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Abstract
The Lattice Boltzmann Method (LBM) is known as a powerful numerical tool to simulate fluid flow problems. Particularly, 
it has shown a unified strength for solving incompressible fluid flows in complicated geometries. Many researchers have 
used Lattice Boltzmann (LB) concept to simulate compressible flows, but the common defect of most of previous models 
is the stability problem at high Mach number fluid flows. In this paper we introduce a FLDBM-model, which is capable 
to simulate fluid flows with any specific heat ratios and higher Mach numbers, from 0 to 30 or higher. Compressibility 
is applied using multiple particle speeds in a thermal fluid. Based on the discrete-velocity-model, a new finite difference 
method and an artificial viscosity are implemented, which must find a balance between numerical stability and accuracy 
of simulation. The introduced model is checked and validated again well-known benchmark tests such as one dimensional 
shock tubes, supersonic bump and ramp (two dimensional). Both sets of results have a reasonable agreement regarding 
to exact solutions.

1. Introduction
Recently the Lattice Boltzmann (LB) method has been 
successfully applied to simulate processes in complex 
physical systems, especially in case of incompressible 
fluids flow simulation1. This method is very powerful in 
simulation of high-speed compressible flows2. The LB 
method has shown its strength in simulation of many 
fields such as hydrodynamics, multiphase and multi-com-
ponent fluid flows and much more complex situations3. 
Although the LB method has shown its fantastic abilities 
to simulate fluid flows in complex composition systems, 
it has some limits to consider as a general computational 
tool. One of them is the low Mach number constraint. 

The multispeed thermal model is often used to pres-
ent heat capacity ratios and compressibility of fluids4,5. 6 
has introduced the solving the LBM under considering 
the finite difference method (FDLBM). The FDLBM has 
some strength again the LBM. First of all, the FDLBM 
can improve numerical stability by selecting a suitable 

time step. Secondly, it uses a generalized coordinate sys-
tem which can be fitted to the shape of the boundary. 
Simulation of the compressible Navier–Stokes system 
including contact discontinuities is a challenging work7–14.

2. Finite difference lattice 
Boltzmann method
The Finite-Difference Lattice Boltzmann (FDLB) is used, 
which enables us to consider conversion equations of 
mass, momentum and energy of a fluid flow15. 

The distribution function  with the Bhatanger–
Gross–Krook approximation24 can be written as,

(1)

The local density , the hydrodynamic velocity , 
and the translational internal energy  can be approxi-
mated as:  
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(3)

(4)

Applying the Chapman expansion:

    (5)

Viscosity coefficient  and heat conductivity  and 
pressure P are defined as:

(6)

 is the sum of the energies,
(7)

The specific heat ratio , is defined as

(8)

The equilibrium distribution function  is derived 
as a function of flow velocities from the Maxwellian func-
tions:

(9)

To consider Navier–Stokes equations, equilibrium 
distribution function should be presented as follows:

where, the parameter  is a function of  and . 
 is calculated as:

   (11)

And the groups of particle velocities are selected as 
following:

    (12)

Table 1. Particle velocities

0 0 1 0
1

2

3

4

0 5

0 6

0 7

0 8

3. Artificial Viscosity and Modified 
Lax–Wendroff Scheme 
The original LW scheme is not suitable to model capture 
shocks. Therefore, an artificial viscosity is added to Eq. (1):

(2)
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We use non-dimensionalized according to the Table 1.

Table 2. Non-dimensional form of macroscopic and 
microscopic variables

Parameter type Parameter name Reference Term

Density

Velocity

Energy

Temperature

Coordinate

Time

Pressure

Diffusion

In Table 1, ,  and  are Reference variables and 
 is gas constant.

		     (13)

				      (14)

 is used to control the viscosity. We use the LW and 
central difference for Eq. (13):

   (15)

4. Tests and analysis
One dimensional Riemann problem and two dimensional 
supersonic Ramp and bump are used to show the accu-
racy and performance of new model.

4.1 First Test Case: One Dimensional 
Riemann Problem 
This problem is a well-known Riemann problem pre-
sented by Sod. In the Sod problem, there is:

The agreements of different parameters are shown in 
Figure 1.
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Figure 1. Sod shock tube.

4.2 Second Test Case
Second test case is the supersonic ramp with an inlet 
Mach number of 2.0. The geometry includes a 
compression ramp with an expansion corner. Figure 
2 shows the generated grid for supersonic ramp. Figure 
3 shows the computed pressure coefficient at lower wall 
and compare it with exact solution, which shows satis-

fying agreement. Figure 4 shows the contours of Mach, 
Density, Internal Energy and Pressure at steady state. 
Figure 5 shows the contour of Mach number at different 
time steps.

Figure 2. Computational domain for supersonic ramp.

Figure 3. Comparison of numerical and theoretical Cp for 
supersonic test case.
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Figure 4. Contours of Mach, Density, Internal Energy and 
Pressure at steady state.  

(a)

(b)

(c)

(d)

(e)
Figure 5. Contours of Mach number at different time steps.

4.3 Third Test Case
Figure 6 shows the generated grid for supersonic bump. 
Figures 7 and 8 show the computed mach number at 

lower and upper walls, which shows a good agreement. 
Figure 9 shows the contours of Mach, Density, Internal 
Energy and Pressure at steady state. Figure 10 shows the 
contour of Mach number at different time steps.

Figure 6. Computational domain for supersonic bump.

Figure 7. Mach number on lower wall.

Figure 8. Mach number on upper wall.
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Figure 9. Contours of mach, density, internal energy and 
pressure at steady state.

(a)

(b)

(c)

(d)

(e)

(f)
Figure 10. Contours of mach number at different time steps.

5. Conclusions
Lattice Boltzmann model for compressible flows is 

used frequently. Although low Mach number flows show 
good results regrading to exact solutions, the high Mach 
number flows shows difficulties in stabilities criterion, 
because von Neumann stability condition stays unsatis-
fied. The presented model tries to overcome this problem 
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with composing DVM-method by Watari, an improved 
Lax–Wendroff scheme and using an additional fictitious 
viscosity. Some typical tests are introduced to check pre-
sented model, which shows good agreement and stability. 

The model also shows the very good accuracy in two 
dimensional problems (Supersonic Bump and Ramp), in 
both steady and unsteady cases. 

Future work should concentrate on the stability versus 
accuracy of introduced method.
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