
*Author for correspondence

Indian Journal of Science and Technology, Vol 9(45), DOI: 10.17485/ijst/2016/v9i45/102431, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Mobile Robot Navigation using Amended Ant Colony
Optimization Algorithm

Velappa Ganapathy1* Priyanka Sudhakara1 Titus Tang Jia Jie2 and S. Parasuraman3

1School of Computing, SRM University, Kancheepuram - 603203, Tamil Nadu, India;
ganapathy.v@ktr.srmuniv.ac.in, priyanka.k@ktr.srmuniv.ac.in

2Computer Software, Monash University, Melbourne, Australia;
Titus.Tang@monash.edu

3Monash University, Lagoon Selatan, Bandar Sunway, Subang Jaya - 47500, Selangor, Malaysia;
s.parasuraman@eng.monash.edu.my

Abstract
Objectives: This paper presents an amended Ant Colony Optimization (ACO) algorithm for a mobile robot navigation to find
the most optimal path. Methods: A modified design and development of an improved Ant Colony Optimization algorithm
based upon a prior research work done is proposed in this paper. The algorithm put forth is enhanced by simplifying the
equations already proposed and enlarging the area of the simulation framework, extending the task capabilities of the
robot, as well as testing the algorithm in real time on an autonomous mobile robot. Findings: The proposed algorithm has
to calculate optimal trajectory for the mobile robot to traverse to perform the following tasks: target-searching, boundary-
following and obstacle avoidance. The total length of the path traversed determines the efficiency of path traced. This
proposed method also enhances the utility of the ACO algorithm by designing and creating a feasible ACO graphical user
interface. Further we carried out the research on the working of the ACO algorithm by performing systematic testing,
simulations and real-time implementation. Improvements: Future work could involve the implementation of a positioning
system that allows the robot to determine its actual real world position and then provide feedback to the ACO algorithm so
that adjustments could be made. The basic ACO algorithm could be modified to model ants to move in eight directions. All
simulations and real time implementations could be done in pre-known environments with static well defined obstacles.
By including dynamic obstacle avoidance capabilities, the range of real life applications in which the algorithm could be
implemented on would be greatly expanded.

1.  Introduction

Ant Colony Optimization is considered as a meta-
heuristic algorithm and is popularly used for the solu-
tion of complex optimization problems1. Inspired by the
behavior of actual ants in their quest for food, this con-
cept was proposed2 who discovered that certain ants tend
to sublimate pheromones on the path they traversed dur-
ing their search for food. This pheromone trail attracts

other ants in search for food to follow the same path taken
by first traversed ant. Paths which successfully led to food
sources had more ants returning to gather more food and
thus had a stronger concentration of pheromones3. On the
other hand, paths that led to dead-ends caused fewer and
fewer ants to use that path over time, which subsequently
resulted in decreasing concentrations of pheromones due
to evaporation and other natural causes. Furthermore,
shorter paths tend to have a higher concentration of

Keywords: ACO Algorithm, Known Environment, Mobile Robot, Machine Learning, Navigation Planning, Static Obstacles

mailto:ganapathy.v@ktr.srmuniv.ac.in

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org 2

Mobile Robot Navigation using Amended Ant Colony Optimization Algorithm

pheromone as ants travel back and forth on a short path
more frequently as compared to ants on longer paths.
Over time, this bias in the pheromone level between suc-
cessful paths and dead-ends, and between shorter paths
and longer paths, leads to ants converging on the shortest
and most successful path to their food source.

This paper involves the application of the Ant Colony
Optimization (ACO) algorithm onto an autonomous
mobile robot guiding it to follow a near optimal path. The
idea of using Ant Colony Optimization metaheuristics4 in
robot navigation has been explored in the past by several
researchers. Notably, the authors tested the effectiveness
of the ACO algorithm when applied to an autonomous
mobile robot in a controlled, well defined two-dimen-
sional environment. This was done by conducting
simulations on computers in a paper titled “Ant Colony
Optimization for the boundary-following robot problem”,
using user-defined planar simulation environments.

In the study, they represented the simulation environ-
ment as an integer matrix with different regions labeled as
different integers. They then proceeded to study the varia-
tion of the fitness distribution of “Ant paths” over various
iterations5, in rooms of differing sizes. The authors then
concluded that the algorithm’s performance decreased as
room size and complexity increased.

The basis of this paper has its foundation in the
research work done previously. It adopts the fundamen-
tal concepts and ideas which were applied by the authors
in their ACO algorithm. In addition to verifying previ-
ous research work, this paper also focuses on extending
the work done by the authors to different areas. Firstly,
an Ant Colony Optimization algorithm has been written
from scratch, but with considerable variations from the
original concept and algorithm parameters used by the
authors themselves. In particular, algorithm equations and
parameters have been generalized and modified to reduce
calculation time and to promote algorithm simplicity.
New concepts such as negative pheromone deposition,
environment-size-dependent equations, loop elimination
and a double layer path optimization algorithm have also
been included in the amended ACO algorithm.

Furthermore, the functions and capabilities of the
algorithm have been extended to support the robot in
accomplishing the tasks of target-searching and obstacle
avoidance in addition to its basic boundary-following
capabilities. This serves to create a more robust and intel-
ligent robot that can compete a wider range of tasks
apart from the simple task of following walls, effectively

extending its usefulness in many situations. The size
of environments in which the robot is able to work in
has also been extended 18-fold compared to that of
environment.

Merging of algorithms with ACO is possible to give
enhanced results. One such is a Hybridizing method
combining Ant Colony Optimization and Lorentz trans-
formation which has been used as Chaos Optimization
Algorithm with NASA datasets to estimate the software
cost6. Whereas in another article Bacterial Foraging
Algorithm (BFOA), firefly algorithm, Ant Colony
Optimization (ACO), bee colony optimization, cuckoo
optimization were reviewed to find the optimal result.
In that ACO as graph based algorithm suits to find the
optimal path in determining the cost of the route com-
pared to other algorithm in discrete environment7. There
are variations of the ACO techniques they have used to
solve problems, representation of problems, transforma-
tions, parameters used and advantage of the techniques
and used variants8.

Finally, the capabilities of the algorithm have been
tested in real-time on an actual autonomous mobile
robot in a real obstacle-filled environment and its per-
formance monitored. The ultimate goal of this paper is to
prove the effectiveness and usefulness of the Ant Colony
Optimization algorithm in the field of artificial intelligence.

2.  Overview of Methodology

The base on which the algorithm works on is a two
dimensional array of numbers which represents the envi-
ronment. These numbers take a value of zero or higher.
The higher the number, more pheromones are located
in that location, thus the more attractive it is for ants to
move to that location. A value of zero signifies the pres-
ence of an obstacle.

This two dimensional environment is travelled on by
multiple agents known as Ants. Ants are able to move one
unit space in the environment in one unit time and can
move in one of four main directions at a given step. All
ants are allowed to take one step at each time unless the
ant has reached the goal or exceeded its maximum num-
ber of steps allowed.

2.1  Ant Colony Optimization
Two similar but functionally different algorithms based on
the concepts of ACO were written for the purpose of this

Velappa Ganapathy Priyanka Sudhakara Titus Tang Jia Jie and S. Parasuraman

Indian Journal of Science and Technology 3Vol 9 (45) | December 2016 | www.indjst.org

paper, one for the purpose of performing target-searching
in an obstacle filled environment, the second for the pur-
pose of performing boundary-following in a closed area.
The pseudo-codes for both algorithms are presented below.
Although mentioned separately, it is to be noted that the
obstacle avoidance capabilities of the robot have been
merged with the target-searching and boundary-following
functions, and thus performed as a single task.

Considering that this algorithm is to be used on
environment sizes much larger than that of previous
researchers, many of the general ACO algorithm equa-
tions used to calculate various parameter values have
been simplified and modified to help reduce calculations
and simulation time9. A few statements and equations to
be noted are as follows:

1.	 For the Target-searching algorithm, the probability for
an ant to move to any one of its immediate neighbors in
a single ant step is calculated according to the formula:

2.	 For the boundary-following algorithm, the probability
for an ant to move to any one of its immediate neighbors
in a single ant step is calculated according to the formula:

This equation is such that it promotes the exploration of
new walls that have not been discovered by ants.
3.	 The amount of pheromones deposited on a successful

path is determined using:

�
Where,
N = Number of steps taken along the path and
P = Pheromone deposition constant.

4.	 Negative pheromones are deposited according to the
formula:

�
5.	 Pheromone evaporation conducted at the end of each

iteration:

�
Where,
R = Remaining pheromones,
E = Pheromone evaporation constant and
P = Currently available pheromones.

Target_Searching(robot_curpos, robot_endpos, map_num)
Initialisation:
Initialise_Var(init_pher, colony_size, num_iter, pher_evap, pher_depo, total_antstep, stat_ant, wall_min_dist)
Load_Sim_Map(map_num, init_pher)
Iterations:
	 FOR current_iter 1 to num_iter
		 WHILE Ants_Still_Moving
			 FOR current_ant 1 to colony_size
				 Calculate_Prob(robot_curpos, robot_nextpos)
				 Move_History Position (robot_curpos)
				 Ant_Ctrl(wall_min_dist, previous_step_backtrack, sqr_loop_backtrack)
				 new_pos		 Assign(Calculate_Prob (i, i+1))
				 move_ants(i)
				 IF Ant_State(current_ant, total_antstep) > = max_steps
					 Return Failure
				 ELSE Colony (current_ant, robot_curpos (i)) == robot_endpos (i)
					 Return Success
				 Stop (ants_moving)
		 Pheromone_evap_map(mi, ni)	 (1- (pher_evap)) * pher_depo
		 Pheromone_deposit(current_ant)	 sqrt(1/colony(current_ant, max_steps))^pher_depo
Target_Searching ()

A. Target-searching pseudo-code

(1)

(2)

(3)

(4)

(5)

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org 4

Mobile Robot Navigation using Amended Ant Colony Optimization Algorithm

Boundary_Following(robot_curpos, map_num)
Initialisation:

Initialise_Var(init_pher, colony_size, num_iter, total_antstep, robot_nextpos, wall_min_dist, wall_max_dist)
Load_Sim_Map(map_num, init_pher)

Iterations:
	 FOR current_iter 1 to num_iter
		 WHILE Ants_Still_Moving
			 FOR current_ant 1 to colony_size
				 robot_nextpos	 Assign_probability(current_ant)
				 Move_History Position (robot_curpos)

Ant_Ctrl(wall_min_dist, wall_max_dist, previous_step_backtrack, sqr_
loop_backtrack)

				 new_pos		 Assign(robot_nextpos (i))
				 move_ants(i)
		 Pheromone_Deposit(current_ant)	 (colony (current_ant, robot_curpos) == init_pher)
	 IF Pheromone_Deposit(mi, ni) == init_pher
		 path_blacking_out(Pheromone_Deposit (mi, ni))
Boundary_Following ()

2.2 � Enhancement of Ant Colony
Optimization Algorithm

The full extent of this paper involves not only the design
and writing of an Amended Ant Colony Optimization
algorithm, but also another two related programs that work
on top of the ACO algorithm, which ultimately enables real
time implementation of ACO in an autonomous mobile
robot. The following Figure 1 flow diagram shows the hier-
archy of various algorithms created for this paper.

Figure 1.  Flow Diagram of ACO

2.2.1  Single Trajectory Selection Algorithm
This algorithm takes as input the pheromone map from
either the target-searching or boundary-following func-
tion and from it chooses a single best path for the robot
to travel on. While seemingly redundant in purpose
considering that the ACO algorithm would be able to
accomplish the same task, this second algorithm actually
helps to reduce the simulation time.

The ACO algorithm is a relatively slow algorithm
that requires longer computational time as it employs
hundreds of “Ants” over hundreds of iterations. Such
long computational times could prove detrimental to the
success of its implementation in real time. On the other
hand, the Single Trajectory Selection algorithm is a very
simple and much faster algorithm, although much of the
capabilities available in the ACO algorithm are lost in
the tradeoff for speed. With these two options at hand,
instead of running the slower ACO algorithm as long as
it takes to converge to a single path, our proposed algo-
rithm allows the ACO algorithm to run until a relatively
narrow spread of pheromones is found. At this point, the
Single Trajectory Selection algorithm would take over the
task and perform a much faster and more effective con-
vergence process to a single path.

B. Boundary-following pseudocode

Velappa Ganapathy Priyanka Sudhakara Titus Tang Jia Jie and S. Parasuraman

Indian Journal of Science and Technology 5Vol 9 (45) | December 2016 | www.indjst.org

This Single Trajectory Selection algorithm works in
similar ways to the ACO algorithm in that it chooses the
next step to take to depending on the amount of phero-
mones in the four main directions. This is done as shown
in the following page.

2
1

N Pheromone M units awayPheromone in X direction

M
=∑ ∑

 Where,
N is the distance from the robot’s current position to the
nearest obstacle in X direction and
M = 1, 2, 3 … N

The next step to take would be to move in the direction
with the most summed pheromones among the 4 main direc-
tions. The above formula is such that it places more importance
on its immediate surroundings compared to locations farther
away from the robot. This is done so that the robot does not
get distracted by less optimal paths that run in parallel with the
path it is travelling on, and also by patches of high pheromone
locations along unsuccessful paths.

This algorithm differs with the ACO algorithm in that
it uses only a single agent, the “virtual robot”, in a single
set of iterations, to travel along the half-converged phero-
mone path output by the ACO algorithm. It is because of
this simplicity that the algorithm gains its speed.

2.2.2  Mobile Robot Motion Compiler Algorithm
This algorithm functions by taking the output of the
Single Trajectory Selection algorithm – a matrix contain-
ing all the points along the single selected path, and then
compiles this series of coordinates into robot comprehen-
sible movement instructions.

All algorithms have so far been written using Matlab.
On the other hand, the mobile robot used for the purpose
of this paper, the AmigoBot by Mobile Robots Inc has a
compiler that works only in C programming. Therefore
an Aria-Matlab adapter layer written by10 specifically for
robots made by Mobile Robots Inc was used to convert
Matlab based instructions into C functions. This library
allows the programmer to call pre-specified functions
using Matlab codes which are then converted to C codes
and communicated with the mobile robot.

The Mobile Robot Motion Compiler algorithm is built
around this adapter layer and performs its task of compiling
robot instructions in two main steps. First by breaking the
path matrix into multiple sets of coordinates and calculat-
ing the necessary robot orientation and movements needed
to be made until it reaches the next set of coordinates11. The
algorithm then inputs these values into the relevant func-
tions from the adapter layer and communicate them with
the robot. The pseudo-code for this algorithm is as shown.

ACO_to_Robot(robot_path_log, cur_angle)
Connection Establishment with robot:
	 Robot_Start_Position	 get_position(robot)
Variable Initialisation:

Initialise_Var(robot_curpos, robot_nextpos, min_dist, last_pos_matrix, robot_cur_axes, next_angle)
Iterations:
	 FOR
		 IF [robot_path_log] ! = last_pos_matrix

Calculate_dist(robot_curpos, robot_nextpos)	
robot_orient	 Calculate_orientation(robot, robot_cur_axes)
Move_Robot(robot_orient)
robot_angle_to_rotate	 [next_angle – cur_angle]
Set_Delta_Heading(robot, robot_angle_to_rotate)
Check_Sonar_Obstacles(robot, min_dist)
Move_Robot(robot, min_dist)
robot_curpos	 shift_var(robot_nextpos)
cur_angle	 shift_var(next_angle)

Ending Connection Establishment with Robot:
	 Robot_End_Position	 get_position(robot)
	 Disconnect (robot)
ACO_to_Robot ()

Mobile Robot Motion Compiler Pseudocode

(6)

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org 6

Mobile Robot Navigation using Amended Ant Colony Optimization Algorithm

A graphical user interface (GUI) specifically designed
for the ACO algorithm was created using the Matlab GUI
toolbox12. The GUI has 18 functions available on it and
serves as the platform with which input and output are
transferred between the ACO program and the user. A user
has to select the simulation map in which the algorithm
is to be run and then input the start and end positions of
the robot along with the mode the algorithm to perform –
target-searching or boundary-following. The GUI would
then be able to display the pheromone map travelled on by
the ants, the “transition” map on which the algorithm per-
forms calculations, or the “robot map” in which the virtual
robot travels on in real time. These features, and more, are
specifically designed to assist any researcher in using the
algorithm to study its performance or to conduct testing.

3.  Experimental Outcomes

Figure 2.  Depiction of Pheromone.

With the help of the GUI, testing and simulation are
done using the ACO algorithm. Figure 2 shows an example
of how the pheromone map would look like at the end of a
typical run of the ACO algorithm. A whiter location repre-
sents the availability of a larger amount of pheromones in
that location and therefore having a higher attractiveness13
to be travelled on by ants. Figure 3 shows the path travelled
on by the robot after the pheromone map has been ana-
lyzed by the Single Trajectory Selection algorithm.

This research paper discusses the observations made
when varying the major parameters of the Ant Colony
Optimization algorithm, namely, size of the colony, steps
in iterations, deposition constant of pheromones, and the
evaporation constant of pheromones.

3.1  Size of the Colony
Colony Size represents the total number of ants that simul-
taneously search the simulation environment at each and
every iteration of the ACO algorithm. Simulation results
show that the larger the colony size, the more paths are
found between the start and goal positions. This is in
agreement with the theory of Ant Colony Optimization
as more ants are available to search all possibilities of the
workspace. A larger colony size also means more ants
successfully reaching the goal and therefore the availabil-
ity of much “whiter” paths. Nevertheless, having colony
sizes that are too large significantly increases the simula-
tion time without providing better simulation results.

Figure 3.  Track traversed by the mobile robot.

3.2  Steps in Iterations
This variable indicates the number of times the colony
of ants is to be called upon in series to search the envi-
ronment in a single complete simulation run. ACO
theory gives us the understanding that a larger number
of iterations gives more chances for successful paths
to be travelled on through the pheromone-biased path
selection process and thus solidifying its status as a via-
ble path through pheromone deposition. At the same
time it allows less optimum paths found at the begin-
ning of the simulation to fade away through natural
pheromone evaporation as explained in ACO theory.
Nevertheless, a larger number of iterations would logi-
cally mean longer simulation time. The trick is to find
the best trade-off between simulation time and path
efficiency.

Velappa Ganapathy Priyanka Sudhakara Titus Tang Jia Jie and S. Parasuraman

Indian Journal of Science and Technology 7Vol 9 (45) | December 2016 | www.indjst.org

Simulation results further solidify this understand-
ing14. A relatively small number of iterations results in
multiple paths from start to goal position. This is because
ants were still not able to converge to a single optimum
path within the limited amount of time (limited itera-
tions). As the number of iterations increased, ants began
to converge to a single optimum path (with some slight
deviation). The path taken gradually becomes more
streamlined and “smooth” compared with the previous
simulation runs. Simulation results improve until a point
when the effect of pheromone evaporation takes over
pheromone deposition and thus solutions to the problem,
although still existent, appear very much faded and less
obvious.

3.3  Deposition Constant of Pheromones
The rate at which ants deposit pheromones on the
path they travelled on after successfully reaching the
goal is known as the pheromone deposition constant.
Equation 3 shows the relation between the pheromone
deposition constant and the amount of pheromones
deposited. It is to be noted that since “N” is always
greater than 1, therefore the amount of pheromones
deposited is inversely related to the pheromone depo-
sition constant.

Simulation results suggest that a low pheromone
deposition constant (more pheromones deposited)
would increase the chances of ants converging onto a
single path. This is because the high amount of pher-
omones deposited after an ant successfully reaches
the goal would result in the path being able to stay on
the map for a longer period of time before evaporat-
ing away through natural evaporation, thus giving it
a higher chance that another ant would discover the
same path and reinforce it. On the other hand, this
may lead to the convergence to a less optimal path
in the final solution, as a less optimal path quickly
gets converged onto by ants before a better path
can be found. A higher pheromone deposition con-
stant (less pheromone deposited) would reduce the
chances of a sub-optimal path being converged upon.
This is because any single path would require more
ants travelling (and depositing pheromones) on it
before it can become prominent in the final solution.
Nevertheless, a high pheromone deposition constant
may cause a good path to fade away due to natural
evaporation before it can be reinforced by other ants.

3.4  Evaporation Constant of Pheromone
This constant determines the uniform rate at which pher-
omones are taken away from the entire simulation map
regardless of any other effects or variations. Although
seemingly working in opposition to the core concept of
Ant Colony Optimization, i.e. pheromone deposition,
pheromone evaporation plays a major role in regulat-
ing the growth and development of suitable solutions
in the algorithm. It does so by allowing early discovered
but non-optimal paths to fade away over time so as not
to affect the movements of ants towards a less optimal
solution. Pheromone evaporation also limits the growth
of found solutions so that yet to be discovered better
paths are given the opportunity to be travelled on (phero-
mones on discovered paths are limited so that the relative
chances of ants moving to an yet to be discovered path is
higher). In other words, pheromone evaporation encour-
ages ant exploration.

High pheromone evaporation constant has the effect
of causing paths to fade away quickly. On one hand, it
helps to remove less travelled paths from the pheromone
map. On the other, good solutions may be evaporated
away if the constant is set too high. Low pheromone
evaporation constant would result in a mess of phero-
mones all over the simulation map as pheromones
deposited on non-optimal paths remain on the map for
a longer amount of time, thus attracting ants to travel on
non-optimal paths.

3.5  Summary of Specifications
One main point to be noted from this Table 1 is that some
of the major variables in the ACO algorithm are map size
dependent. This gives the entire algorithm the ability to
function in simulation environments of varying sizes and
design without having to re-program or re-define any
part of the algorithm.

Table 1.  Specifications
Specifications Values
Colony Size 10 x map size
Number of iterations 10 x map size
Pheromone deposition constant 0.50
Pheromone evaporation constant 0.01
Negative pheromone deposition rate -0.001 / map size
Initial pheromone level 0.30

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org 8

Mobile Robot Navigation using Amended Ant Colony Optimization Algorithm

4.  Real Time Experimental
Performance

4.1  Hardware Equipment Framework
The hardware equipment framework required to imple-
ment the ACO algorithm on a mobile robot consists of
three main components: A computer with an Ethernet
device and capable of running Matlab, a wireless router,
and a mobile robot. The computer functions as the brain
of the system by hosting the ACO algorithm and all other
algorithms and plays the role of performing all necessary
calculations based on input from the user or the sensors
onboard the mobile robot. The router serves to establish
an Ethernet connection between the computer and the
mobile robot. For the purpose of this paper, a wireless
Ethernet connection was established between the router
and mobile robot so that the robot would be able to roam
around in the environment without wiring constrains.
The mobile robot used for the purpose of this paper is the
AmigoBot developed by Mobile Robots Inc.15.

Figure 4.  AmigoBot Robot.

Figure 4 shows the AmigoBot robot. It has eight sonar
sensors located around the robot which was used to imple-
ment the obstacle evasion capabilities of the robot (apart
from the obstacle avoiding capabilities implemented in
the ACO algorithm)16. A wireless serial to Ethernet device
was attached to the robot to allow its onboard processor
to establish a connection with the computer through the
wireless router.

4.2  Mobile Robot Navigation Monitoring
The mobile robot’s journey through the obstacle filled
environment consists of multiple iterations of a set of
movements: a reading of the sonar sensors for the pur-
pose of obstacle evasion, followed by a rotation of the
robot, and ends with the robot moving forward to the

next step at which the set of movements is repeated
again and again until the destination is reached. Such
a journey from start to end position is not error free.
Two main causes have been identified to result in dis-
crepancies between the robot’s simulation calculated
position and its actual real world position. A major
source of error is due to inaccurate modeling of the real
world environment into the simulation model. In this
research, modeling of the environment was done by tak-
ing measurements of the workspace and all obstacles
within it and converting those measurements into map
data. Secondly, errors are caused by inaccurate robot
motor movements as it rotates and translates the robot
throughout the journey. These errors stack up over time,
thus causing significant positional errors over longer
journeys. In the average journey of about five meters,
an error of about 15cm, or 3% error, is obtained at the
end of the journey. An error of such magnitude can be
neglected in larger environments or in environments
with relatively few and simple obstacles. On the other
hand, closely placed or tricky obstacle courses requiring
sharp turns in the robot’s movements could cause the
robot to collide with obstacles around it despite having
basic obstacle evasion abilities.

5.  Further Enhancement

This paper although having met its functional goals would
still have to be improved on before any large scale uses
could be made out of the discussed achievements. Listed
below are a few suggestions for further enhancement:

1.	 The basic ACO algorithm could be modified to model
ants to move in eight directions, each 45 degrees apart
instead of the 90 degrees in the four direction model
that is currently being used17. While the outcome of
such an implementation could only be speculated on,
it is believed that the new model would allow ants to
be more sensitive to changes in direction of move-
ment, thus creating more efficient, smoother paths.

2.	 The only sensors that allow the robot to locate itself
within the real world environment are the sonar sen-
sors located around the robot. Even so, these sensors
only allow the robot to detect obstacles within its
immediate vicinity and do not determine the robot’s
actual position in the global environment. Future
work could involve the implementation of a posi-
tioning system that allows the robot to determine its

Velappa Ganapathy Priyanka Sudhakara Titus Tang Jia Jie and S. Parasuraman

Indian Journal of Science and Technology 9Vol 9 (45) | December 2016 | www.indjst.org

actual real world position and then provide feedback
to the ACO algorithm so that adjustments could be
made. This would greatly reduce the chances of the
robot getting lost or colliding with an obstacle in
the environment due to undetected errors in its
movement.

3.	 Dynamic obstacle avoidance capabilities are a pre-
requisite in most autonomous mobile robot navigation.
In this paper, all simulations and real time implemen-
tations are done in pre-known environments with
static well defined obstacles. By including dynamic
obstacle avoidance capabilities, the range of real life
applications in which the algorithm could be imple-
mented on would be greatly expanded. Nevertheless,
efforts have to be made to implement such capabili-
ties without increasing too much the calculation and
simulation time.

6.  Conclusion

This paper has dealt with the development of an
Amended Ant Colony Optimization algorithm based
on a work previously conducted. This ACO algorithm
consists of two separate custom designed algorithms.
This helps in the implementations of path planning
based on ACO to be done in real-time. The main tasks
of boundary-following, target-searching and obsta-
cle avoidance have been designed and accomplished
and also given an explanation of each and every file
and function available in the ACO program and how
they interact to create a functional ACO algorithm.
Simulations were done using the GUI to study the
characteristics of the written algorithm and to deter-
mine the best set of algorithm parameters and program
structure that serves the work best. The usage of the
GUI, simulation results and an analysis of algorithm
output were all discussed. The developed algorithm
has been proved to be successful in searching for the
shortest viable path between two points, although its
simulation time and consistency could be improved
on. Real time implementation of the algorithm was
done using the AmigoBot robot and details were given
on both the hardware and software setup in order to
perform real time implementation. An analysis of the
outcome of implementation was then performed and
discussed. The robot is able to navigate its way in the
obstacle filled environment based on the path calcu-
lated by the ACO algorithm.

7. Acknowledgements

The authors would like to thank the Monash University,
Malaysia for permitting us to carrying out the research
project. The authors also thank SRM University for pro-
viding us facilities to update the work.

8.  References
1.	 Kose M. Ant Colony Optimization for the Boundary-

following Robot Problem. Eastern Mediterranean
University, Computer Engineering Department. 2004.

2.	 Goss S, Aron S, Deneubourg JL, Pasteels JM. Self-organised
shortcuts in the Argentine Ants, Naturwissenschaften.
1989; 76:579–81.

3.	 Maniezzo V, Gambardella LM, Luigi F. Ant Colony
Optimization. New Optimization Techniques in
Engineering.Volume 141 of the series Studies in Fuzziness
and Soft Computing. 2004; 101–21.

4.	 Wikipedia. Metaheuristics. Available from: http://
en.wikipedia.org/wiki/Metaheuristic Date accessed: 09/ 2016.

5.	 Mataric MA. Distributed Model for Mobile Robot
Environment-Learning and Navigation. MIT Artificial
Intelligence Laboratory Technical Report.1990; AI-TR-
1228.

6.	 Dizaji ZA, Gharehchopogh FS. A Hybrid of Ant Colony
Optimization and Chaos Optimization Algorithms
Approach for Software Cost Estimation. Indian Journal of
Science and Technology. 2015; 8(2):128–33.

7.	 Kanaka Vardhini K, Sitamahalakshmi T. A Review on
Nature-based Swarm Intelligence Optimization Techniques
and its Current Research Directions. Indian Journal of
Science and Technology. 2016; 9(10):1–13.

8.	 Sakthipriya N, Kalaipriyan T. Variants of Ant Colony
Optimization- A State of an Art. Indian Journal of Science
and Technology. 2015; 8(31):1–15.

9.	 Koza JR. Genetic Programming: On the Programming
of Computers by Means of Natural Selection. MIT Press,
Cambridge, Massachusetts. 1993.

10.	 Borgstrom J. ARIA and Matlab Integration With
Applications. Master’s Thesis Project. Department of
Computing Science, Umea University. 2005.

11.	 Schwab B. AI Game Engine Programming. Charles River
Media, inc. 2004.

12.	 Kose M, Acan A. Knowledge Incorporation into ACO-
Based Autonomous Mobile Robot Navigation. Eastern
Mediterranean University, Computer Engineering
Department. 2004.

13.	 Cicirello VA, Smith SF. Ant Colony Control for Autonomous
Decentralized Shop Floor Routing. The Robotics Institute,
Carnegie Mellon University. 2001.

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org 10

Mobile Robot Navigation using Amended Ant Colony Optimization Algorithm

14.	 Dorigo M, Stutzle T. Ant Colony Optimization. MIT Press,
Massachusetts Institute of Technology. 2004.

15.	 Mobile Robots Inc official website. Available from: http://
www.mobilerobots.com/. (Accessed: September 2016)

16.	 Mobile Robots Inc. Team AmigoBot Operations Manual.
2016.

17.	 Ross SJ, Daida JM, Doan CM, Bersano-Begey TF, McClain
JJ. Variations in Evolution of Subsumption Architectures
using Genetic Programming: The Wall Following Robot
Revisited. Genetic Programming: Proceedings of the First
Annual Conference, The MIT Press, Stanford University,
1996. p. 28–31.

