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Abstract
Objectives: The control of the robotic manipulator arm under a variety of faults has been studied and the performance 
is compared using PID and other technique. Methods/Statistical Analysis: In a highly nonlinear environment such as 
manipulator of a robot, employing more than one control techniques yields desirable results. Here, a combination of PID 
along with pole-placement control of linear model has been designed. The feedback control gains have been obtained 
offline using equivalent linearization of the nonlinear coupled robot dynamic system. The input torque has been obtained 
from PID. The combined torque has been applied to the joints. This scheme has been implemented online in a standard 
PUMA manipulator with the payload. Findings: It has been observed that PID as compared to modified pole placement 
method is more efficient to control a robotic arm. Application/Improvement: The proposed hybrid control approach 
involving offline designs and their online implementation on six degrees of freedom robot has been found to be efficient 
and capable of accommodating common types of faults represented as an exponential or sine or a constant function but 
sudden or abrupt in nature.

1. Introduction

Robots are ubiquities whether in industry or in health 
or other services of mankind. An important aspect of a 
robot manipulator is the precise placement of the target in 
space and can be achieved through appropriate control of 
the manipulator’s arm. There are uncertainties associated 
with the model parameters of the robot such as PUMA 
560. Further, the electro-mechanical components of  
the robot may develop a snag leading to a fault in any of 
the component thus affecting the normal functioning  
of the robot system. Therefore, an appropriate control tech-
nique is an integral part of the functioning of robots1.  

Robot manipulation is a complex activity as there is cou-
pling among different terms in equation of motion i.e. rotation 
of one joint affects motion of other joints also. Therefore, under 
these conditions more than one fault diagnosis and control 
tool may be used. One approach is by employing duplicate 
sensors and actuators or in terms of provision of kinematic 
redundancy2. They demonstrated the efficacy of such scheme 
for maximizing post failure work space in a single locked joint 
situation. Using kinematic redundancy, the fault tolerance 
measure and its gradient were measured computationally and 
were correlated with the optimal reconfiguration of the robot. 
Another approach may be to use optimal or robust control-
ler or a combination of them3. They have used two types of 
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Artificial Neural Network (ANN) classifiers in the controller. 
The first neural network chosen was Multi-Layer Perception 
(MLP) with back propagation or Radial Basis Function (RBF). 
The performance was compared based on results of detection 
of localization. Another classifier used therein was a combina-
tion of RBF as well as MLP to arrive at the detection of the fault. 
However, for greater reliability for fault tolerance redundancy 
in the robotic system, a combination of control techniques 
called hybrid approaches have been proposed1,4. Other hybrid 
control technique involving Proportional-Integral-Derivative 
(PID) and fuzzy gain scheduling has been proposed5 for 
control of industrial robot manipulator. Computed Torque 
Control (CTC) along with the Fuzzy Control (FC) was applied 
in their study for the trajectory control of robot manipulator. 
This method6 does not require precise dynamical model and 
was able to control even under unstructured uncertainty. A 
hybrid neuro-fuzzy controller has been proposed7 for control-
ling two arms of a robot by simulating the movements of a 
claw. The PID tuning has also been reported where its coef-
ficients were computed based on optimization of certain cost 
function8. The neural network factors were optimized using 
Particle Swarm Optimization (PSO). However, this method 
involves large computational efforts and may not be desir-
able in case of large d.o.f. systems having constraints such as 
in PUMA robot. PID controller having single or two degree 
of freedom (d.o.f.) which was tuned using Genetic Algorithm 
(GA) has been employed in a reheat thermal system9. They 
observed that two d.o.f. PID controller provided improved 
transient responses.

Linearisation of a nonlinear dynamic system 
remains an interseting field of controls. A recent 
study10 shows that the precise linearised model of 
a nonlinear system can be achieved by using a high 
dimensional latent variable space and using Bond-
Graph model. The propsoed methodolgy has some 
resemblance with subspace methods for system iden-
tification but for nonlinear system. The methodology 
was demonstrated using a mass-spring-damper sys-
tem. The authors reported that the methodology was 
already implemented in some biological systems, 
impedence control and wearbale robot control prob-
lems by this group. 

In the present study, the control of the robotic 
arm has been implemented using PID and pole place-
ment control methodology. A standard robot namely 
PUMA 560 having six d.o.f. has been studied.  The 
constraints of angular rotations, velocity and accel-
erations due to the capacity of motors as applicable 

to this robot have been imposed in its numerical 
model. A combination of two control approaches has 
been employed. The torque applied to a joint con-
sists of two components namely input and feedback 
control. The input control is assessed using PID. The 
feedback control parameters have been computed 
offline using linearized state space formulation. 
The control scheme is then implemented online on 
a robot. The proposed methodology helps achieve 
positioning the arm at the target more efficiently. 
The optimum position control has been achieved 
under a hybrid control and the methodology has 
been demonstrated on achieving target position of 
the manipulator using motion of all six joints of the 
PUMA560 robot arm when one of them develops 
some fault or disturbance. 

2. Description of PUMA Robot

2.1 Engineering Parameters of Robot
PUMA 560 is a standard robot having six d.o.f. systems. 
It consists of six arms called links which are connected 
through six joints. The first three joints are called shoul-
der, elbow and wrist joints are considered as shown 
in Figure1 (adapted from11). The joints 4, 5 and 6 help 
achieving proper orientation of the end effect or to hold 
an object in a desired manner.

Figure 1. Schematic of Puma Robot11.

The engineering parameters of the standard PUMA 
560 robot have been considered12. The actuator’s physi-
cal limits i.e. motor responses can be considered as the 
bounds imposed by capacity of the actuators and are pro-
vided in Table 1.
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2.2  Dynamic Modeling of Robot 
Manipulator

Considering the geometric and other parameters, the 
dynamic equation of motion of the robot can be expressed 
as in equation 1. 

 (1)

Here, n  are the joint 
positions (  equal to the d.o.f. of the  robot system), 

nxn is the inertia matrix and is a symmetric posi-
tive definite matrix, nxn represents Coriolis 
and centripetal forces, n is the dynamic fric-
tional force matrix, is the gravity matrix and 

n  denotes generalized input control of the system 
applied at the joints. The simulation of functional aspects 
of the PUMA 560 robot such as kinematics, dynamics and 
trajectory generation have been carried out using Robotics 
Toolbox13 with some modifications. This has been used 
to generate responses namely , ,  by solving dynamic 
equations of motion (without friction) using Recursive 
Newton Euler (RNE) method.

2.3  Development of Equivalent Linear 
Model

A lot of computational efforts can be simplified if the 
equations of motion are set in closed forms or are linear 
in nature. The complexities in the modeling may be attrib-
uted to large variations in inertia terms as values of the 

joint angles vary during desired motion of the arm. The 
values of inertia at various positions of the joint angles i.e. 

have been computed and its variation is shown in 
Figure 2. 

A few equivalent linear models of PUMA 560 are 
proposed14-16. However, the formulation16 incorporates 
modified parameters and a set of corrected terms in 
inertia as well as Coriolis terms and the same has been 
adopted in the present study. The suggested lineariza-
tion of nonlinear dynamic equations uses the Taylor 
series expansion of nonlinear functions about a nominal 
trajectory after neglecting higher order terms (retaining 
first order term) and are expressed for a function,  as 
follows.

) = ) +  +  +  (2)

The equation 2 can also be written in a linear form as 
given in equation 3 as applicable to the robot dynamics.

δ  = ) δ  +C0( ) δ  + ) δq (3)

Here  denotes the nominal trajectory. 
nxn are linearized trajectory sensitivity 

matrices in terms of the nominal trajectory. The expres-
sion for matrices is given in Appendix 1. It 
may be noted that the inertia matrix is not singular in 
case of the manipulator dynamics under consideration. 
The equation 3 can be formulated in to state space form 
as shown in equation 4.

Table 1. Actuator physical limits.

Parameter for 
Motor

Type of Motor

PR090 PR090 PR090 PR070 PW0701 PW0702

Rotation (deg)
[rad]

±320
[±5.585]

±250
[±4.363]

±270
[±4.712]

±300
[±5.236]

±200
[±3.491]

±532
[±9.285]

Velocity (deg/s), 
[rad/s] 

149 
[2.6]

149 
[2.6]

149 
[2.6]

149
[2.6]

248 
[4.33]

320
[5.58]

Acceleration (deg/
s2), [rad/s2]

596 
[10.402]

596 
[10.402]

596 
[10.402]

596
[10.402] 

992 
[17.314]

1280
[22.340]

Current  
(Amp@24V )

30 30 30 15 15 15

Output torque 
(Nm)

206 206 206 73 54 28

Used in joint 1 2 3 4 5 6
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 =  (4)

Relevant matrices are formulated by comparing 
equation 4 with the standard state space form (equa-
tion 5) where,  is the state vector consisting of

2n. The input control vector is n, 
2n is the output vector and 2nx2n is the 

output matrix.

and,  (5)

The matrices of the state space system as depicted 
in Figure 3 constitutes matrices and can be 
expressed as given below.

;  B= ; C = diag
([1,1,1,1,1,1,1,1,1,1,1,1]) and D=[0]. (6)

The net applied torque to the system would be a com-
bination of the nominal incremental torque given by the 
equation 3 and the feedback torque which can be com-
puted based on an appropriate control technique. The 
additional term in the form of feedback (gain) effectively 
takes care of any deviation from nonlinearity while con-
sidering an equivalent linear system. This ensures that the 
system is close to the nominal trajectory point at which 
linearization has been adopted. It may be noted that even 
after linearization the equations still remain coupled and 
are complex in nature.

3. Uncertainties and Faults

The uncertainties in the model arise from non-avail-
abilities of precise geometric and elastic parameters of 
a robot. Assessment of precise relevant data remains a 
topic of research17,18. Further, dynamic response param-
eters vary when the values of variables changes during 
the course of achieving the desired trajectory. The iner-
tia as felt at the first joint with variations in the value of 
joint rotations  and  is computed and is shown in 
Figure 2. Large variations are clearly visible and the cor-
responding values of  and  for two extreme values 
of resulting inertia and at the midpoint is given in Table 
2. There is negligible influence from other joint rota-
tions. A control scheme should be able to accommodate 
these uncertainties.
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Figure 2. Variation in inertia as  varies.

Table 2. Typical position of joint angles as inertia at joint-1 
varies.

Ordinate High Value Medium 
Value

Low Value

q2 (rad) 0.0584 0.0584 -1.742

q3(rad) 1.658 -2.142 2.058

Inertia 5.341 3.793 2.67

Further, during operation of a robot, a fault may get 
developed in any of the component of the system either in 
the sensor or in the actuator. The resulting changes in the 
modeling parameters will be different in these two cases. 
The present study considers the failure of actuators only. 
To account the influence of faults the equation of motion 
has an additional term representing fault19 and can be 
written as 

 = -1 (q) [ τ – Vm(q , – (q) –  

F ( ) –τd (t) ] + β ( t-T ) (q ,  (7)

The fault is represented by  in 
which is the time of occurrence of the fault,  is a 
fault function and contains terms due to angular posi-
tion, velocity and torque. The value of states of robotic 
parameters (q, ) is assumed to be bounded. Also, the 
uncertainties due to faults are considered to be finite in 
magnitude and are expressed as a:

| -1(q) (τd)| ≤ μ , (8)
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Here, μ > 0 and is a known constant, which can be 
realized as limits of parameters imposed on the system 
and are shown in Table 1. For simulation, the trajectory 
to be simulated in terms of vector is from an initial 
point described by 1, 1, 1, 1, 1, 
1), for  to a target point (1.5, 3, 4, 1.5, 1.5, 
1.5) considering rotations of all the six joints. The desired 
trajectory ( ) is a seventh degree polynomial13 fitted 
between the mentioned two points at a time step (  
of 0.056 seconds. In the present simulation, three types of 
actuator faults mentioned as below are studied. 

3.1 Case 1. Lock-in Fault in Actuator
The actuator failure takes place at a joint in which a 
constant torque is exerted on the system such as at  
the torque, , at a time period 1.5 ≤ t ≤ 2.5  
seconds Similar types of fault was simulated successfully 
at other joints also.

3.2 Case 2. Sinusoidal Actuator Failure
In this case, the faulty actuator imposes sinusoidal type of 
torque representing a time varying actuation20 at joint-2 
described as, , at a time period  
1.5 ≤ t ≤  2.5 seconds

3.3 Case 3. Exponential Actuator Failure
In this case, the faulty actuator imposes exponential 
type of torque representing a time varying actuation at 
joint-2 described as, , at a time period  
1.5 ≤ t ≤  2.5 seconds

4. Controlling of Robot System 

4.1 Design of Controller
The controllers using close loop feedback control system 
as shown in Figure 3 are designed for positioning the end 
effect or at desired position and orientation. 

 

G 

 K 

 
y= ,  

 

Figure 3. Feedback control of the system .

The following assumptions regarding the modeling are 
considered.

1. The initial state of the system  is available.
2. The system states  remain bounded even after 

occurrence of a fault such that {  }  Ωq  ,  where Ωq  

is the (finite) region of operation.
3. The capacity of the load (load disturbance) is bound 

such that the desired (nominal) torque  ≤   
remains within certain bounds which may be inter-
preted as load carrying capacity of the robot (  
and its value is known. The tracking error also called 
residuals is defined as , and its 
derivative as , here  is the desired 
trajectory. Based on this formulation the control is 
designed offline by getting -gains from a particular 
technique. These gains are adopted to provide control 
input torque to the robot system online thus simulat-
ing a predefined trajectory of the end effect or. The 
control techniques are described in the next section.

4.2  Proportional–Integral–Derivative 
Controller (PID)

In the feedback control mechanism, the part of the output 
is fed into the system so that the errors get reduced. The 
plant having input  and output  is described by the 
model  and the gain by (Figure 3). An error vector 
is computed by comparing the observed output and the 
desired output of joint rotations. The parameters in PID 
controller are chosen such that the error,  get vanishes 
in certain finite time. In general, there are three compo-
nents of a PID controller namely proportional,  integral 
and derivative terms. These terms consist of coefficients 
denoted  as which when multiplied with 
the error term, integral of error and the derivative term of 
the error respectively, give feedback gain to the system to 
be controlled. The feed gain matrix of PID in time domain 
is expressed as in Equation 9.

 (9)

Here, proportional term signifies the present value of 
the error,  integral term accounts for the previous value 
of the error, and derivative term accounts for the future 
changes by adopting the gradient of the error. The integral 
term may also be seen as the accumulative effect of the 

https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
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error. This method does not guarantee the optimal con-
trol. However, it may provide good solution in certain 
situations. In fact, it is not necessary that all the three 
terms are used which may be adopted depending upon 
the severity of the control problem as it involves the cost 
of computation. It may be noted that the derivative term 
is sensitive to measurement noise. Also, the absence of an 
integral term may leave a gap between the desired and 
achieved output values. 

4.3 Pole Placement Control
It is a time domain control technique. The technique of 
pole placement control involves computing state feedback 
gain matrix ( ) by choosing poles of the closed loop sys-
tem. The control signal is given by equation 10. The 
gain matrix consists of two components matching 
with  and  as:

, and . (10)

In the present case, 2nx2n, 2nx2n and
2nx2n.The necessary condition to satisfy is that the 

system should be state controllable and all the state vari-
ables are measurable. The poles of the matrix  
can be arbitrarily chosen so as to have desirable per-
formance cost resulting in desired level of transient or 
frequency response21. One way of choosing poles is to 
place dominant poles based on root locus design and 
remaining poles to be much farther to the left i.e. negative 
real, which are normally a pair of complex conjugates21. 
If the dominant poles are far (left) from  axis, the 
response will be faster, however, signals will also be large 
in magnitude and may increase non-controllability in the 
system. The response parameters may be the magnitude 
of overshoot in the response, rising time, settling time, 
bandwidth (in Bode plot) of the system. It may be noted 
that the large bandwidth in the system may induce noise. 
The complex poles considered for the pole placement for 
getting the control gains have negative real component 
and are chosen appropriately as described in the next  
section. 

5. Results and Discussion

5.1 Influence of Uncertainties and Payload 
The robot arm moves under gravity from a position 
defined as  to  (Section 3) with payload but no 

applied torque. The achieved trajectory defined in terms 
of angular positions traversed during movement of the 
arm for the first three joints in this situation are shown 
in Figure 4 as a reference (the dashed line is desired and 
solid line is achieved trajectory).
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Figure 4. Observed trajectory without applied torque.

The limits of the payload22 of PUMA560 are 2.5 kg to 4 kg. 
The torque requirement for the trajectory to be achieved 
for different applied payload has been observed to be 
maximum for the joint 2. The case of no payload repre-
sents the torque demand due to the effect of gravity and 
uncertainties in modeling.  The cases of payload incor-
porates effect of the additional values of 2.5 kg or 4 kg 
as applied vertically at the end of the end effectors and 
the variation in torque demand at the joint 2 is shown in 
Figure 5. 

5.2 Control using PID
The values of coefficients of PID as per section 4.2 are 
iteratively computed which are diagonal matrices as given 
below:

, 

, and

.

The feedback control has been applied for the three 
cases of the fault. During the reported simulations a 
payload of 2.5 kg has been applied at the end effec-
tors. The torque demand for six joints is shown in 
Figure 6 when a fault (case-1) occurs at the joint 2. 
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It may be observed in Figure 6 that at some instances 
the joint reaches its torque capacity which then 
reduces as per the level of the corresponding residual.  
The variation of residuals for the first three joints  
( ) during the operation of the robot manipu-
lator is shown in Figure 7 (the influence of   has not 
been shown here). It may be observed in this figure 
that the residuals reach asymptotically zero at the end 
of the simulation.

Figure 5. Observed variation in torque demand at joint-2 
due to payload.
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The resulting trajectory for the induced fault case 1 
in the joint 2 is shown in Figures 8 and 9. It may be 
observed that the position control of the end effectors 
has been simulated successfully.  In Figure 10, the dis-
turbance caused by the fault between 1.5 sec and 2.5 
sec is clearly visible and makes the arm to oscillate for a 
short duration before stabilizing (dashed line is desired 
trajectory).
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Figure 8. PID control under fault at q1-3 (fault Case-1).
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5.3 State Space Modeling
The central point as defined in Section 3 is taken as a 
point ( ) with mid-value of inertia (Table 2) and  as 
higher value from Table 1, which are given:

 = (1.5, 0.0584, -2.142, 1.5, 1.5, 1.5);

 = (2.6, 2.6, 2.6, 2.6, 4.3, 5.5); and

 = (10.4, 10.4, 10.4, 10.4, 17.3, 22.3).

The resulting state space matrices 
nxn (here, n = 6, based on modeling discussed in 
Section 3) and their values as computed are given in 
Appendix 2. Matrices  may be constructed 
from Equation 6. The Eigen values (poles) of matrix

, that is an unstable condition and after applying 
control i.e.  for the considered control 
approach have been computed and are shown in 
Figure 10. The poles of unstable  have some posi-
tive values and lies in the range of +0.85 to -0.089 and 
remaining are of zero values. The complex poles of 
pole place technique have been chosen with a range 
of pole place-1 as -3.6 to -0.5/ 0.0 and pole place-2 
in the range of -10.26 to -0.82/ 0.0. The control gains 
obtained for pole place-2 does not provide satisfac-
tory simulation. Further, another set of poles are 

chosen as pole place-1 and the feedback control gains 
are reported below.

Figure 10. Observed location of poles before and after 
control.

The gains by pole placement as given in expression 
10based on pole place-1are provided below:

Kge=
[15.0872 25.4436 -10.4161 -1.0873 14.3841 6.1963;
-5.5871 -12.4523  12.8511 11.1151 -4.3217 9.0817;
-1.9839 -4.9308   9.4352  1.5359 -2.3569-0.2036;
-0.0182   0.5148   0.0506  1.6620 -0.0034 -0.1272;
 0.3280  -0.0577  -0.2513  0.2969  1.7653  0.0344;
 0.2188   0.1709  -0.2671 -0.1084  0.0020  1.7023];

Kged=
[20.6373 11.9515 -1.0261 -4.2327 4.3033 0.2580;
-13.9627 19.2503  8.1597 1.2187 3.3442  2.9022;
-2.8805 -1.0248  5.8981 -0.2449 -0.1335 -1.4641;
  0.2062  0.0741  0.1425  0.8941  0.0855 -0.0724;
-0.0241 -0.0927 -0.0444 -0.0225  0.8858   0;
-0.0153 -0.0216  0.1413  0.0805  0.0362  0.8977];

Kgei=diag([-43000 -3300 -5950 -3900 -4000 -700]).

In this case, the input torque is assessed from inte-
gral term (Kgei) of PID and the feedback torque based 
on equation 10. The resulting position of the end effector 
has been achieved as shown in Figures 11 and 12 for all 
the six joints.
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Figure 11. Simulated trajectory by pole placement and 
integral term.
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integral term.

It may be observed in Figures 8-9 and 11-12 that 
PID simulates rather smooth trajectory compared 
to pole placement control. It may be noted that the 
time taken during simulation of the position in case 
of pole placement is smaller compared to the case of 
PID control23.

6. Conclusions

A hybrid control framework has been proposed for 
controlling a standard robot arm of PUMA560 which 
has PID along with pole placement control. The feed-
back control utilizes the control gains obtained from 
an offline linearized model of the robot considered. 
The input control can be based on PID. Alternately, 
pole placement with integral term (of PID) can be used 
to control the arm. Based on relative performance of 
achieving target position, it has been observed that 
PID tracks smoothly the trajectory thus achieving pre-
cisely the position of the end effectors compared to the 
pole placement technique in the presence of uncertain 
actuator failure.
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Appendix 1: Linearised Model

The matrices ,  and  are of size 6X6. The value 
of elements of these matrices is to be set to zero whose 
expression is not provided below. The matrix  is sym-
metric (set (J,I)= (I,J), for I=1:6; for J=1:6). 

% MO INERTIA MATRIX   

(1,1)=3.64+0.8*cos(2* ) -0.1*sin(2* +2* ) 
-0.01*cos( +2* ) +0.37*sin( +2* ) -0.15*cos(2*

+2* ) +0.37*sin( ) -0.01*cos( );
(1,2)=0.69*sin( ) -0.13*cos( + )+0.02*cos( ); 
(1,3)=-0.13*cos( + );
(2,2)=4.4-0.02*cos( )+0.74*sin( );
(2,3)=0.33-0.01*cos( )+0.37*sin( );
(3,3)=1.16;
(4,4)=0.20;
(5,5)=0.18;
(6,6)=0.19;

% CO JOINT VELOCITY SENSITIVITY

(1,1)={-1.6*sin(2* )+0.3*sin(2* +2* )+
    0.74*sin( +2* )-0.02*cos(2* +2* )
    +0.02*sin( +2* )-0.01*cos(2* )}* +
    {0.37*cos( )+0.37*cos( +2* )+0.3*sin(2* +2*)
    -0.02*cos(2* +2* )+0.01*sin( )
    +0.01*sin( +2* )}*( );

(1,2)=(-1.6*sin(2* )+0.3*sin(2* +2* )+
    0.74*cos( +2* )-0.02*cos(2* +2* )
    +0.02*sin( +2* )-0.01*cos(2* )* +
    (1.38*cos( )+0.27*sin( + )-0.05*sin( )*
    +(0.27*sin( + )* ;

(1,3)=(0.37*cos( )+0.37*cos(q3+2* )+0.3*sin(2* +
    2* )-0.02*cos(2* +2* )+0.01*sin( )+
    0.01*sin( +2* )* +(0.27*sin( + )* +
    (0.27*sin( + )* ;

(2,1)=(1.6*sin(2* )-0.3*sin(2* +2* )-0.74*cos(
+

    2* )+0.02*cos(2* +2* )
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    -0.02*sin( +2* )+0.01*cos(2* )* ;
(2,2)=(0.74*cos( )+0.02*sin( )* ;
( 2 , 3 ) = ( 0 . 7 4 * c o s ( ) + 0 . 0 2 * s i n ( ) *

+(0.74*cos( )
    +0.02*sin( )* ;

(3,1)=(-0.37*cos( )-0.37*cos( +2* )-0.3*sin(2* +
    2* )+0.02*cos(2* +2* )
    -0.01*sin( )-0.01*sin( +2* )* ;

(3,2)=(-0.74*cos( )-0.02*sin( )* ;

% KO JOINT POSITION SENSITIVITY

( 1 , 2 ) = ( - 1 . 6 * s i n ( 2 * ) + 0 . 7 4 * c o s ( + 2 
* )+0.3*sin(2* +
    2* )-0.02*cos(2* +2* )+0.02*sin( +2* )-
    0.01*cos(2* )* +(0.69*cos( )+0.13*sin( +

)-0.02*sin( )* +(0.13*sin( + )* +
    (-3.2*cos(2* )-1.5*sin( +2* )+0.6*cos(2* +2* )+
    0.04*cos( +2* )+0.04*sin(2* +2* )+
    0.03*sin(2* ))* *+(-0.74*sin( +2* )+
    0.6*cos(2* +2* )+0.04*sin(2* +2* )+
    0.02*cos( +2* ))* *
    +(0.27*cos( + ))* +(-0.69*sin( )+
    0.13*cos( + )-0.02*cos( ))* * +
    (0.13*cos( + ))*

(1,3)=(0.370*cos( )+0.37*cos( +2* )+
    0.3*sin(2* +2* )-0.02*cos(2* +2* )
    +0.01*sin( +2* )+0.01*sin( ))* +
    (0.13*sin( + ))*( + )+
  (-0.74*sin( +2* )+0.6*cos(2* +2* ) 
+0.04*sin(2* +
    2* )+0.02*cos( +2* ))* * +
    (0.6*cos(2* +2* )-0.37*sin( )-0.37*sin( +2*

) 
     +0.01*cos( )+0.01*cos( +2* ))* *
     (+0.27*cos( + )* * +
     (0.13*cos( + )*( * + * );

(2,2)=37.23*sin( )-8.45*cos( + )+1.02*cos ( )-
    0.25*sin( + )-0.01*cos(- + + )-
    0.01*cos( + + )+(0.69*cos( )+0.13*sin( + )-
    0.02*sin( ))* +(1.6*cos(2* )+0.74*sin( +2* )-
    0.3*cos(2* +2* )-0.02*sin(2* +2* )-
    0.02*cos( +2* )-0.01*sin(2* ))* * ;

(2,3)=-8.54*cos( + )-0.25*sin( + )-
    0.01*cos(- + + )-0.01*cos( + + )+
    0.13*sin( )* +(0.74*cos( +0.02*sin( ))* +
    (0.37*cos( )+0.01*sin( ))* )+(-0.74*sin( )+
    0.02*cos( ))* * +(-0.37*sin( )+

    0.01*cos( ))* * +(0.37*sin( +2* )-
    0.3*cos(2* +2* )-0.02*sin(2* + )-
    0.01*cos( +2* ))* * ;

(2,5)=0.01*cos(- + + )-0.01*cos( + + );
(3,2)=-8.54*cos( + )-0.25*sin( + )-

    0.01*cos(- + + )-0.01*cos( + + )+
    (0.13*sin( + ))* +(0.37*sin( + )-
    0.3*cos(2* +2* )-0.02*sin(2* +2* )-
    0.01*cos( + ))* * ;

(3,3)=-8.54*cos( + )-0.25*sin( + )-
    0.01*cos(-q5+ + )-0.01*cos(q5+ + )+
    (0.13*sin( + ))* +(0.37*cos( )+
     0.01*sin( )*  +(0.37*sin( ) -0.01*cos( ))*( * )
+(0.19*sin( + )+0.19*sin( )-
   0.30*cos(2* +2* )-0.02*sin(2* +2* )*( * );

(3,5)=0.01*cos(- + + )-0.01*cos( + + );
(5,2)=0.01*cos(- + + )-0.01*cos( + + );
(5,3)=0.01*cos(- + + )-0.01*cos( + + );
(5,5)=(-0.01*cos(- + + ))-0.01*cos( + +);

Appendix 2:  The State Space 
Matrices 

 =
4.3280 0.1902 0.1300 0 0 0
0.1902 4.4814 0.3707 0 0 0
0.1300 0.3707 1.1600 0 0 0

0 0 0 0.2000 0 0
0 0 0 0 0.1800 0
0 0 0 0 0 0.1900

=
-2.6770 1.0832 -1.9746 0 0 0
2.5259 -1.9130 -3.8261 0 0 0
2.0094 1.9130 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 =
0 -20.1559 -3.7029 0 0 0
0 27.5016 -5.7046 0 0.0005 0
0 6.6769 3.1350 0 0.0005 0
0 0 0 0 0 0
0 0.0005 0.0005 0 0.0014 0.


