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Abstract
Objectives: This paper presents a new proposed algorithm which performs an efficient modular multiplication method 
which is advantage because of its reduction in hardware and software. This proposed method implies a systematic approach 
which increases the parallelism level when compared to the previous versions. Methods/Analysis: Two conventional 
methods are effectively used to find the modular multiplication output. The previous work effectively combines the first 
conventional and next two algorithms which are invented to overcome the disadvantages of the first two algorithms. The 
proposed method effectively eliminates one conventional method. Findings: This process reduces the number of iterations 
hence, reducing the time consumption required to synthesis the entire algorithm. Thus, the above mentioned method 
efficiently condenses the hardware utilization for implementing the conventional and previous algorithm so far practiced 
before. Application/Improvements: This paper replaces the classical algorithm by other method which effectively 
reduces the number of iterations. This reduction in computation makes a drastic reduction in hardware and time delay to 
execute the algorithms. This paper shows a modification in the existing parallelism method which further shows a great 
improvement in reduction of hardware and time delay.

1. Introduction
The vital nucleus in the domain of cryptography is the 
modular operation. This modular operation is widely used 
in many public-key cryptographic applications. The world 
wide practicing cryptosystems such as RSA scheme1, 
ElGamal2 and Diffie-Hellman key exchange3 extensively 
use larger number of modulus value which further makes 
the modular operation more complex and time consum-
ing to get the final value. The modular operations in 
cryptography involve either repeated modular multiplica-
tion or repeated modular division or both which involves 
larger modulus value. For higher level cryptosystems, the 
cryptographic algorithms are implemented in higher per-
formance hardware and the utilization of parallelism is 
exploited to accomplish maximum throughput. 

Modular multiplication is the process of multiply-
ing two operands and then attaining its modular value. 
There are many algorithms which are accomplished 
to calculate this modular value. Of these, the Classical 
and Montgomery algorithm are widely used to find the 
modular value in the twentieth century times. Later, both 
the Classical and Montgomery algorithms are combined 
together into a single method known as Bipartite Method 
and are then used to find the modular value of the multi-
plied operands. Here both the Classical and Montgomery 
computation are done in parallel and they are finally 
added together. At present, the Tripartite method is 
currently put into practice. In this method, the level of 
parallelism is further increased so that the computation of 
both the Classical and the Montgomery method dealt out 
are performed in a faster way. The classical method is the 
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most time consuming and hardware utilizing algorithm. 
This paper shows an approach of completely replacing 
the Classical method by the Interleaved Multiplication 
Algorithm. This proposed method shows a significant 
advantage when compared to the previous algorithms in 
provisions to hardware utilization and time delay for syn-
thesizing and implementing the algorithm. 

Figure 1. Simulation results of Classical Method.

2. Materials and Methods

2.1 Classical Modular 
Multiplication Algorithm
The first algorithm which was followed so far is the 
Classical algorithm proposed by G. R. Blackey in 19834. 
The brief explanation of the same algorithm is explained 
in the work done by K.R. Sloan5. This method is the con-
ventional way of computing the modular value for the 
multiplication of two input operands. It is mandatory that 
these input operands should be in residue class ring of 
integers. Assume the two k bit operands whose modular 
value has to be obtained are R and S which are in resi-
due class ring of integers, where k is an integer. The k bit 
modulus value is taken as T, which should be consider-
ably chosen between wk-1 to wk, where w is the radix of 
each digit in modulus T and k is the number of bits. The 
value of k is usually chosen to be 2r, where r is the word 
size. The second operant S can be written as S = j* rj 
for computation purposes.

For two integer inputs R, S and k digit odd modulus 
value T, the Classical Modular Multiplication method is 
defined as,

O = R * S mod T

Figure 2. Simulation results of Montgomery Method.

2.1.1 Algorithm
Input:      T: w k-1 ≤ T < wk, where k is the number of bits.

          R, S: 0 ≤ R, S < T
Output:     O = R * S mod T
Algorithm:
       O = 0;
             for j = k − 1 downto 0 do
           O = w * O + sj * R;
           Uc = [ O / T ];
           O = O – Uc * T;
             End for

2.2 Montgomery Modular Multiplication 
Algorithm
The second algorithm Montgomery Modular 
Multiplication Algorithm was introduced by P. L. 
Montgomery in 19856. The hardware and time consump-
tion of the previously practiced algorithm is larger since 
the processing is based on the k bit modulus value T. The 
procedure of calculating Uc = [O/T] is an typical time 
consuming and expensive operation. This operation can 
be overcome by using the Montgomery method as its pro-
cessing is based on the radix w. The two operands R and S 
should be in residue class ring of integers. The two input 
elements H and N are converted into residue class ring 
of integers modulo M and are taken as R and S. These 
converted integers are entitled as image or Montgomery 
residue. This image R and S are then given as input to the 
Montgomery algorithm.
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For a given k bit modulus and image inputs R and S, 
the Montgomery Modular Multiplication is described as,

O = R * S * W-1 mod T

Figure 3. Simulation results of Bipartite Method.

Figure 4. Simulation results of Tripartite Method.
The transformation of integer set to Montgomery resi-

due is done using the Classical method by calculating R 
= H * W mod T and S = N * W mod T. The term W is 

obtained from W = wk, where w is the radix of each digit 
in the operands and k is an integer. The same transforma-
tion can be done by applying the Montgomery method 
to H and W2 mod T, where W2 mod T is pre-computed. 
Similarly the next image is obtained by applying the 
Montgomery method to R and W2 mod T. The result 
obtained is always in Montgomery residue or in image 
form. The reverse transformation from Montgomery 
residue or image to original integer set is achieved by 
applying the Montgomery method to this result obtained 
and integer 1

2.2.1 Algorithm
Input:       T: w k-1 ≤ T < wk, where k is the number of bits.

      R, S: 0 ≤ R, S < T
Output:     O = R * S * W-1 mod T
Algorithm:
                  O = 0;
             for j = 0 to n − 1 do
            O = O + sj * R;
            UM = ( ( O mod w ) T′ ) mod w;
            O = ( O + UM * T ) / w;
             endfor
                        if O ≥ T then O = O − T;
 This algorithm uses a pre-computed value T′ 

whose value is to be  produced from T′ = − T −1 mod w 
. For simple level of computation, the radix w value is 
always assumed to be W = wk, where k the radix of each 
digit. The value of k is given by k = 2r where r is the cor-
responding word size (usually r = 1). The condition D > 
N is always used in the method to assure G is bounded 
within 2N. The Montgomery method implies the condi-
tion of W > T to make sure that the output T is bounded 
between 2W. This condition completely reduces any extra 
arithmetic operation to stabilize the integer output.

Table 1. Comparison of modular multiplication algorithms

Hardware Parameters  
                             Classical Montgomery Bipartite Tripartite Proposed
No. of Slices 1141 960 603 465 388
LUTs 2022 1744 1045 808 677
Adders/Subtractors 213 173 115 93 53
Comparators 194 97 90 70 32
Time Delay Parameters
Path Delay 358.443ns 259.023ns 156.693ns 140.753ns 99.794ns
CPU 84s 58.30s 28.94s 21.06s 17.13s
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2.3 Bipartite Modular Multiplication 
Method
The third algorithm is the Bipartite Modular Multiplication 
Method proposed by Marcelo E. Kaihara and Naofumi 
Takagi in 20087. In this method one of the input elements 
S is split into two halves as SH and SL.  The condition D 
< N should be satisfied with W = wn where n is chosen as 
0 < n < k. For ease of computation n is always taken as n 
= k/2. It is represented as S = SH * wk + SL where SH <  
wk-n and SL < wn. The upper half calculation R * SH  mod 
T is done by using the Classical method and the lower 
half calculation R * SL * W-1  mod T is done using the 
Montgomery method. These two values are finally added 
into a single value. All the calculations are done in image 
or Montgomery residue format.

Figure 5. Simulation results of Proposed Method.

For a given k bit modulus and image inputs R and S, 
the Bipartite Modular Multiplication Method is described 
as,

O  = R * S * W-1 mod T 
     = (R * (SH  * W + SL ) * W-1 mod T
     = (R * SH  mod T + R * SL * W-1 mod T) mod T
The image form R and S from integer set H and N 

can be obtained by giving R = H * W mod T and S = N 
* W mod T to the classical algorithm. The same trans-
formation can also be obtained from Bipartite Modular 
Multiplication method by computing R = H * W2 and 
S = N * W2, where W2 = w2k mod T is pre-computed. 
These Montgomery residues are given as input to the 
Bipartite method and result obtained hence is in image 
or Montgomery residue form. The inverse image conver-
sion from Montgomery residue to original integer set can 
be calculated either by giving the Bipartite algorithm to 
this result obtained along with integer 1 or by calculat-

ing H = Output * 1 * wk  mod T using the Montgomery 
algorithm. This value gives the final result which is the 
modular value of two input operands that are multiplied 
together. Since one of the operand is partitioned into half, 
half the number of iterations is enough to compute the 
entire process. This shows a greater advantage when the 
cryptosystems encompass with higher level of bits.

2.4 Tripartite Modular Multiplication 
Method
The latest method so far practicing is the Tripartite algo-
rithm proposed by Kazuo Sakiyama, Miroslav Knezevic, 
Junfeng Fan, Bart Prenee, and Ingrid Verbauwhede in 
20118. This method shows more parallelism that makes the 
computation of Modular Multiplication more efficiently. 
Here, both the operands are split into two halves and they 
are divided into three components of computation. The 
processing of these three components are done separately 
and finally all the three valued attained are added together 
to get the final modular value. As the computations are 
done in three ways this parallel processing will consume 
least amount of time delay and hardware. 

All the input elements should be in the residue class 
ring of integers. The condition of D < N must be satis-
fied with W = wk where k is chosen as 0 < n < k. Both the 
operands are split into upper half and lower half as R = 
RH * wk + RL and S = SH * wk + SL where RH, SH <  wk-n 
and RL, SL < wn. 

For the k digit odd modulus and two input operands 
split into upper half and lower half, the tripartite method 
is given as,

O  = R * S * W-1 mod T 
     = ( RH * W +  RL )( SH  * W + SL ) * W-1 mod T
      = ( RH * SH  W + ( RH  * SL + RL * SH ) + RL * SL 

W-1 ) mod T
      = { z1 * W mod T + ( z2 + z0 +z1 ) mod M + z0 * 

W-1 mod T } mod T
where,
        z0 = RL * SL,  z1 = RH * SH and z2 = ( RH + RL 

) ( SH + SL ).
The computation of z1 * W mod T and z0 * W-1 mod T 

is done using the Classical method and the Montgomery 
method. The computation of ( z2 + z0 +z1 ) mod M 
involves merely a modular program. The Tripartite 
method directly implies the value of W = wn, where n can 
be determined from n = k/2. This makes the estimation 
of hardware much lesser when compared to conventional 
means.
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2.5 Proposed Modular Multiplication 
Method
The proposed method startlingly decreases maximum 
amount of hardware utilization and trim down the time 
consumption required for the processor to synthesis and 
simulate the hardware description language inscribed 
to process the modular multiplication algorithm. This 
change is due to complete elimination of the Classical 
algorithm which involves one division algorithmic step 
which is expensive while constructing the cryptosys-
tem hardware. The Classical method is replaced using 
Interleaved Modular Multiplication which completely 
replaces the heavy division step by repeated subtraction 
method. 

2.5.1 Issue
The general tripartite modular multiplication method 
involves three parts of computation. The first part z1 * W 
mod T employs the Classical method and the second part 
z0 * W-1 mod T uses the Montgomery method while the 
third part apply the basic modular operation. Of these, 
the Classical method is the most complex algorithm in 
which the difficulty be positioned in the following step, 
Uc = [O/T]. This step needs a division program which has 
a complexity in the order of n2. If the input operands are 
taken in radix 2 and for initial k value as 4, the intermedi-
ate quotient calculation needs a division program which 
runs for O(n2). This higher level of iteration for execut-
ing O(n2), produces greater number of iterations to get 
the quotient value Uc. This in turn increases the number 
of hardware and time delay needed for the calculation of 
Uc. This is one considerable disadvantage on using the 
Classical method. 

2.5.2 Solution
The conventional algorithm computation is replaced 
using Interleaved Modular Multiplication Method. This 
method directly subtracts the divisor by dividend repeat-
edly until getting a value lesser than the dividend instead 
of implementing a repeated division program which runs 
until the iteration ceases to O(n2). This method com-
pletely replaces set of instructions needed for performing 
the division with recurring subtraction. The important 
aspect lies in the point that these repetitive subtraction 
need not to be in the order of O(n2). The computation of 
subtraction can be done twice or thrice to get the final 

value and this working out is more than essential to get 
the modular value using the classical method

2.5.3 Algorithm
The Classical algorithm has been replaced by a simple 
Interleaved Modular Multiplication program which is 
similar to normal way multiplication which will be a ini-
tially

•	 a bit by bit multiplication (LSB bit of second mul-
tiplied by the first operand), 

•	 a shift operation to accommodate the next level 
partial product,

•	 addition for the parallel level partial products 
and 

•	 finally subtracting the final value from the mod-
ulus to obtain the final modular value of the 
multiplication of to operands.

2.5.4 Advantage
The following are the advantages on implementing the 
above level  modification.

•	 The procedure for calculating the division prob-
lem is eliminated 

•	 i.e.., Uc = [O/T].
•	 As this procedure is a time consuming opera-

tion, on doing this repeated multiplication by 
modulus T by increasing integers to precede 
multiplication is completely eliminated.

•	 This in turn reduces consequent small level 
operations too (subtraction and addition used to 
perform division), thereby lowering the number 
of adders and subtractions.

•	 Apart from this as total operand size multipli-
cation is completely eliminated, this in turn 
drastically reduces the number of slices and 
Look-up-tables used to perform the entire mul-
tiplication.

In short, this new method replaces Classical algorithm 
by new and simple way of modular multiplication which 
reduces the number of multiplications, additions and sub-
tractions used for division program. This improvement 
shows the following significant advantage in reduction 
of number of slices, adders/subtractions and compara-
tors. On implementing this both Bipartite Algorithm 
and Tripartite Algorithm itself will become the Proposed 
Algorithm.
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3. Results and Discussion
The following figures titled Figure 1, Figure 2, Figure 3, 
Figure 4 and Figure 5 implies the simulation results of the 
Classical, Montgomery, Bipartite, Tripartite and for the 
Proposed algorithm. The result analysis had been done 
for all possible values of four bit wide. The same algo-
rithms were also extended for higher level of bits. The 
output is given in the terminal t. All the above algorithms 
are coded in VLSI Hardware Description Language. The 
HDL codes are synthesized and simulated in Xilinx 9.1i 
version of ISE simulator. The simulation results are com-
pared with the manually calculated value and the logic of 
HDL code is verified.

The comparison table for all the above algorithms are 
based on the hardware utilized and time delays consumed 
for synthesis and to implement all the above stated algo-
rithms. The hardware computation can be summarized 
by considering the amount of slices, LUTs used, adders/
subtractions and total number of comparators needed. 
The time make use of can be stated from the CPU time 
usage and time delay. The comparison table is stated in 
Table 1. Thus the above results show that the proposed 
algorithm produces significant reduction in time delay 
and in hardware computation.

4. Conclusion and Future Work
These results clearly depicts that the proposed algorithm 
produces a significant advantage in hardware and time 
consumption in executing and implementing the algo-
rithm. This drastic reduction in hardware and time delay 
is due to complete elimination of the classical algorithm 
by normal interleaved multiplication method. On prac-
ticing this scenario, the bulk program which is needed 
to execute the heavy division algorithm is completely 
avoided. The replacement of the division process by 
repeated subtractions is the reason behind the trim down 
of the hardware. This makes a greater advantage while 
implementing the cryptosystems while considering heavy 
input operands of larger size. 

The current work is extended to make any modi-
fications further to produce a significant reduction in 
hardware utilization and time delay. This may be achieved 
by reducing the steps in algorithm which skip a bulk 
operation in this case a division operation, say. The future 
work focuses on the modular multiplication to produce a 
speed in the calculation of final value. Any improvement 

in algorithm is done to enhance the efficiency and speed 
of the entire processing.
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