
Indian Journal of Science and Technology, Vol 9(32), DOI: 10.17485/ijst/2016/v9i32/100187, August 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

In today’s scenario the software plays a multiple role in
the same time as it is being considered as a vehicle for
the delivery of a product and on the other hand it is also
a product and as a product it is responsible for providing
the potential of a computer and hardware devices or the
networks or other measures or the network of computers
being used for various scenarios. The concept of software
engineering is based on the layers where it provides the
technical aspects of how to do portion of the software
build up. While the various methods comprise of a broad
network of tasks including the requirement specification,
analysis, designing, program construction, testing

and finally the support or the maintenance. Finally,
the software engineering relies on the set of very basic
principles which are responsible for governing every
aspect of the technology thereby including modelling
activities and other various descriptive techniques.
Software Engineering (SE) is the approach of a system,
disciplination, quantification for the development,
operation, testing and maintenance of software, and
the study of these approaches that is, the application of
engineering to software. The engineering of the software
is also comprised of various principles and practices for
developing the software from the very scratch. For this we
need to follow the specific software development life cycle
models such as Waterfall, Spiral, prototype etc as per the

Abstract
Objectives: This paper discusses about the component based software engineering approach along with its classification of
various approaches of CBSE and Component Based Development [CBD] and the life cycle development model of Component
Based Software Development [CBSD] has been proposed by the component re-usability concept in lieu of reducing the
software cost. Method: The main focus of the software engineering and component based software engineering is the
development of the software in such a manner that it might be used again for the development of some other software.
Component Based Software Engineering [CBSE] includes the use of components lying in the component repository while
software re-engineering focusses relies with using the concept of forward and reverse engineering. This is done for reducing
the software development cost by making use of Component Based Software Engineering [CBSE] principles and s/w re-
engineering techniques. Findings: Now a-days the development of software from the scratch has become less prioritized
and is being used very less. Component based software engineering plays a very vital role in developing of the software not
from scratch but instead using the existing components for the development of new software. Hence it can be concluded
or finded that the cost of the software development from the re-usability concept can be reduced to a large extent in
comparison to the software development from the very scratch being a very costly measure. The proposed model will be
helpful in reducing the software development cost by using the component based development strategy. Applications /
Improvements: The proposed SDLC model for CBSD can be used for the real life applications as well and thereby can be
re-used again and again as per the requirements of the industry.

Keywords: CBD, CBSD, CBSE,

Towards The Adoption of Modern Software
Development Approach: Component

Based Software Engineering
Prateek Jain*

School of Computer Application, Lovely Professional University, Phagwara - 144411, Punjab,
India; prateekjain2010@gmail.com

Vol 9 (32) | August 2016 | www.indjst.org Indian Journal of Science and Technology2

Towards The Adoption of Modern Software Development Approach: Component Based Software Engineering

different requirements. All these SDLC models helps in
developing the software from the very scratch and it consist
of Requirements Gathering, analysis of requirements,
Design creation, Coding, Testing, implementation and
lastly the maintenance activity where the maintenance
cost is the higher1.

Figure 1. Traditional SDLC process.

As already being discussed above the strength of an
industry is meant for solving the problems of the customers
and the clients in common and their needs should be
fulfilled by the software. Hence there is a problem for
the development of a software as per the exact customer
requirements. This problem has been shown in 2.

Figure 2. A fundamental problem.

But today is the era of modern technologies and we
need to develop the software by reducing the cost of the
software especially in maintenance. So we need a technique
like component where the software can be developed
using the re-usability principles. The organization of the
paper is as follows: Section II contains the introduction
about CBSE, Section III consist of proposed SDLC model
for CBSD, Section IV consist of conclusion and future
scope and finally the references are included at the end.

2. Component Based Software
Engineering

Now a-days the software industry is having the biggest
challenge of developing the software as in today era the
software needs to be more reliable, its efficiency should be
high, it should have low maintenance cost and it should
ensure more effective software development. So in lieu
of these challenges can be resolved using the concept
of re-usability in order to overcome these challenges

thereby having less cost of maintenance. Besides these
challenges re-usability may also be helpful in saving the
design, coding cost too. Re-usability can be applied for
application system reuse, component re-use as well as the
function re-use. Figure 3 shows the difference between
the cost of maintenance and the savings done by re-use
principles (in approximate figures)3.

Figure 3. Cost of maintenance vs savings through re-
usability.

Now the concept of CBSE emerged from the failure
of object-oriented development to support effective reuse
principles as in OOD the single object classes are too
detailed and specific. Components are found to be more
abstract that the objects and classes and hence it can be
considered as a stand-alone service provider. The concept
of CBSE usually involves a prototyping approach with the
components being glued together by means of using a
scripting language. In CBSE there is a specific thing called
as a “Component - An independent executable entity that
can be made up of one or more executable objects.” There
might be the variations in the sizes of the components
starting from any simple application to the complex
applications too. The component in the simple terms can
be considered like an egg in the form of interface, code
and data being the parts of the egg as shown in Figure 4.

Figure 4. Component as an egg.

An example of component are the classes and the
interfaces. Component should have characteristics as
standardized, independent, composable, deployable as
well as documentable. All of the mentioned characteristics
are very crucial before choosing any component for using
in development for re-use or the development with re-
use. Figure 5 shows the 5 characteristics of a component.
•	 Deployable: For being deployed a component should

Prateek Jain

Vol 9 (32) | August 2016 | www.indjst.org Indian Journal of Science and Technology 3

be capable of operating as a stand-alone entity. It is
being treated as a binary component and need not be
compiled before the deployment.

•	 Composable: All the interactions that are external
should be in picture through the publicly defined
interfaces and it should also have been able to give its
information regarding the components and interfaces
to the external entities in order to be composed
properly.

•	 Documentable: The component should also have
the characteristics that it should be able to provide
the documenting capabilities to the users and users
should be able to make the documentation quite
comfortable.

•	 Standardized: The standardization of a component
means if it is used in CBSE process so it has to be
a part of some standardized component model. This
may define the interfaces, component, meta-data of
component etc.

•	 Independent: A component is independent if it is
being able to deploy or compose without having
to depend on the other components in various
situations.

Figure 5. Component characteristics.

The software being developed using the component
based approach needs to follow the component
development approach named as CBD.

3. Proposed SDLC Mode Component
Based Software Development

3.1 Requirements Analysis and Specification
This phase is the starting of the SDLC and consists of
gathering the requirements from the clients for the
development of the software and correspondingly the SRS

Figure 6. Proposed SDLC model for CBSD.

Vol 9 (32) | August 2016 | www.indjst.org Indian Journal of Science and Technology4

Towards The Adoption of Modern Software Development Approach: Component Based Software Engineering

is being prepared. Next thing is that the components should
also be checked for the requirements as we need to check
whether any component from component repository can
be re-used for the development of a new system or not.
Hence the SRS along with the checking and analyzing
component requirement is also done. This implies that the
software engineers must be aware about which components
will be used during the entire life cycle in order to develop
the efficient software. Since it is not likely that appropriate
components can always be found, there is a risk that the new
components have to be implemented. During the component
re-usability there might be a situation that the component
with desired functional is not found so the components need
to be modified to make it usable appropriately.

3.2 System and Software Design
As the requirements phase is concerned with the
preparation of Software Requirement Specification
document and in the similar terms system and software
design specification is concerned with the availability of
the components. The main components are complying
with a particular model of the component. It is very easy
for one to assume that it is possible to use the components
which are in direct implementation in different component
technologies.

3.3 Components Identification and
customization

This is for the component to work correctly and efficiently
with the whole system, it has to be adjusted in terms of specific
system requirements, platform, performance and interfaces.
This process is called customization of a component and the
resulting product should be ready for integration.

Although the CBSE approach is facing some challenges
like un-availability trusted components, certification of
component, inappropriate development lifecycle models,
configuration techniques of component and the supportability
of various tools required for implementing the component.
Instead of having these issues till then this approach might be
used in the development of software by applying the concept
of re-usability components and therefore the cost for the
software can be reduced to a great extent.

3.3.1 Finding Component
The first step in the CBSD process is finding the appropriate
and the right components according to the requirements
of the software to be build on.

3.3.2 Selecting Component
As soon as the component is find out in the first phase so
the next step lies in the selection of appropriate component
to be used during the software life cycle. The component
selection phase is a very crucial phase during this process.

3.3.3 Testing Component
This step comprises of testing a component for its existing
functionality and checking whether it is suitable for re-
usability or not and if the testing goes fine so we can go
with the next phase else we need to reject this component
or modify this component in order make it applicable for
re-usability.

3.3.4 Creating Alternative Component
If the components are not being selected or not found out in
the previous steps so in that case an alternative component
needs to be created with the proprietary approach.
Proprietary approach signifies that the component will be
owned by a specific components and the users need to use
this proprietary component as per their requirements.

3.3.5 Adapting Selected Component
After the component is selected or the proprietary component
is prepared so we need to adapt that selected component.

3.3.6 Compose and Deploying Component
After adapting the component in the previous step we
need to compose the selected component and needs to
be combined with the other modules of software and
finally it needs to be deployed properly for the usage in
component based software development phase.

3.3.7 Replacing Earlier Version with Recent Version
of Components

In case we got the updates of the existing version of the
component so we can replace that component from
existing to the recent version of the component.

Following the remaining process for CBD
This phase comprises of the activities that need to be

performed after this phase that includes the unit testing,
system integration, system testing and maintenance. In
this we can go with either maintenance phase or we can
choose the re-engineering approach for modifying the
existing system for the new system.

Prateek Jain

Vol 9 (32) | August 2016 | www.indjst.org Indian Journal of Science and Technology 5

3.4 Implementation and Unit Testing
As fast as the components are being selected from the earlier
phases so the next phase is of performing the unit testing
for the components and their related modules for checking
their current functionality according to the requirements
the functionality should be modified or altered. In an
ideal case every component themselves are properly built
and tested. However, the component tests in isolation are
not sufficient. Often design units will be implemented
as assemblies of several components and possibly a glue
code. These assemblies must be tested separately, since an
assembly of correct components may be incorrect although
the components themselves are correct4,5.

3.5 System Integration
The system integration integrating the standard infrastructure
components that builds up the component framework as
well as the application component framework. So in this
the specific component needs to be integrated with entire
system which is called as component deployment. Besides
the component deployment the rest of the modules are also
integrated together in order to get a complete system which
should be ready for next phase called as system testing6.

3.6 System Testing
System testing comprises of testing the whole system at
a once in order to check whether the integrated modules
are working properly or not. In case the system testing
is not ok so in that case the modification in source code
needs to be done and if the system testing is ok so we
proceed with the further phases consisting of either
the software maintenance or the re-engineering of the
existing software.

The software maintenance is a very costly process as
entire software needs to be modified from the very beginning
hence it should be avoided and alternatively we can use the
software re-engineering process for the alteration of the
existing software as it comprises very lesser cost. It consists
of 3 phases i.e.: a) Reverse Engineering b) Re-structuring c)
Forward Engineering and finally by following these phases
we will get the re-engineered software7–9.

On a whole CBSE is:
CBSE = COA + COP + COD + COM
COA: Component Oriented Analysis, COP:

Component Oriented Programming, COD: Component
Oriented Development, COM: Component Oriented
Management.

4. Conclusion and Future Scope

It has been observed and concluded that developing the
software from the scratch is a very costly process in terms
of more cost of money, resources as well as time. But these
cost can be reduced to an extent by using the concept of
re-usability and thereby using he modern approach called
as component based software engineering instead of
traditional software engineering approach. CBSE focusses
on using the existing components that are being designed
in .NET or sometime in Java programming languages.
These components are then restructured as per the
requirements of a new software and these components
can be re-used by the help of component repository that
consist of all the components for the re-usability. Hence
we can say the future scope for the CBSE is very vast as this
approach can be used for distributed as well as the cloud
computing environment. So the proposed SDLC model
based on CBSD approach will be useful for developing
the software by using an existing component rather than
doing it from the scratch every time.

5. References
1. Allen R, Douence R, Garlan D. Specifying and analyzing

dynamic software architectures. Fundamental Approaches
to Software Engineering, Springer Berlin Heidelberg, Indi-
an; 1998 Mar 28. p. 21–37.

2. Garlan D. Pervasive computing and the future of CSCW
systems. Proceedings of the Workshop on Architectures for
Cooperative; 2000 Dec.

3. Satyanarayanan M. Pervasive computing: Vision and chal-
lenges. Personal Communications. 2001 Aug; 8(4):10–7.

4. Crnkovic I, Larsson MP. Building reliable component-based
software systems. Artech House; 2002.

5. Schmerl BR, Marlin CD. Versioning and consistency for
dynamically composed configurations. Springer Berlin
Heidelberg; 1997 May 18.

6. Wang Z, Garlan D. Task-driven computing, Carnegie-mel-
lon University Pittsburgh PA School of Computer Science;
2000 May.

7. Hutchens DH, Basili VR. System structure analysis: Clus-
tering with data bindings. Software Engineering. 1985 Aug;
SE-11(8):749–57.

8. Haghpanah N, Moaven S, Habibi J, Kargar M, Yeganeh SH.
Approximation algorithms for software component se-
lection problem. 14th Asia-Pacific, Software Engineering
Conference, APSEC, IEEE; 2007, Dec 4. p. 159–66.

9. Vescan AN. Dependencies in the component selection
problem. Proceedings of the 6th ICAM-International Con-
ference on Applied Mathematics; 2008.

