
Abstract
This research compares two code coverage tools to understand the relationship between the code coverage and regression
testing, henceforth the effectiveness of the code coverage detail provided by the tools. The methodology adopted to meet
the objectives follows theoretical as well as empirical approach. To achieve the empirical approach a platform was setup
in eclipse IDE for Java application which was integrated with Junit to execute test cases for Java program. Two open source
code coverage tools CodeCover and Eclemma were exercised respectively upon a small Java application with twenty one
test cases. This execution shows that EclEmma is effective in providing the detail of individual test case. CodeCover on
the other side provides combined measurement of the test cases. CodeCover provide the coverage at fine level as well as
at coarser level of granularity. However regression testing demands detail coverage made by each test case which code
cover fails to dispense. EclEmma generates code coverage report by providing information about individual test case. This
information is most desirable when performing test case optimization in regression testing. Further coverage details of
test suites given by code coverage tool will be used in proposing a hybrid regression test case optimization technique.

Open Source Code Coverage Tools for Java: A Comparative Analysis

Priyanka Dhareula* and Anita Ganpati

Computer Science Department, Himachal Pradesh University, Shimla – 171005, Himachal Pradesh, India;
priyankarana.id@gmail.com, anitaganpati@gmail.com

Keywords: CodeCover, Coverage, EclEmma, Regression Testing, Test Case

1.  Introduction
The process of testing modifications made to computer
programs to make sure that previous code still works
with new modifications known as regression testing1. The
quality of software code can be measured and assessed by
making use of code coverage analysis for the code. Code
coverage defines the measure of code executed during
testing. Code coverage is useful during the regression
testing, as it helps in identifying the non-covered area and
augmenting appropriate test cases to increase the code
coverage1. SUT with high code coverage signifies that
it has been thoroughly tested and has a lower chance of
containing software bugs than a program with low code
coverage.

There are a large number of open source tools available
to determine the extent of code coverage provided by test
cases for Java based application. For the process of select-
ing appropriate code coverage tool a comparative analysis
of EclEmma and Codecover is performed on a Java based
application. These tools are in corporated in Eclipse IDE,

where the test cases for both the tools are executed by
Junit plug in for Eclipse IDE.

Code coverage analysis targets various aspects of the
code, used for different purposes. The main purpose of
selecting suitable code coverage tool in this study is to
use the details of code coverage for SUT in regression
test case optimization. Code coverage inspects the parts
of code being exercise by the test cases and that needs to
be improved. Code coverage identifies that part of code
which has not been exercised by test cases and hence
there is a need to augment the test suite. If the test cases
are targeting same part of the code, it tells which test cases
are redundant2. The code coverage information can aid in
numerous activities viz. regression testing, test case selec-
tion, test case prioritization, test case minimization, etc3.
Among various code coverage tools for Java4, this paper
has selected two open source tools for code coverage
analysis to evaluate the effectiveness of test cases.

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(32), DOI: 10.17485/ijst/2016/v9i32/100202, August 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Open Source Code Coverage Tools for Java: A Comparative Analysis

Indian Journal of Science and Technology2 Vol 9 (32) | August 2016 | www.indjst.org

2.  Review of Literature
In their research described CodeCover code coverage
tool1. This paper performed a detailed investigation of ver-
satilities of CodeCover tool for java projects. CodeCover
tool executes on source code by providing synchronized,
term, loop, branch and statement coverage. Code Cover is
open source. The paper discussed that CodeCover can aid
in test case reduction, augmentation of test cases, test case
optimization in regression testing.

Java-based test coverage reporting tool called Java
CodeCoverage. This tool provides test coverage details
for individual as well as test suite as a whole. This tool
is a byte code analyser. A noteworthy character of Java
CodeCoverage is that it stores coverage detail for separate
test cases, hence allowing analysis of detail coverage7.

An approach for evaluating the features of various test-
ing tools in order to compare them systematically and select
the best one2. For the tool comparison they selected two
code coverage tools Emma and CodeCover. The features
selected by them to compare the two tools are Response
Time (RT), Human-Interface Design (HID), Reporting
Features (RF) and Ease of Use (EU). Their analysis con-
cluded that CodeCover tool is more efficient than the
reviewed various code coverage tools and presented the
usage of information obtained by code coverage analysis8.

In5 discovered thirty one tools for code coverage. They
found four tools that aid in branch coverage. They further
chose one tool instrumenting byte code and two tools
instrumenting the source code. From their study they found
that each tool details the branch coverage differently.

In3,4 performed experiments in controlled environment
to measure the difference between the details of code cov-
erage provided by various tools. This research used line,
statement, branch and method coverage metrics. Their
results showed that different code coverage tools give dif-
ferent results for mainly branch and method metrics.

An exploratory study of regression test case selection
techniques. There study found that selection of test cases
is primarily focused on the coverage of test case followed
by change identification capability and test case fault
detection6.

3.  Objectives
The main objective of this research is to compare the code
coverage tools for Java program. However, the specific
objectives of the study are:

To have an understanding of the relationship between •	
the code coverage and regression testing.
To find the coverage level of granularity (fine granular-•	
ity or coarse granularity) of test cases by CodeCover
and EclEmma.
To analyse the effectiveness of the code coverage tools •	
on the basis of code coverage information and execu-
tion time taken for code coverage.

4.  Research Methodology
To achieve the objectives of the study theoretical as well as
empirical approach has been adopted. In the theoretical
approach many research papers, books, online website were
referred to get a thorough understanding of code coverage
tools used for java and the environment setup required to
perform the analysis. For the empirical approach, a plat-
form was setup in Eclipse IDE15 for Java developers which
were integrated with Junit14 to execute test cases for Java
program. Small Java application12 was used as shown in
Table 1. The details of classes, functions, statements and
the number of test cases used are given in Table 1.

Person class contains person’s name and maximum •	
number of books that this person borrows at a
particular time.
Book Class contains title, author and person who •	
borrow the book.
MyLibrary contains list of books and list of people •	
who borrows them.

CodeCover10 and EclEmma were integrated into eclipse
and exercised upon the SUT one after the other to get the
code coverage11. The results and comparative analysis for
both the tools is discussed in the next section.

5.  Results and Analysis
Firstly, CodeCover was activated for Java SUT. Once
the execution of the application is finished, the cover-

Table 1.  Test cases of java application used for code
coverage

Classes Functions Statements Test
Cases

MyLibrary 16 372 7
Person 6 38 8
Book 7 59 6

Priyanka Dhareula and Anita Ganpati

Indian Journal of Science and Technology 3Vol 9 (32) | August 2016 | www.indjst.org

age details are displayed in Coverage view as shown in
Figure 1.

The coverage view of CodeCoverdisplays the coverage
measurement of the active test cases as shown in Figure 1.
In the coverage view each row displays the coverage mea-
surement of the corresponding element. Elements are java
classes, functions and the statements of the classes.

Figure 2 displays the snapshot of execution time
reported by CodeCover in running twenty one test cases.
These test cases took 0.021 seconds to exercise upon
SUT.

Secondly, EclEmma was enabled for SUT to get the
code coverage of twenty one test cases. Initially only one
test case was exercised on SUT to examine its area of
coverage. Figure 3 displays the coverage detail of one of
the test case named testBook(). Figure 3 shows that test-

Book() test case gives 2.1% coverage to the SUT. But the
big question is what part of SUT is covered by testBook()
test case. Figure 3 displays that there are nine instructions
in the Book(string) function and the test case testBook()
covers all the nine instructions, hence giving 100% cover-
age to the function Book(String).

It is evident from the snapshot of Figure 3 that
EclEmma is an effective tool in determining the cover-
age at finer level of granularity. To determine whether
EclEmma gives the coverage details at coarser level,
again we refer to Figure 3 under the src folder the Book
class shows 15.3% coverage by the testBook() test case.
Therefore, it is evident that out of three classes this test
case covered only Book class with 15.3% coverage. Book
class contains seven functions out of which testBook()
covered only one function Book(String) giving it 100%
coverage. Therefore, from these details we can state that
EclEmma proves to be efficient tool in providing the
details of individual test cases at coarser and finer level
of granularity.

Figure 4 shows testBook() test case took 0.008 seconds
to exercise on SUT given by EclEmma.

Figure 1.  Coverage view of Codecover for twenty
one test cases.

Figure 2.  Snapshot of the time required for
running twenty one test cases in Codecover.

Figure 3.  EclEmma coverge report of testBook()
test case for SUT

Figure 4.  Snapshot of the time required for
running testBook() test cases in EclEmma.

Open Source Code Coverage Tools for Java: A Comparative Analysis

Indian Journal of Science and Technology4 Vol 9 (32) | August 2016 | www.indjst.org

Figure 5 shows the screen shot of all the test cases run
in EclEmma. Total twenty one test cases were executed on
SUT. The percentage of code coverage detail provided by
EclEmma for SUT is 63.4%. This information shows that
we need to augment our test suite to maximize the cover-
age, which will result in better quality software.

Figure 6 shows that it took 0.019 seconds to run twenty
one test cases reported by EclEmma. Whereas in case of
CodeCover twenty one test cases gave code coverage of
88.7% at statement level in 0.021 seconds.

The graph in Figure 7 shows difference of code cover-
age between CodeCover and EclEmma. CodeCover give
88.7% coverage in comparison to EclEmma, which gives
only 63.4% code coverage. EclEmma is effective for this
study as it provides the details of individual test case. In
CodeCover the combined measurement of the test cases
is given. It is not identifiable as to which test case covered
which part of the code. Though CodeCover gives the cov-
erage at fine level of granularity as well as at coarse level of

granularity. But regression testing demands the individual
detail coverage made by each test case which CodeCover
fails to deliberate. EclEmma9,11 generates code coverage
reports by providing information about individual test
case. This information is most desirable when performing
test case optimization in regression testing6.

It is evident from graph in Figure 8 that CodeCover
exercised twenty one test cases in 0.021 seconds in com-
parison to EclEmma with 0.019 seconds. Therefore, it is
stated that Eclemma is most desirable for this study as
it executes the test suite in lesser time as compared to
CodeCover code coverage tool.

6.  Conclusion And Future Work
The quality of SUT can be determined by the extent
to which it has been tested. Regression testing can be
effective if the designed test cases provide maximum
code coverage to SUT. It is impossible to do exhaustive
testing but those test cases can be chosen that provide

Figure 5.  EclEmma reporting the coverage of
twenty one test cases on SUT.

Figure 6.  EclEmma reporting the total time
required to execute twenty one test cases on SUT.

Figure 7.  Comparison of tools on the basis of
code coverage.

Figure 8.  Comparison of tools on the basis of
time of execution.

Priyanka Dhareula and Anita Ganpati

Indian Journal of Science and Technology 5Vol 9 (32) | August 2016 | www.indjst.org

maximum code coverage. Therefore, the effectiveness
of the test case can be determined by the level of code
coverage for SUT. It is evident from the above results
that EclEmma is an effective tool in comparison to
CodeCover as it can give the details of individual test
cases which is required for the optimization of test cases
in regression testing. In CodeCover the combined mea-
surement of the test cases is available which does not
solve the purpose of examining the coverage of indi-
vidual test case. Therefore, CodeCover does not aid in
determining the effectiveness of individual test case.
This further will not aid in regression test cases optimi-
zation. For the future work more number of coverage
tools with more number of applications will be analysed
to get the coverage detail which in turn will help in the
regression test case optimization. The coverage details
acquired for the test suite by the code coverage tool will
be used in proposing a hybrid regression test case opti-
mization technique.

7.  References
1.	 Abhinandan HP, Nandini SS. CodeCover: A coverage tool

for java projects. Proceedings of International Conference
on ERCICA; 2013. p. 414-21.

2.	 Kajo-Mece E, Tartari M. An evaluation of java code cover-
age testing tools. BCI (Local); 2012. p. 72-5.

3.	 Alemerien K. Evaluation of software testing coverage tools:
An empirical study [Doctoral dissertation]. North Dakota
State University.

  4.	 Alemerien K, Magel K. Examining the effectiveness of
testing coverage tools: An empirical study. International
Journal of Software Engineering and its Applications. 2014;
8(5):139-62.

  5.	 Li N, Meng X, Offutt J, Deng L. Is byte code instrumentation
as good as source code instrumentation? An empirical
study with industrial tools (experience report). IEEE 24th
International Symposium Software Reliability Engineering
(ISSRE); 2013 Nov 4. p. 380-9.

  6.	 Dhareula P, Ganpati A. Prevalent criteria’s in regression
test case selection techniques: An exploratory study.
IEEE International Conference on Green Computing and
Internet of Things (ICGCIoT); 2015 Oct 8. p. 871-6.

  7.	 Lingampally R, Gupta A, Jalote P. A multipurpose code cov-
erage tool for Java. IEEE 40th Annual Hawaii International
Conference on System Sciences (HICSS); 2007 Jan. p. 261b.

  8.	 Pathy S, Panda S, Baboo S. A review on code coverage anal-
ysis. IJCSET. 2015; 6(10):580-7.

  9.	 Laurie W, Ben S, Sarah H. Test coverage with EclEmma.
Available from: http://agile.csc.ncsu.edu/SEMaterials/
tutorials/eclemma/

10.	 CodeCover. Available from: http://codecover.org/
documentation/install.html

11.	 Java Code Coverage for Eclipse. Available from: http://
eclemma.org/

12.	 Mark D. Eclipse and Java: Free Video Tutorials. Available
from: http://eclipsetutorial.sourceforge.net/Total_
Beginner_Companion_Document.pdf

13.	 Open Source Code Coverage Tools in Java. Available from:
http://java-source.net/open-source/code-coverage

14.	 Junit. Available from: http://junit.org/junit4
15.	 Eclipse. Available from: http://www.eclipse.org/downloads

