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Abstract
Objectives: This paper presents an amended Ant Colony Optimization (ACO) algorithm for a mobile robot navigation to find 
the most optimal path. Methods: A modified design and development of an improved Ant Colony Optimization algorithm 
based upon a prior research work done is proposed in this paper. The algorithm put forth is enhanced by simplifying the 
equations already proposed and enlarging the area of the simulation framework, extending the task capabilities of the 
robot, as well as testing the algorithm in real time on an autonomous mobile robot. Findings: The proposed algorithm has 
to calculate optimal trajectory for the mobile robot to traverse to perform the following tasks: target-searching, boundary-
following and obstacle avoidance. The total length of the path traversed determines the efficiency of path traced. This 
proposed method also enhances the utility of the ACO algorithm by designing and creating a feasible ACO graphical user 
interface. Further we carried out the research on the working of the ACO algorithm by performing systematic testing, 
simulations and real-time implementation. Improvements: Future work could involve the implementation of a positioning 
system that allows the robot to determine its actual real world position and then provide feedback to the ACO algorithm so 
that adjustments could be made. The basic ACO algorithm could be modified to model ants to move in eight directions. All 
simulations and real time implementations could be done in pre-known environments with static well defined obstacles. 
By including dynamic obstacle avoidance capabilities, the range of real life applications in which the algorithm could be 
implemented on would be greatly expanded.

1.  Introduction

Ant Colony Optimization is considered as a meta- 
heuristic algorithm and is popularly used for the solu-
tion of complex optimization problems1. Inspired by the 
behavior of actual ants in their quest for food, this con-
cept was proposed2 who discovered that certain ants tend 
to sublimate pheromones on the path they traversed dur-
ing their search for food. This pheromone trail attracts 

other ants in search for food to follow the same path taken 
by first traversed ant. Paths which successfully led to food 
sources had more ants returning to gather more food and 
thus had a stronger concentration of pheromones3. On the 
other hand, paths that led to dead-ends caused fewer and 
fewer ants to use that path over time, which subsequently 
resulted in decreasing concentrations of pheromones due 
to evaporation and other natural causes. Furthermore, 
shorter paths tend to have a higher concentration of  
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pheromone as ants travel back and forth on a short path 
more frequently as compared to ants on longer paths. 
Over time, this bias in the pheromone level between suc-
cessful paths and dead-ends, and between shorter paths 
and longer paths, leads to ants converging on the shortest 
and most successful path to their food source.

This paper involves the application of the Ant Colony 
Optimization (ACO) algorithm onto an autonomous 
mobile robot guiding it to follow a near optimal path. The 
idea of using Ant Colony Optimization metaheuristics4 in 
robot navigation has been explored in the past by several 
researchers. Notably, the authors tested the effectiveness 
of the ACO algorithm when applied to an autonomous 
mobile robot in a controlled, well defined two-dimen-
sional environment. This was done by conducting 
simulations on computers in a paper titled “Ant Colony 
Optimization for the boundary-following robot problem”, 
using user-defined planar simulation environments.

In the study, they represented the simulation environ-
ment as an integer matrix with different regions labeled as 
different integers. They then proceeded to study the varia-
tion of the fitness distribution of “Ant paths” over various 
iterations5, in rooms of differing sizes. The authors then 
concluded that the algorithm’s performance decreased as 
room size and complexity increased. 

The basis of this paper has its foundation in the 
research work done previously. It adopts the fundamen-
tal concepts and ideas which were applied by the authors 
in their ACO algorithm. In addition to verifying previ-
ous research work, this paper also focuses on extending 
the work done by the authors to different areas. Firstly, 
an Ant Colony Optimization algorithm has been written 
from scratch, but with considerable variations from the 
original concept and algorithm parameters used by the 
authors themselves. In particular, algorithm equations and 
parameters have been generalized and modified to reduce 
calculation time and to promote algorithm simplicity. 
New concepts such as negative pheromone deposition, 
environment-size-dependent equations, loop elimination 
and a double layer path optimization algorithm have also 
been included in the amended ACO algorithm. 

Furthermore, the functions and capabilities of the 
algorithm have been extended to support the robot in 
accomplishing the tasks of target-searching and obstacle 
avoidance in addition to its basic boundary-following 
capabilities. This serves to create a more robust and intel-
ligent robot that can compete a wider range of tasks 
apart from the simple task of following walls, effectively 

extending its usefulness in many situations. The size 
of environments in which the robot is able to work in  
has also been extended 18-fold compared to that of  
environment.

Merging of algorithms with ACO is possible to give 
enhanced results. One such is a Hybridizing method 
combining Ant Colony Optimization and Lorentz trans-
formation which has been used as Chaos Optimization 
Algorithm with NASA datasets to estimate the software 
cost6. Whereas in another article Bacterial Foraging 
Algorithm (BFOA), firefly algorithm, Ant Colony 
Optimization (ACO), bee colony optimization, cuckoo 
optimization were reviewed to find the optimal result. 
In that ACO as graph based algorithm suits to find the 
optimal path in determining the cost of the route com-
pared to other algorithm in discrete environment7. There 
are variations of the ACO techniques they have used to 
solve problems, representation of problems, transforma-
tions, parameters used and advantage of the techniques 
and used variants8. 

Finally, the capabilities of the algorithm have been 
tested in real-time on an actual autonomous mobile 
robot in a real obstacle-filled environment and its per-
formance monitored. The ultimate goal of this paper is to 
prove the effectiveness and usefulness of the Ant Colony 
Optimization algorithm in the field of artificial intelligence.

2.  Overview of Methodology

The base on which the algorithm works on is a two 
dimensional array of numbers which represents the envi-
ronment. These numbers take a value of zero or higher. 
The higher the number, more pheromones are located 
in that location, thus the more attractive it is for ants to 
move to that location. A value of zero signifies the pres-
ence of an obstacle.

This two dimensional environment is travelled on by 
multiple agents known as Ants. Ants are able to move one 
unit space in the environment in one unit time and can 
move in one of four main directions at a given step. All 
ants are allowed to take one step at each time unless the 
ant has reached the goal or exceeded its maximum num-
ber of steps allowed.

2.1  Ant Colony Optimization
Two similar but functionally different algorithms based on 
the concepts of ACO were written for the purpose of this 
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paper, one for the purpose of performing target-searching 
in an obstacle filled environment, the second for the pur-
pose of performing boundary-following in a closed area. 
The pseudo-codes for both algorithms are presented below. 
Although mentioned separately, it is to be noted that the 
obstacle avoidance capabilities of the robot have been 
merged with the target-searching and boundary-following 
functions, and thus performed as a single task.

Considering that this algorithm is to be used on 
environment sizes much larger than that of previous 
researchers, many of the general ACO algorithm equa-
tions used to calculate various parameter values have 
been simplified and modified to help reduce calculations 
and simulation time9. A few statements and equations to 
be noted are as follows:

1.	 For the Target-searching algorithm, the probability for 
an ant to move to any one of its immediate neighbors in 
a single ant step is calculated according to the formula:

2.	 For the boundary-following algorithm, the probability 
for an ant to move to any one of its immediate neighbors 
in a single ant step is calculated according to the formula:

This equation is such that it promotes the exploration of 
new walls that have not been discovered by ants.
3.	 The amount of pheromones deposited on a successful 

path is determined using:

�
Where,
N = Number of steps taken along the path and
P = Pheromone deposition constant.

4.	 Negative pheromones are deposited according to the 
formula:

�
5.	 Pheromone evaporation conducted at the end of each 

iteration:

�
Where,
R = Remaining pheromones,
E = Pheromone evaporation constant and
P = Currently available pheromones.

Target_Searching(robot_curpos, robot_endpos, map_num)
Initialisation:
Initialise_Var(init_pher, colony_size, num_iter, pher_evap, pher_depo, total_antstep, stat_ant, wall_min_dist)
Load_Sim_Map( map_num, init_pher )
Iterations:
	 FOR current_iter 1 to num_iter
		  WHILE Ants_Still_Moving
			   FOR current_ant 1 to colony_size
				    Calculate_Prob( robot_curpos, robot_nextpos )
				    Move_History               Position ( robot_curpos )
				    Ant_Ctrl(wall_min_dist, previous_step_backtrack, sqr_loop_backtrack)
				    new_pos		  Assign( Calculate_Prob (i, i+1) )
				    move_ants( i )
				    IF Ant_State( current_ant, total_antstep ) > = max_steps
					     Return Failure
				    ELSE Colony ( current_ant, robot_curpos ( i ) ) == robot_endpos ( i )
					     Return Success
				    Stop ( ants_moving )
		  Pheromone_evap_map( mi, ni)	 ( 1- ( pher_evap ) ) * pher_depo
		  Pheromone_deposit(current_ant)	     sqrt( 1/colony(current_ant, max_steps))^pher_depo
Target_Searching ( ) 

A. Target-searching pseudo-code

 

 

 

(1)

(2)

(3)

(4)

(5)
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Boundary_Following( robot_curpos, map_num)
Initialisation:

Initialise_Var(init_pher, colony_size, num_iter, total_antstep, robot_nextpos, wall_min_dist, wall_max_dist )
Load_Sim_Map( map_num, init_pher )

Iterations:
	 FOR current_iter 1 to num_iter
		  WHILE Ants_Still_Moving
			   FOR current_ant 1 to colony_size
				    robot_nextpos	           Assign_probability(current_ant )
				    Move_History        Position ( robot_curpos )

Ant_Ctrl( wall_min_dist, wall_max_dist, previous_step_backtrack, sqr_ 
loop_backtrack )

				    new_pos		  Assign( robot_nextpos ( i ) )
				    move_ants( i )
		  Pheromone_Deposit(current_ant)	      ( colony (current_ant, robot_curpos ) == init_pher )
	 IF Pheromone_Deposit( mi, ni) == init_pher
		  path_blacking_out( Pheromone_Deposit ( mi, ni ) )
Boundary_Following ( ) 

2.2 � Enhancement of Ant Colony 
Optimization Algorithm

The full extent of this paper involves not only the design 
and writing of an Amended Ant Colony Optimization 
algorithm, but also another two related programs that work 
on top of the ACO algorithm, which ultimately enables real 
time implementation of ACO in an autonomous mobile 
robot. The following Figure 1 flow diagram shows the hier-
archy of various algorithms created for this paper.

Figure 1.  Flow Diagram of ACO

2.2.1  Single Trajectory Selection Algorithm
This algorithm takes as input the pheromone map from 
either the target-searching or boundary-following func-
tion and from it chooses a single best path for the robot 
to travel on. While seemingly redundant in purpose 
considering that the ACO algorithm would be able to 
accomplish the same task, this second algorithm actually 
helps to reduce the simulation time.

The ACO algorithm is a relatively slow algorithm 
that requires longer computational time as it employs 
hundreds of “Ants” over hundreds of iterations. Such 
long computational times could prove detrimental to the 
success of its implementation in real time. On the other 
hand, the Single Trajectory Selection algorithm is a very 
simple and much faster algorithm, although much of the 
capabilities available in the ACO algorithm are lost in 
the tradeoff for speed. With these two options at hand, 
instead of running the slower ACO algorithm as long as 
it takes to converge to a single path, our proposed algo-
rithm allows the ACO algorithm to run until a relatively 
narrow spread of pheromones is found. At this point, the 
Single Trajectory Selection algorithm would take over the 
task and perform a much faster and more effective con-
vergence process to a single path.

B. Boundary-following pseudocode

 
 

 

 



Velappa Ganapathy Priyanka Sudhakara Titus Tang Jia Jie and S. Parasuraman

Indian Journal of Science and Technology 5Vol 9 (45) | December 2016 | www.indjst.org 

This Single Trajectory Selection algorithm works in 
similar ways to the ACO algorithm in that it chooses the 
next step to take to depending on the amount of phero-
mones in the four main directions. This is done as shown 
in the following page.

2
1

      
N Pheromone M units awayPheromone in X direction

M
=∑ ∑

 Where,
N is the distance from the robot’s current position to the 
nearest obstacle in X direction and
M = 1, 2, 3 … N

The next step to take would be to move in the direction 
with the most summed pheromones among the 4 main direc-
tions. The above formula is such that it places more importance 
on its immediate surroundings compared to locations farther 
away from the robot. This is done so that the robot does not 
get distracted by less optimal paths that run in parallel with the 
path it is travelling on, and also by patches of high pheromone 
locations along unsuccessful paths.

This algorithm differs with the ACO algorithm in that 
it uses only a single agent, the “virtual robot”, in a single 
set of iterations, to travel along the half-converged phero-
mone path output by the ACO algorithm. It is because of 
this simplicity that the algorithm gains its speed.

2.2.2  Mobile Robot Motion Compiler Algorithm
This algorithm functions by taking the output of the 
Single Trajectory Selection algorithm – a matrix contain-
ing all the points along the single selected path, and then 
compiles this series of coordinates into robot comprehen-
sible movement instructions. 

All algorithms have so far been written using Matlab. 
On the other hand, the mobile robot used for the purpose 
of this paper, the AmigoBot by Mobile Robots Inc has a 
compiler that works only in C programming. Therefore 
an Aria-Matlab adapter layer written by10 specifically for 
robots made by Mobile Robots Inc was used to convert 
Matlab based instructions into C functions. This library 
allows the programmer to call pre-specified functions 
using Matlab codes which are then converted to C codes 
and communicated with the mobile robot.

The Mobile Robot Motion Compiler algorithm is built 
around this adapter layer and performs its task of compiling 
robot instructions in two main steps. First by breaking the 
path matrix into multiple sets of coordinates and calculat-
ing the necessary robot orientation and movements needed 
to be made until it reaches the next set of coordinates11. The 
algorithm then inputs these values into the relevant func-
tions from the adapter layer and communicate them with 
the robot. The pseudo-code for this algorithm is as shown.

ACO_to_Robot( robot_path_log, cur_angle )
Connection Establishment with robot:
	 Robot_Start_Position	         get_position( robot )
Variable Initialisation:

Initialise_Var( robot_curpos, robot_nextpos, min_dist, last_pos_matrix, robot_cur_axes, next_angle )
Iterations:
	 FOR
		  IF [ robot_path_log ] ! = last_pos_matrix

Calculate_dist( robot_curpos, robot_nextpos )	
robot_orient	       Calculate_orientation( robot, robot_cur_axes )
Move_Robot( robot_orient )
robot_angle_to_rotate	              [ next_angle – cur_angle ]
Set_Delta_Heading( robot, robot_angle_to_rotate )
Check_Sonar_Obstacles( robot, min_dist )
Move_Robot( robot, min_dist )
robot_curpos	       shift_var( robot_nextpos )
cur_angle	    shift_var( next_angle )

Ending Connection Establishment with Robot:
	 Robot_End_Position	          get_position( robot )
	 Disconnect ( robot )
ACO_to_Robot ( )

Mobile Robot Motion Compiler Pseudocode

 

 

 
 

(6)
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A graphical user interface (GUI) specifically designed 
for the ACO algorithm was created using the Matlab GUI 
toolbox12. The GUI has 18 functions available on it and 
serves as the platform with which input and output are 
transferred between the ACO program and the user. A user 
has to select the simulation map in which the algorithm 
is to be run and then input the start and end positions of 
the robot along with the mode the algorithm to perform – 
target-searching or boundary-following. The GUI would 
then be able to display the pheromone map travelled on by 
the ants, the “transition” map on which the algorithm per-
forms calculations, or the “robot map” in which the virtual 
robot travels on in real time. These features, and more, are 
specifically designed to assist any researcher in using the 
algorithm to study its performance or to conduct testing.

3.  Experimental Outcomes

Figure 2.  Depiction of Pheromone.

With the help of the GUI, testing and simulation are 
done using the ACO algorithm. Figure 2 shows an example 
of how the pheromone map would look like at the end of a 
typical run of the ACO algorithm. A whiter location repre-
sents the availability of a larger amount of pheromones in 
that location and therefore having a higher attractiveness13 
to be travelled on by ants. Figure 3 shows the path travelled 
on by the robot after the pheromone map has been ana-
lyzed by the Single Trajectory Selection algorithm.

This research paper discusses the observations made 
when varying the major parameters of the Ant Colony 
Optimization algorithm, namely, size of the colony, steps 
in iterations, deposition constant of pheromones, and the 
evaporation constant of pheromones.

3.1  Size of the Colony
Colony Size represents the total number of ants that simul-
taneously search the simulation environment at each and 
every iteration of the ACO algorithm. Simulation results 
show that the larger the colony size, the more paths are 
found between the start and goal positions. This is in 
agreement with the theory of Ant Colony Optimization 
as more ants are available to search all possibilities of the 
workspace. A larger colony size also means more ants 
successfully reaching the goal and therefore the availabil-
ity of much “whiter” paths. Nevertheless, having colony 
sizes that are too large significantly increases the simula-
tion time without providing better simulation results.

Figure 3.  Track traversed by the mobile robot.

3.2  Steps in Iterations
This variable indicates the number of times the colony 
of ants is to be called upon in series to search the envi-
ronment in a single complete simulation run. ACO 
theory gives us the understanding that a larger number 
of iterations gives more chances for successful paths 
to be travelled on through the pheromone-biased path 
selection process and thus solidifying its status as a via-
ble path through pheromone deposition. At the same 
time it allows less optimum paths found at the begin-
ning of the simulation to fade away through natural 
pheromone evaporation as explained in ACO theory. 
Nevertheless, a larger number of iterations would logi-
cally mean longer simulation time. The trick is to find 
the best trade-off between simulation time and path 
efficiency.
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Simulation results further solidify this understand-
ing14. A relatively small number of iterations results in 
multiple paths from start to goal position. This is because 
ants were still not able to converge to a single optimum 
path within the limited amount of time (limited itera-
tions). As the number of iterations increased, ants began 
to converge to a single optimum path (with some slight 
deviation). The path taken gradually becomes more 
streamlined and “smooth” compared with the previous 
simulation runs. Simulation results improve until a point 
when the effect of pheromone evaporation takes over 
pheromone deposition and thus solutions to the problem, 
although still existent, appear very much faded and less 
obvious. 

3.3  Deposition Constant of Pheromones
The rate at which ants deposit pheromones on the 
path they travelled on after successfully reaching the 
goal is known as the pheromone deposition constant. 
Equation 3 shows the relation between the pheromone 
deposition constant and the amount of pheromones 
deposited. It is to be noted that since “N” is always 
greater than 1, therefore the amount of pheromones 
deposited is inversely related to the pheromone depo-
sition constant.

Simulation results suggest that a low pheromone 
deposition constant (more pheromones deposited) 
would increase the chances of ants converging onto a 
single path. This is because the high amount of pher-
omones deposited after an ant successfully reaches 
the goal would result in the path being able to stay on 
the map for a longer period of time before evaporat-
ing away through natural evaporation, thus giving it 
a higher chance that another ant would discover the 
same path and reinforce it. On the other hand, this 
may lead to the convergence to a less optimal path 
in the final solution, as a less optimal path quickly 
gets converged onto by ants before a better path 
can be found. A higher pheromone deposition con-
stant (less pheromone deposited) would reduce the 
chances of a sub-optimal path being converged upon. 
This is because any single path would require more 
ants travelling (and depositing pheromones) on it 
before it can become prominent in the final solution. 
Nevertheless, a high pheromone deposition constant 
may cause a good path to fade away due to natural 
evaporation before it can be reinforced by other ants.

3.4  Evaporation Constant of Pheromone
This constant determines the uniform rate at which pher-
omones are taken away from the entire simulation map 
regardless of any other effects or variations. Although 
seemingly working in opposition to the core concept of 
Ant Colony Optimization, i.e. pheromone deposition, 
pheromone evaporation plays a major role in regulat-
ing the growth and development of suitable solutions 
in the algorithm. It does so by allowing early discovered 
but non-optimal paths to fade away over time so as not 
to affect the movements of ants towards a less optimal 
solution. Pheromone evaporation also limits the growth 
of found solutions so that yet to be discovered better 
paths are given the opportunity to be travelled on (phero-
mones on discovered paths are limited so that the relative 
chances of ants moving to an yet to be discovered path is 
higher). In other words, pheromone evaporation encour-
ages ant exploration.

High pheromone evaporation constant has the effect 
of causing paths to fade away quickly. On one hand, it 
helps to remove less travelled paths from the pheromone 
map. On the other, good solutions may be evaporated 
away if the constant is set too high. Low pheromone 
evaporation constant would result in a mess of phero-
mones all over the simulation map as pheromones 
deposited on non-optimal paths remain on the map for 
a longer amount of time, thus attracting ants to travel on 
non-optimal paths.

3.5  Summary of Specifications
One main point to be noted from this Table 1 is that some 
of the major variables in the ACO algorithm are map size 
dependent. This gives the entire algorithm the ability to 
function in simulation environments of varying sizes and 
design without having to re-program or re-define any 
part of the algorithm.

Table 1.  Specifications
Specifications Values
Colony Size 10 x map size
Number of iterations 10 x map size
Pheromone deposition constant 0.50
Pheromone evaporation constant 0.01
Negative pheromone deposition rate -0.001 / map size
Initial pheromone level 0.30
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4.  Real Time Experimental 
Performance

4.1  Hardware Equipment Framework
The hardware equipment framework required to imple-
ment the ACO algorithm on a mobile robot consists of 
three main components: A computer with an Ethernet 
device and capable of running Matlab, a wireless router, 
and a mobile robot. The computer functions as the brain 
of the system by hosting the ACO algorithm and all other 
algorithms and plays the role of performing all necessary 
calculations based on input from the user or the sensors 
onboard the mobile robot. The router serves to establish 
an Ethernet connection between the computer and the 
mobile robot. For the purpose of this paper, a wireless 
Ethernet connection was established between the router 
and mobile robot so that the robot would be able to roam 
around in the environment without wiring constrains. 
The mobile robot used for the purpose of this paper is the 
AmigoBot developed by Mobile Robots Inc.15.

Figure 4.  AmigoBot Robot.

Figure 4 shows the AmigoBot robot. It has eight sonar 
sensors located around the robot which was used to imple-
ment the obstacle evasion capabilities of the robot (apart 
from the obstacle avoiding capabilities implemented in 
the ACO algorithm)16. A wireless serial to Ethernet device 
was attached to the robot to allow its onboard processor 
to establish a connection with the computer through the 
wireless router.

4.2  Mobile Robot Navigation Monitoring
The mobile robot’s journey through the obstacle filled 
environment consists of multiple iterations of a set of 
movements: a reading of the sonar sensors for the pur-
pose of obstacle evasion, followed by a rotation of the 
robot, and ends with the robot moving forward to the 

next step at which the set of movements is repeated 
again and again until the destination is reached. Such 
a journey from start to end position is not error free. 
Two main causes have been identified to result in dis-
crepancies between the robot’s simulation calculated 
position and its actual real world position. A major 
source of error is due to inaccurate modeling of the real 
world environment into the simulation model. In this 
research, modeling of the environment was done by tak-
ing measurements of the workspace and all obstacles 
within it and converting those measurements into map 
data. Secondly, errors are caused by inaccurate robot 
motor movements as it rotates and translates the robot 
throughout the journey. These errors stack up over time, 
thus causing significant positional errors over longer 
journeys. In the average journey of about five meters, 
an error of about 15cm, or 3% error, is obtained at the 
end of the journey. An error of such magnitude can be 
neglected in larger environments or in environments 
with relatively few and simple obstacles. On the other 
hand, closely placed or tricky obstacle courses requiring 
sharp turns in the robot’s movements could cause the 
robot to collide with obstacles around it despite having 
basic obstacle evasion abilities.

5.  Further Enhancement

This paper although having met its functional goals would 
still have to be improved on before any large scale uses 
could be made out of the discussed achievements. Listed 
below are a few suggestions for further enhancement:

1.	 The basic ACO algorithm could be modified to model 
ants to move in eight directions, each 45 degrees apart 
instead of the 90 degrees in the four direction model 
that is currently being used17. While the outcome of 
such an implementation could only be speculated on, 
it is believed that the new model would allow ants to 
be more sensitive to changes in direction of move-
ment, thus creating more efficient, smoother paths.

2.	 The only sensors that allow the robot to locate itself 
within the real world environment are the sonar sen-
sors located around the robot. Even so, these sensors 
only allow the robot to detect obstacles within its 
immediate vicinity and do not determine the robot’s 
actual position in the global environment. Future 
work could involve the implementation of a posi-
tioning system that allows the robot to determine its 
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actual real world position and then provide feedback 
to the ACO algorithm so that adjustments could be 
made. This would greatly reduce the chances of the 
robot getting lost or colliding with an obstacle in  
the environment due to undetected errors in its 
movement.

3.	 Dynamic obstacle avoidance capabilities are a pre- 
requisite in most autonomous mobile robot navigation. 
In this paper, all simulations and real time implemen-
tations are done in pre-known environments with 
static well defined obstacles. By including dynamic 
obstacle avoidance capabilities, the range of real life 
applications in which the algorithm could be imple-
mented on would be greatly expanded. Nevertheless, 
efforts have to be made to implement such capabili-
ties without increasing too much the calculation and 
simulation time.

6.  Conclusion

This paper has dealt with the development of an 
Amended Ant Colony Optimization algorithm based 
on a work previously conducted. This ACO algorithm 
consists of two separate custom designed algorithms. 
This helps in the implementations of path planning 
based on ACO to be done in real-time. The main tasks 
of boundary-following, target-searching and obsta-
cle avoidance have been designed and accomplished 
and also given an explanation of each and every file 
and function available in the ACO program and how 
they interact to create a functional ACO algorithm. 
Simulations were done using the GUI to study the 
characteristics of the written algorithm and to deter-
mine the best set of algorithm parameters and program 
structure that serves the work best. The usage of the 
GUI, simulation results and an analysis of algorithm 
output were all discussed. The developed algorithm 
has been proved to be successful in searching for the 
shortest viable path between two points, although its 
simulation time and consistency could be improved 
on. Real time implementation of the algorithm was 
done using the AmigoBot robot and details were given 
on both the hardware and software setup in order to 
perform real time implementation. An analysis of the 
outcome of implementation was then performed and 
discussed. The robot is able to navigate its way in the 
obstacle filled environment based on the path calcu-
lated by the ACO algorithm.
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