol 9 (30) | August 2016 | www.indjst.org 6

An Improved VLSI Algorithm for Modular Operation in Cryptography

3. Results and Discussion
The following figures titled Figure 1, Figure 2, Figure 3,
Figure 4 and Figure 5 implies the simulation results of the
Classical, Montgomery, Bipartite, Tripartite and for the
Proposed algorithm. The result analysis had been done
for all possible values of four bit wide. The same algo-
rithms were also extended for higher level of bits. The
output is given in the terminal t. All the above algorithms
are coded in VLSI Hardware Description Language. The
HDL codes are synthesized and simulated in Xilinx 9.1i
version of ISE simulator. The simulation results are com-
pared with the manually calculated value and the logic of
HDL code is verified.

The comparison table for all the above algorithms are
based on the hardware utilized and time delays consumed
for synthesis and to implement all the above stated algo-
rithms. The hardware computation can be summarized
by considering the amount of slices, LUTs used, adders/
subtractions and total number of comparators needed.
The time make use of can be stated from the CPU time
usage and time delay. The comparison table is stated in
Table 1. Thus the above results show that the proposed
algorithm produces significant reduction in time delay
and in hardware computation.

4. Conclusion and Future Work
These results clearly depicts that the proposed algorithm
produces a significant advantage in hardware and time
consumption in executing and implementing the algo-
rithm. This drastic reduction in hardware and time delay
is due to complete elimination of the classical algorithm
by normal interleaved multiplication method. On prac-
ticing this scenario, the bulk program which is needed
to execute the heavy division algorithm is completely
avoided. The replacement of the division process by
repeated subtractions is the reason behind the trim down
of the hardware. This makes a greater advantage while
implementing the cryptosystems while considering heavy
input operands of larger size.

The current work is extended to make any modi-
fications further to produce a significant reduction in
hardware utilization and time delay. This may be achieved
by reducing the steps in algorithm which skip a bulk
operation in this case a division operation, say. The future
work focuses on the modular multiplication to produce a
speed in the calculation of final value. Any improvement

in algorithm is done to enhance the efficiency and speed
of the entire processing.

5. Acknowledgement
The first author thanks Head of the department, research
guide and joint supervisor, Department of Electronics and
Communication Engineering, Noorul Islam University,
Noorul Islam Center for Higher Education, Kumaracoil
for the support and the facilities provided during this
project. Also thank all the project committee members
for their suggestions and valuable ideas during the proj-
ect review.

6. References
1. Rivest RLShamir, A, Adleman L. A Method for Obtaining

Digital Signatures and Public-Key Cryptosystems, Comm
ACM. 1978 Feb; 21(2):120–6.

2. Diffie W, Hellman ME. New Directions in Cryptography.
IEEE Trans Information Theory. 1976 Nov; 22(11):644–54.

3. ElGamal T. A Public Key Cryptosystem and a Signature
Scheme based on Discrete Logarithms. IEEE Trans
Information Theory. 1985 Jul; 31(4):469–72.

4. Blakley GR. A Computer Algorithm for Calculating the
Product AB Modulo M. IEEE Trans Computers. 1983 May;
32(5):497–500.

5. Sloan KR. Comments on a Computer Algorithm for
Calculating the Product AB Modulo M. IEEE Trans.
Computers. 1985 Mar; 34(3):290–2.

6. Montgomery PL. Modular Multiplication without Trial
Division. Mathematics of Computation. 1985 Apr;
44(170):519–21.

7. Kaihara ME, Takagi N. Bipartite Modular Multiplication
Method. IEEE Trans Computers. 2008 Feb; 57(2):157–64.

8. Sakiyama K, Knezevic M, Fan J, Prenee B, Verbauwhede I.
Tripartite Modular Multiplication, Intergration. The VLSI
Journal. 2011 Sep; 44(4):259–69.

9. George Amalarethinam DI, Sai Geetha J, Mani K. Analysis
and Enhancement of Speed in Public Key Cryptography
using Message Encoding Algorithm. Indian Journal of
Science and Technology. 2015 Jul; 8(16). Doi: 10.17485/
ijst/2015/v8i16/69809.

10. Vijayakumar P, Indupriya S, Rajashree R. A Hybrid
Multilevel Security Scheme using DNA Computing based
Color Code and Elliptic Curve Cryptography. Indian
Journal of Science and Technology. 2016 Mar; 9(10).
Doi:10.17485/ijst/2016/v9i10/88987.

11. Dawahdeh ZE, Yaakob SN, Sagheer AM. Modified
ElGamal Elliptic Curve Cryptosystem using Hexadecimal

Indian Journal of Science and Technology 7Vol 9 (30) | August 2016 | www.indjst.org

G. G. Bremiga, M. Malleswari and Sharmini Enoch

Representation. Indian Journal of Science and Technology.
2015 Jul; 8(15). Doi: 10.17485/ijst/2015/v8i15/64749.

12. Kalaivani D, Karthikeyen S. VLSI Implementation of Area-
Efficient and Low Power OFDM Transmitter and Receiver.

Indian Journal of Science and Technology. 2015 Aug; 8(18).
Doi:10.17485/ijst/2015/v8i18/63062.

