
Indian Journal of Science and Technology, Vol 9(45), DOI: 10.17485/ijst/2016/v9i45/95582, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

File transfer plays a very important role in the cloud
environment as the transfer is expected to have a good
quality. Moreover, efficient and flexible file transfer with
reliability has an important role in guaranteeing a good
quality of service for users. In the recent times, the data
produced by large scale applications are higher and
hence needed to be stored in cloud that are reliable and
efficient. In such a case, when data is being transferred,
it is necessary to know that throughput increases.
When data transfer takes place between systems, it is in
practice to check for the system level requirements. In
networks, although there are protocols being developed,
a protocol becomes inefficient because of the end system
characteristics thereby resulting in underutilization of
the protocol. Hence, we make a joint consideration of the
parameters, such as NIC capacity, memory, background
traffic etc. and to perform it in the cloud environment
we also make use of two techniques, parallelism and

pipelining1. Most of the cloud applications are designed
to move the data files either between the cloud storage or
from a system to a cloud.

The importance of optimizing data transfers between
cloud is increasing with an exponential growth of
data traffic. Lossless data compression can be essential
in increasing communication throughput, reducing
communication latency, achieving energy-efficient
communication and making effective use of available
storage. During the transfer, it is necessary to make
considerations of heterogeneous files. In cases before, the
transfer of heterogeneous files were done based on two
parameters: A larger file and a smaller file2.

Taking into account these two conditions, based
on file size, the previous work focused, implements the
transfer of larger files using the technique of parallelism
and the smaller files by pipelining3. But to analyze a file
to be larger or smaller and decide the technique to be
implemented may not be reliable and efficient. Also the
order in which the packets are sent can also be misplaced4.

Abstract
Objectives: We aim at analyzing a method that enhances throughput for huge heterogeneous file transfers in the inter cloud
and intra cloud for data transfers. Method: The proposed work identifies the files to be transferred in the cloud, splits the
data packet into chunks and pushes them to the cache storage from where they are transferred onto the destination cloud.
This method helps in enhancing the throughput of the data being transferred and simulations are observed. Findings:
Generally, the previous methods focused on considering the file for being large or small and then predicting to use pipeline
or parallelism. In this work, we transfer the file irrespective of the size by splitting it into a reasonable chunk of data for
effective utitilization of the available bandwidth. Application/Improvements: Consideration with large and small files
and then splitting them takes more time with chances of data being lost or not utilized. Hence, our work features more on
assuring that the data is being sent to the cloud with no data loss.

Keywords: Big Data Transfer, Heterogeneous File, Inter-Cloud Transfer, Parallelism, Throughput

Effective Data Transfers through
Parallelism in Cloud Networks

Sruthi Anand* and Sornalakshmi Krishnan

Department of Information Technology, SRM University, Chennai - 603203, Tamil Nadu,
India; Sruthi.sruth31@gmail.com, sornalakshmi.k@ktr.srmuniv.ac.in

Vol 9 (45) | December 2016 | www.indjst.org Indian Journal of Science and Technology2

Effective Data Transfers through Parallelism in Cloud Networks

This takes place by streamlining the number of packets by
optimizing the optimal number of parallel streams. Some
algorithms were implemented using GridFTP transfers5.

Generally, when the transfer is done, there can be
heterogeneous files, meaning large and small files. So
when this is done, it may cause underutilization of the
bandwidth for small files, thereby resulting in data loss.
Hence, these transfer mechanisms were implemented by
fixing a statistical threshold for parallelism and pipelining,
which was time-consuming and difficult. In the proposed
work, we combine these two techniques and based on the
replacement algorithmic value we transfer the data. These
can be done to improve the throughput using multiple
data paths between the systems. Pipelining is used to send
large number of small files, thereby resulting in no idle
channel6. Parallelism results in sending multiple portion
of the same file to have high throughput giving an unfair
share of the bandwidth. Thus, a comparison with normal
file and the proposed transfers we transfer techniques
we achieve a high throughput. With the transfer of data
taking place between networks, it is vital to consider the
transfer that is happening in cloud networks i.e. inter
cloud or intra cloud. By trends, cloud computing plays a
vital role in transfer and storage.

2. Motivation

Cloud computing has a significant role to play in data
storage and retrieval with the amount of data generated
and networked. Taking the concept of parallelism which
was introduced in networks onto cloud and determining
the throughput when large heterogeneous file transfer
happens in cloud is interesting. The main goal of using
parallel streams of data is to make the best use of
the resources and bandwidth and have an increased
throughput10. Combining pipelining and parallelism,
pipelining caters to the need of transferring small files
with multiple transfer commands queuing up at the server
and reducing the delay between transfer completion
and its receipt11. In this paper, we clearly show how to
best utilize the concept of parallelism and pipelining
to optimize the transfer of a large data set on an intra
cloud architecture. These parameters of parallelism and
pipelining help us to determine the ultimate throughput
and network utilization obtained by many data transfer
applications. So when considering the transfer of data

in intra cloud, automated transfer requires the use of
parallelism to acquire optimization of throughput in
the cloud environment. But a traditional file transfer
mechanism implements with considerations of its quality
of service, protocols, number of CPU chores, etc12. Hence,
the existing work may not be able to utilize the bandwidth
available efficiently, which has been overcome in the
proposed.

The practical way of increasing the throughput is to
have multiple streams of data. The fact that the use of
multiple parallel streams may produce better performance
than using a single stream. The transfer should be based
on a single instant feedback. In this paper, we achieve
optimization by having optimal number of parallel
streams to enhance throughput. By doing this, we take into
account that all the parallel streams would be uncongested
without data loss. This is where parallelism becomes
effective. When data transfer takes place between the
cloud environment, considerations of loading large data
files and bigger size data, best suit parallelism. Generally,
parallelism happens in TCP sockets where the network
becomes congested as they arrive in an out of order split
and increase packet loss. In order to implement such
methodologies in big data transfers, say heterogeneous
files, taking the concept of parallelism against pipelining
will enhance the throughput of data packets that are being
automatically transferred between the cloud networks.
Pipelining was done for the small files in the previous
work, which in our case would not explicitly require a
special parameter to classify the small files. The findings
from various papers were:

The previous techniques used in cloud networks with
the use of parallelism were to divide the data, consisting
of large and small files. But to perform the data transfer by
setting up parallelism level for each transfer is difficult1. In
the case of GridFTP transfers, technique of pipelining was
implemented and this took care of only about the order of
data. But with many parallel streams, chances for the data
to arrive out of order was of high possibility3. When it was
implemented on WAN networks, parallelism was done, to
choose a parallelism level and decrease data size for error
correction5.

3. Proposed Architecture

To implement this data transfer using parallel streams, we

Sruthi Anand and Sornalakshmi Krishnan

Vol 9 (45) | December 2016 | www.indjst.org Indian Journal of Science and Technology 3

consider two ideas: 1. To split the large file into a smaller
number of packets or chunks and then 2. Accommodate
it in a buffer. This buffer manages all the incoming
parallel streams of data. The process of split takes place
when larger files that are greater than 1000 MB are to be
transferred. And this is where split takes place to parallel
streams of data.

Algorithm 1: Split and Merge

Require: list_0f_files ,tot_no_of_files, source path
Determine: the file and its source path
Calculate: the mean _file_size
Read: themin_chunk_size
If: min_chunk_size<sourcefile
Then
Do Split(file)
 Split = file/min_chunk_size
Split <--- No. of_chunks
Generate chunk(ID) , file ID
Do
Push chunks to cache
Cache ← chunk + chunk(ID)+ file_ID
Merge(chunks)
Merge = in order _ arrival
If out_of_order then ascend to chunk_ID
end.

Next, it is necessary to know the size of the cache
before placing them in the cache ,which is determined
using the formula.

Size = log2 (B*Smemory/Scache*Ssize).
Where,
B = the bandwidth of transfer.
Smemory = range of operating memory (RAM).
Scache = size of the cache indicating the word count .
Ssize = Server size.
In computing, cache algorithms are those that a

computer program or a hardware maintained structure
can follow to manage a cache of information stored on the
computer. When the cache is full, this algorithm chooses
which items to discard making room for the new ones.

Algorithm 2: Cache Placement Algorithm

Require: Cache_size, available_space, size _of_file, no_of_
chunks

Read: no._of_chunks
Read: available_space
If: no._of_chunks<available_space
Do
Cache ← push chunks until full
Else
If no._of_chunks> available _space
Then
Fill cache with available chunks
Then
Wait ← until cache free
Time_set ← cache_refresh
Do
Push chunks to cache
End

Cache Refresh:
The average memory reference time is given by:

Tm Th

Where,
 T = average memory reference time
M = miss ratio1-(hit ratio)
Tm = time to make a main memory access when there

is a miss
Th = the latency, the time to reference when there is

a hit
E = various secondary effects, such as queuing effects

in a multiprocessor systems.
There are two primary figures of merit of a cache:

The latency and the hit rate. There are also a number of
secondary factors affecting cache performance. The “hit
ratio” of a cache describes how often a searched-for-item
is actually found in the cache. The efficient replacement
policies keep track of more usage information in order to
improve the hit rate.

The “latency” of a cache describes how long after
requesting a desired item the cache can return the item
(when there is a hit). Faster replacement strategies
typically keep track of less usage information or in the
case of direct-mapped cache, no information to reduce
the amount of time required to update that information.
Figure 1 shows how data transfer is being carried out
in the cloud networks. Figure 2 depicts the flow of our
proposed system.

Vol 9 (45) | December 2016 | www.indjst.org Indian Journal of Science and Technology4

Effective Data Transfers through Parallelism in Cloud Networks

Figure 1. System architecture.

Figure 2. Flowchart.

4. Experimental Result

Thus, this implementation shows that the data transferred
between the cloud provides higher throughput. They are
implemented through the use of cloud sim to show the
simulation of the data packets that are being transferred.
Figure 3 shows the time taken to transfer a data using
existing methodology. The time taken by a packet to
reach the cache and then to the destination server from
the cache is recorded by means of a graph. The scenario
is being considered with various heterogeneous files and
the comparison is made between the normal file transfer
and the algorithm implemented transfer to show the best
results. The graph here shows the time taken by each
cloudlet from the virtual machine to reach the destination,
as shown in Figure 4.

By implementing these algorithms onto the cloud,
we infer that the time taken for the transfer in cloud
networks is much lesser than the already existing transfer
mechanisms, shown in Figure 5.

Figure 3. Existing system file transfer.

Figure 4. File transfer in cloud.

Sruthi Anand and Sornalakshmi Krishnan

Vol 9 (45) | December 2016 | www.indjst.org Indian Journal of Science and Technology 5

Figure 5. Comparison graph.

5. Conclusion and Future Work

The data transfer between the cloud is implemented using
the techniques of parallelism and pipelining by the help of
a buffer, which helps us to accommodate the data packets
as and when they are received, so that they need not wait
for the acknowledgment to be received. By this method,
an increased throughput is achieved during the transfer
compared to the normal file transfer. This work also
focuses on ensuring that all the data packets that are sent
make effective utilization of the protocol and bandwidth,
by splitting the data file to small data chunks. Hence, our
algorithms enable to identify the data packet according to
its size and then make the transfer. To make the effective
utilization of the bandwidth and thereby not resulting in
any protocol inefficiency for the packets, the concept of
parallelism and pipelining best suits. These algorithms
can also be implemented as an optimization service. In
the future, we could also consider factors of concurrency
make it more efficient and include heterogeneous files of
media such as audio files, video files, etc.

6. References
1. Fang X, Veeraraghavan M. A hybrid network architecture

for file transfers. IEEE Transactions on Parallel and Distrib-
uted Systems. 2009; 20(12):1714–25.

2. Hacker TJ, Noble BD, Atley BD. The end-to-end perfor-
mance effects of parallel tcp sockets on a lossy wide area
network. Proc IEEE International Symposium on Parallel
and Distributed Processing (IPDPS’02); 2002. p. 434–43.

3. Yildirim E, Arslan E, Kim J, Kosar J. Application-level opti-
mization of big data transfers through pipelining, parallel-
ism and concurrency. IEEE Transactions on Cloud Com-
puting. 2016 Jan-Mar; 4(1):63–75.

4. Altman E, Barman D, Tuffin B, Vojnovic M. Parallel tcp
sockets: Simple model, throughput and validation. Proc
IEEE Conference on Computer Communications (INFO-
COM’06); 2006 Apr. p. 1–12.

5. Arslan E, Ross B, Kosar R. Dynamic protocol tuning algo-
rithms for high performance data transfers. Proceedings of
the 19th International Conference on Parallel Processing
ser Euro-Par’13; 2013. p. 725–36.

6. Lining Z, Yunlan W, Jianhua GU, Tianhai Z. Adaptive file
transfer and policy study in cloud computing. 2011 IEEE
International Conference on Intelligent Computing and In-
tegrated Systems (ICISS); 2013 Jan 1-8.

7. Yildrim E, Yin D, Kosar T. Prediction of optimal parallel-
ism level in wide area data transfers. IEEE Transactions on
Parallel and Distributed Systems. 2011; 22(12):1–14.

8. Yildirim E, Kosar T. End-to-end data-flow parallelism for
throughput optimization in high-speed networks. Journal
of Grid Computing. 2012; 10(3):395–418.

9. Zaghloul SS. The mutual effect of virtualization and par-
allelism in a cloud environment. Conference AFRICON;
2013 Sep 9-12.

10. Kim J, Yildirim E, Kosar T. A highly-accurate and low-over-
head prediction model for transfer throughput optimiza-
tion. Proceedings of ACM SC’12 DISCS Workshop; 2012.

11. Choi KM, Huh E, Choo H. Efficient resource management
scheme of tcp buffer tuned parallel stream to optimize sys-
tem performance. Proc Embedded and Ubiquitous Com-
puting; Nagasaki, Japan. 2005 Dec.

12. AnuKarpaga S, Muralidharan D. High throughput pipe-
lining NoC using clumsy flow control. Indian Journal of
Science and Technology. 2016 Aug; 9(29). DOI: 10.17485/
ijst/2016/v9i29/91236.

13. Varthini S, Muthaiah R. Digital infinite impulse response
filter with floating point multiply accumulate circuit using
pipelining. Indian Journal of Science and Technology. 2016
Aug; 9(29). DOI: 10.17485/ijst/2016/v9i29/90907.

14. Thiriveni GV, M. Ramakrishnan M. Distributed cluster-
ing based energy efficient routing algorithm for heteroge-
neous wireless sensor networks. Indian Journal of Science
and Technology. 2016 Jan; 9(3). DOI: 10.17485/ijst/2016/
v9i3/80493.

15. Sasikumar R, Ananthanarayanan V, Rajeswari A. An intelli-
gent pico cell range expansion technique for heterogeneous
wireless networks. Indian Journal of Science and Technol-
ogy. 2016 Mar; 9(9). DOI: 10.17485/ijst/2016/v9i9/67610.

16. Bagheri R, Jahanshahi M. Scheduling workflow applica-
tions on the heterogeneous cloud resources. Indian Journal
of Science and Technology. 2015 Jun; 8(12). DOI: 10.17485/
ijst/2015/v8i12/57984.

	_GoBack

