
A Fault Prediction Approach based on the
Probabilistic Model for Improvising Software

Inspection
B. Dhanalaxmi1*, G. Apparao Naidu2 and K. Anuradha3

1Department of Information Technology, Institute of Aeronautical Engineering, Dundigal, Hyderabad –500 043,
Telangana, India; dinnu18@gmail.com.

2Department of Computer Science and Engineering, J. B. Institute of Engineering and Technology,
Bhaskar Nagar, Moinabad Mandal, R. R. District, Hyderabad – 500075, Telangana, India;

 apparaonaidug@gmail.com
3Department of Computer Science and Engineering, Gokaraju Rangaraju Institute of Engineering and

 Technology, Nizampet Road, Bachupally, Kukatpally, Hyderabad – 500090, Telangana, India;
kodali.anuradha@yahoo.com

Abstract

Objective: Software development is a multitask activity performed by a team. Each activity involves with different tasks
and complexity. To achieve quality of improvement it is important that each activity task should be fault free. But, finding
and correcting faults are most expensive and time consuming. Methods: Software inspection is a static analysis technique
which does not required program execution, instead it use inspector to make decision during the development. Findings:
But it was observed in literature that inspection has bad records in finding accurate defects in software development. In
this paper, we present a novel Fault Prediction Approach (FPA) based on the probabilistic model to improvise the soft-
ware inspection to detect the defect accurately and cost effective for the quality software development. Application/
Improvement: Inspection is an effective activity to find the defects using empirical data in the initial stage of develop-
ment. The proposed FPA investigate a probabilistic methods using modified Naive Bayes classification to estimate the
probable faults in an experiment context to suggest fault controlling development. Further, the analysis investigates
how FPA effectively identifying the faults during the inspection and impact in the quality development performance..

*Author for correspondence

1.  Introduction
Software Engineering process organized the software
development methodologies, disciplined and quantifiable
measures for systematic development, which requires a lot
of human efforts. Exceptional defects that deviate from the
quality characteristics of the software development which
might requires human-based activities for the inevitable

Indian Journal of Science and Technology, Vol 9(45), DOI: 10.17485/ijst/2016/v9i45/101581, December 2016

ISSN (Print) : 0974-6846
ISSN (Online) : 0974-5645

defects and it should be automatically predicted, moni-
tored and resolved. Quality assurance software with just
a test is not enough because it has the effect of delay in
development, and is quite expensive. Software inspection
immediately after the development of the product can be
used early in the software development life cycle, as well
as to determine the quality of the product at the same
time to save the project and later worked to find gaps in

Keywords: Fault Prediction, Probabilistic Model, Software Inspection, Software Quality

A Fault Prediction Approach based on the Probabilistic Model for Improvising Software Inspection

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org2

the development of software products, has established an
impressive track record.

The purpose of evaluating the quality of a product is
to invest in quality assurance from an economic point of
view to discover as many product defects as possible and
to optimize the associated costs and benefits 1,2. Inspection
is a wide range of practical software verification and vali-
dation of software used for the design and application of
static analysis techniques 3–5. In this technique the human
inspector reads and checks the program to reveal short-
comings and faults. Since the inspection does not require
the launch of the program, but makes use of human judg-
ment instead, it can be applied at any time before or after
the code is completed.

Many researchers have contributed to the develop-
ment of the methodology of inspection as defined different
reading techniques6–8 and inspection procedures9, but
many of the techniques focus on the administrative
aspects, such as, meetings and management10–12 but it
can be difficult to support with software tools, except for
lowing or syntactic level13. There are some tools avail-
able which successfully provide automated inspection
program to detect bugs, such as “Coverity static analysis
Tool” by Engler groups14,15 and the tool developed by16,
but these tools primarily seems to handle the imple-
mentation of related errors that can be defined without
reference to the requirements of the software.

It would be difficult to achieve a fully automated pro-
cess of inspection to find errors related requirements, but
a high level of automated support for inspection based on
the specifications is desirable because it will help increase
efficiency and reduce human error in the controls. In gen-
eral, the construction of a highly automated tool aid must
be based on accurate descriptions of requirements speci-
fications, checklists for inspections and control processes,
but the lack of precision in the normal control procedures
makes it difficult to achieve the objective.

This paper, examines the FPA based on a descriptive
empirical study of probabilistic model testing and the
relationship between test factors for effective detection
of failure factors and nominal cost benefits, reading skills
and test duration. The efficiency of the review process for
various inspection periods is an important aspect to inves-
tigate because the inspection period is an important cost

factor. A recent survey17, suggest empirically measured
using a probability distribution of the statistical probabil-
ity of the model which has been deployed for the defects
use for a nominal hypothesis inspection team to calculate
the efficiency of identifying costs and benefits of technol-
ogy scars. The purpose FPA will support the identification
of a problem with the software development process and
the FPA probabilistic model analysis the economic pro-
gram and is to determine whether the organization will
help to improve the quality of products. The study focus
in the failure and its prevention through detect inspection
in the usefulness of the detection as a solution.

The remaining papers are structured as follows,
Section 2 presents related research works, Section 3
presents limitations of the inspection, FPA probabil-
ity model inspection, and FPA prediction cost. Section
4 presents case study data and measurement methods.
Section 5 describes the analysis of the results and Section
6 describes the conclusions and future work.

2.  Related Works
An important focus of research is the efficiency and effec-
tiveness of the defect detection process 6,14,17. Reading
techniques used in the steps of detecting the fault inspec-
tion showed that a significant effect on the individual
fault detection efficiency and effectiveness.

There are several ways to identify defects such as
inspection, testing the validity of the evidence. Formal
audits are more effective and expensive quality3 method
for identifying defects in the early stages of development.
Through prototypes several requirements are clearly
understood what helps to overcome limitations. Testing
is one of the least effective methods. Defects that can be
avoided during the initial phase can be detected during
testing. The accuracy of the evidence is a good tool to
detect mainly in coding phase. Precision in the construc-
tion industry is the most efficient and economical way to
build software.

Many organizations follow a three-step inspection to
see some failures, lack of collection, failure and repair13.
These process software inspections typically include man-
agement and editing steps for inspection planning and
reporting, which contrasts with the detection and collec-

B. Dhanalaxmi, G. Apparao Naidu and K. Anuradha

Indian Journal of Science and Technology 3Vol 9 (45) | December 2016 | www.indjst.org

tion of operational failures by inspection teams. A recent
review of research approaches to improve and support
discovery failures and individual steps of an inspection
team meeting to optimize inspection results 6,13. The suc-
cess of an inspection is defined as a function found in the
total number of faults in a given class for a defect in the
product. Studies show that there is a significant change in
efficiency, effort, and duration of inspections associated
with the approach used in 15. Several studies based on the
detection efficiency of the meeting to move the collection
of defects. The technique for fault detection is designed
to detect flaws in the inspector associated with meta-class
errors.

In16 to explain the importance of access to error pre-
vention, noting that 15% of the project and it is necessary
to reduce development costs and time to characterize the
quality of the product of the fertile aspect of the software
update. Failure removal efficiency and prevent errors in
the orthogonal defect classification techniques are help-
ful. Through training and the use of known standards,
organizations can move to better places and improve
quality standards. The strength of this research is that
you can compare different mechanisms and techniques to
prevent development loss and helps in accurate analysis
of the different levels of organization.

In16, focuses on disability prevention and inspection
techniques evaluated for five projects of various sizes. The
study found that 70% of the attributes in the inspection
and developer unit testing and 29% in the phase valida-
tion were detected. These metrics are useful in increasing
confidence for the product development. Evaluation of
the project yields calculated called the efficiency of the
removal of the defect is calculated; the number of state
tested the actual number of fault features identified.

According to18 in meetings, we can hardly detect
the impact or significantly extend the duration of your
inspection. In all cases, individual work-intensive defect
detection is an important prerequisite for a success-
ful solution. So far, these techniques have had little or
no effect on the various steps of the actual testing effort
invested and empirical information on the effort required
achieving the best results.

In19, it highlighted the importance of preventive mea-
sures to control defects early in the project development.

“Causal analysis”, is a widely used process for identify-
ing the cause of a feature and taking corrective action.
However, when the incidents reported are increased,
it is very difficult to handle and take measures to stop.
Foretelling the case is very important to protect against
the failure of software process improvement. The study
represents the failure of the prediction based on the laws
of the association, which applies to the mining associa-
tion techniques. The proposed mechanism of action that
may lead to higher levels of the software development
process can be applied to predict the feature faults.

In20 proposed a framework to protect tentative break-
down of starting “0.85 to 0.1 per Kilogram Line of Code
(KLOC)”. Designing and monitoring defined processes
by means of data analysis techniques. An error in order
to achieve the highest levels of quality control measures
are performed at different stages of the project life cycle.
Defect in order to achieve the highest levels of quality
control measures are performed at various stages of the
project life cycle. Works for the protection of the mistake
are: preparation, definition of a failure of this type, the
process of prevention and support for the protection of
ignorance.

3.  FPA
We use the term views here in the broad sense for all
kinds of documents to read errors detection with FPA. A
limitation of software inspection is discussed to under-
stand the need of FPA initially and the Naive Bayes based
probabilistic model is discussed below.

3.1  Limitation in Software Inspection
Static analysis technology that relies on visual inspection
is to identify gaps in product development, the develop-
ment is a classic example of violation of the standards and
other issues 6,7. Use most static analysis tools to eliminate
exceptions that can be eliminated using static analysis,
such as standard, “uncaught runtime”, “redundant code”,
“using invalid variables”, “division by zero”, and “coding
in possible memory leaks”. An outstanding example is the
test of an official10 which has a well-defined process and
prepare the meetings and different roles defined. Another

A Fault Prediction Approach based on the Probabilistic Model for Improvising Software Inspection

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org4

process that is often used is the Walkthrough. In this pro-
cess, the president leads through the code, but there is no
need to prepare.

Inspection software is used to successfully detect
defects in various types of documents, such as specifica-
tions, designs, test programs, and source code 14. Several
reviewers independently examined the same document.
All defects mentioned in the inspection are then collected.
More than one reviewer cannot detect some defects there-
fore; the inspection result was zero-one matrix that shows
where the reviewer found which fault.

Not all defects found in this document are often
found during testing. After the inspection, the adminis-
trator must decide whether to correct the errors in the
document or to forward the document to the next stage
of development. The normal way to determine the degree
of defect-free documents. For example, management may
require the document to be above 90 percent defect-free
before being utilised for the development. In fact, many
defects are actually included in the document. Therefore,
this is a major problem in software engineering practices.

Current techniques standard assessment test after
the failure content falls into two categories: clutch find
ways2,19 and curve-fitting 17. The standard method uses
the “Buddy Zero One matrix”, as the only way to calculate
estimates. Some studies show that “capture-capture-cap-
ture statistics” and “curve-fittings” are too inadequate to
be practical 12. Methods reflect the excesses and make a
huge difference and fault interpretation likely indicates
that these methods did not consider the standard made
during the last inspection.

We describe the use of probabilistic analysis model
for predicting failure. In the future, the concept of inspec-
tion might be suggested for the guided control. FPA can
enable software engineers to correct errors before they are
on the surface of the more public inspection or test fail-
ures customer reports.

3.2  FPA Probabilistic Model
The proposed FPA model can be used in software devel-
opment as a filter to find faults in the process. It can
automate the FPA to identify specific types of exceptions
and to scan and parse the source text of the program to
find a sample set of code. FPA analysis utilized for “control

flow”, “data flow analysis”, “interface analysis”, “informa-
tion analysis” and “time analysis software”.

There are number of errors in the software develop-
ment which can automatically detect the FPA. At the
same time, failure prediction tools indicate that each tool
is different, and sometimes it does not overlap, or that
bug is found 2. The anomalies found are not always due
to actual faults, but they are often an indication of faults.

Critical issues related to the use of the fault prediction
tool cannot be ignored by a number of false reports or
errors that do not include a deeper analysis of the context
in the system. There may be more than 50 percentage false
positives for all actual bugs. Some static analysis tools
report a low 50% error 15,16. Often, static analysis tools
are filters that can be customized and set out some of the
errors will be reported, and reduce the number of false
positives. Other organizations virus services pre-screen-
ing to eliminate false positives analysis of the magnetic
field exit before the involvement of their own groups.

We classify defects based on the probability, which
can be detected by using the FPA established fault type
taxonomy. Taxonomy consists of trained data failure
knowledge related to the kind of level applications that
can be identified by the FPA. To build the taxonomy
we integrate the five defects classes identified by22 as,
“Omission”, “Incorrect Fact”, “Inconsistency”, “Ambiguity”,
and “Extraneous Information”. Alogrithm-1 describes the
probable model to identify the possible defects using the
taxonomy knowledge base.

Alogorithm-1: Fault Prediction

Input:
C[] → Set of Test Code
Faults_TaxonomySet[][] → n-dimensional vector

For each block of code in ci of C []
 For of each fault taxonomy data ti of Faults_

TaxonomySet [ci][]
 Calculate the Naive Bayes probabable similarity β

in Faults_TaxonomySet [ci][]
 End for
 End for
 If β >=1 then
	 ci , classified fault as → ti

 End if
 End for

B. Dhanalaxmi, G. Apparao Naidu and K. Anuradha

Indian Journal of Science and Technology 5Vol 9 (45) | December 2016 | www.indjst.org

Probable model determines the classification system
malfunction with the intention to identify the categories
of different faults. To perform FPA Probabilistic Model
inspection we measure the performance metrics as, the
number of defects detected by the inspection, the number
of errors found by the FPA, the preparation and meeting
time, and the pre-screening cost. The probabilistic com-
putation case study is discussed in section-4.

In addition, keep in mind that many authors offer
guidance in order to achieve the full extent of the testing,
i.e., how fast testers to read the documents. This is evi-
dent impact on the effectiveness of the test. For example,
8 the evaluation of a quality inspection is between page 1
to 0.8 per hour, when the document contains 300 words.
If some authors to provide the same value assassination,
then we can summarize this easily with a statement that
the inspection is about one page per hour. However, the
result of a large deviation from fully understood. So, we
may review our view point in the faults found.

4. A Case Study
To determine the cost of finding fault with the test, we
manually examined inspection records different version
releases V1 and V2, a total of approximately 45 thou-
sands Lines Of Code (LOC) being used for a design,
development & implementation of Human Resources
Management System (HRMS) as shown in Figure 1.

4.1  Analysis Data
We collect and analyze fault data for the HRMS system.
Data analysis performed by 10 inspectors and testers to
provide customer errors reports, for more than 45,000
LOC written in Java, JavaScript and SQL developed for an
business data processing company. As it will be explained
that each of these projects is subject to FPA or other com-
binations of inspections and tests. FPA or inspections
cannot be conducted, and the FPA to be done before the
inspection, before the test, or during the test.

Figure 1.  HRMS system model.

A Fault Prediction Approach based on the Probabilistic Model for Improvising Software Inspection

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org6

The first two versions of the system were analyzed
we term as System-A and System B, and both underwent
inspection and FPA. However, the inspections have not
been conducted on the System-A. We analyzed the first
version (V1) which is underwent inspection only because
it was developed before. The next release (V2) passed
both the FPA and inspection.

For System-A and System-B, FPA errors are sent to the
service of pre-screening. Errors that were analyzed in this
study are good and true that remained after the pre-test.
To each issue, we are carefully classified and FPA multi-
tude of failures, inspection documentations, and Change
Requests (CR) record. Each test failure was reported by
a CR to the customer. The Table-1 shows data analyzed
summary for each product.

4.2  Prediction Cost Measures
Inspection records for System-A and System-B, con-
tains quantifications time to prepare for the time of each
inspection participants and profile errors, including the
type, complexity and explanation of the test set by the
convention. To get the measure of the failure to find,
we have added a correction and meeting all the partici-
pants and the number of errors is divided by time that are
detected during the inspection, as given in equation-1.
Here, n defines the number of participating inspector. We
computed the costs by the annual average cost of wages
2.5 Lakhs per inspection participants.

()
()1

.

n

i n

SalaryMinute Time Meeting Time Preparing
Avg Cost Timeof Fault Detection Inspection

Quantitiy Fault Found

=

 +   =
∑

 	

						 (1)

We computer average price of FPA for fault detection
based on the cost of the certificates, the price of pre-
screening to eliminate false positives based on the LOC
and a good number of real errors may occur. Some addi-
tional costs can be difficult to cover the cost of learning
how to run using FPA and computing resources. The lack
of information is a limitation of knowledge, but I do not
think it will be evident in our results.

To use FPA and to learn how to use computing
resources to run may be difficult to cover the some addi-
tional cost. The lack of information is the limit of our
knowledge, but we do not believe and the results can be an
evident. To purchase no additional computing resources
are required to use the FPA. The cost of computer detec-
tion errors shown in the equation- (2).

() ()
. ()

FPA Certificate Cost Per Line LOC

Avg Cost of Fault Detection FPA
Quantitiy TP Fault Found

+
= 	

						 (2)

To measure the value we provide cost benefit, as
shown equation- (3).

System Versions Inspection FPA Change Request
(CR) % of CR

A Performed No Yes 71%

B Performed Yes Yes 24%

Table 1.  Inspection vs. FPA data analyzed

B. Dhanalaxmi, G. Apparao Naidu and K. Anuradha

Indian Journal of Science and Technology 7Vol 9 (45) | December 2016 | www.indjst.org

.
.

Avg Cost of fault Detection by FPACost Benifit
Avg Cost of fault Detection by Inspection

= 		

						 (3)

Based on our data, the calculated cost benefits ratios
are 0.86 for the V1 and V2 to 0.53, which means that the
cost of the FPA by the detected fault is less in compare to
inspection detection. These results show that the FPA is
relatively affordable techniques for debugging.

5.  Result Analysis
The empirical results are analyzed using a number of
features found in the inspection system, the amount of
features available to customers testing, it cause Thousands
of Lines of Code (KLOC). Table 2 provides a compari-
son of the quality of the final product. This measurement
applies to the final quality of the product; the number of
errors after KLOC has been stirred (both tested and failed
customers reported).

The KLOC-specific defects are the quality standards of
the final product because they reflect the effects of prod-

Process Cycle-1 Process Cycle-2 Relative Quality
(Failure/KLOC)

System-A Inspection 1.84

System-B Inspection FPA 0.35

Defect Type Customer
(%)

Inspection
(%)

FPA
(%)

Test
(%)

Assignment 0 6.81 84.28 4.12

Interfaces 0 1.68 0 1.09

Functions 72.52 2.05 0 62.81

Validations 0 25.82 38.82 1.25

Algorithms 41.31 39.10 0 45.04

Documentation 0 42.81 0 0

Table 2.  Relative quality analysis

Table 3.  Percentage of defect types found

A Fault Prediction Approach based on the Probabilistic Model for Improvising Software Inspection

Indian Journal of Science and TechnologyVol 9 (45) | December 2016 | www.indjst.org8

uct changes. Using System-A as main product, because
this version was originally developed without FPA. We
normalize fault omissions by KLOC metric relative to that
System-A to protect the quality of information. This gives
quality ratio of the Relative Quality comparison of both
the versions, as shown in Table 2.

As mentioned earlier, there is a significant difference
in the relative quality of the system. As a result, our analy-
sis indicates better production of better quality products.

Comparison between different types of defects is
shown in Table 3. The results show that the FPA largely
able to identify errors in the three types of errors in
Assignments, Validations and Functions. A larger range
of errors have been identified in the validation algorithm
and documentation can be seen all these activities are
done in prior of FPA and even fewer validation faults are
identified by inspection and testing compared to the FPA.

6.  Conclusion
A key feature of the inspection design is the size of the
inspection team and a set of technologies that use the
team to detect errors. To schedule the inspection, the
leader seeks to determine the possible effort, efficiency,
and cost-effectiveness of a particular test design and to
choose the design that best suits his or her project goals.
To analyze the value of FPA (predictive error approach),
we analyzed automated inspection errors, manual inspec-
tion errors, and change request (CR) data for both
development HRMS products. Our analysis provides
some results that can help you understand and use FPA
according to its limitations. The FPA expenses by fault
was found out in the same order of importance as the
cost of assessing the errors found by errors discovered,
indicating that the FPA is relatively affordable techniques
for debugging. The number of FPA errors in the module
can be a pretty good indicator of identification module
failure-prone before the test. In conclusion, our results
show that FPA is a cost-effective adds advantage to other
techniques of verification and validation.

7.  References
1.	 Shivaji ES, Whitehead J, Akella R, Kim S. Reducing fea-

tures to improve code change-based bug prediction.

IEEE Transactions on Software Engineering. 2013Apr;
39(4):552–69.

2.	 Cinque M, Cotroneo D, Pecchia A. Event logs for the
analysis of software failures: a rule-based approach.
IEEE Transactions on Software Engineering. 2013 Jun;
39(6):806–21.

3.	 Parnas DL, Lawford M. The role of inspection in soft-
ware quality assurance. IEEE Transactions on Software
Engineering. 2003 Aug; 29(8):674–6.

4.	 Porter A, Votta L, Basili V. Comparing detection methods
for software requirements inspections: a replicated experi-
ment. IEEE Transactions on Software Engineering. 1995
Jun; 21(6):563–75.

5.	 Zheng J, Williams L, Nagappan N, Snipes W, Hudepohl JP,
Vouk MA. On the value of static analysis for fault detection
in software. IEEE Transactions on Software Engineering.
2006Apr; 32(4):1–14.

6.	 Liu S, Chen Y, Nagoya F , McDermid JA. Formal specifi-
cation-based inspection for verification of programs. IEEE
Transactions on software engineering. 2012 Sep–Oct;
38(5):1100–22.

7.	 Padberg F, Ragg T, Schoknecht R. Using machine learning
for estimating the defect content after an inspection. IEEE
Transactions on Software Engineering. 2004 Jan; 30(1):17–
28.

8.	 Ackerman A, Buchwald L, Lewski F. Software inspections:
an effective verification process. IEEE Software. 1989;
6(3):31–36.

9.	 Laitenberger O, DeBaud JM. An encompassing life cycle
centric survey of software inspection. Journal of Systems
and Software. 2000 Jan; 30(1):5–31.

10.	 Fagan ME. Design and code inspections to reduce errors
in program development. IBM Systems Journal. 1976;
15(3):182–211.

11.	 Briand LC, Emam KE, Freimut BG, Laitenberger O. A
comprehensive evaluation of capture-recapture models for
estimating software defect content. IEEE Transactions on
Software Engineering. 2000 Jun; 26(6):518–40.

12.	 Hamill M, Popstojanova KG. Common trends in soft-
ware fault and failure data. IEEE Transactions on Software
Engineering. 2009 Jul–Aug; 35(4):484–96.

13.	 Bush W, Pincus J, Sielaff D. A static analyzer for finding
dynamic programming errors. Journal of Software: Practice
and Experience. 2000 Jun; 30(7):775–802.

14.	 Suma V, Nair TRG. Effective defect prevention approach in
software process for achieving better quality levels. World
Academy of Science, Engineering and Technology. 2008
Aug; 45:1–5.

B. Dhanalaxmi, G. Apparao Naidu and K. Anuradha

Indian Journal of Science and Technology 9Vol 9 (45) | December 2016 | www.indjst.org

15.	 Challagulla V, Bastani F, Yen I, Paul R. Empirical assess-
ment of machine learning based software defect prediction
techniques. Proceedings of the 10th IEEE International
Workshop on Object-Oriented Real-Time Dependable
Systems; TA; 2005. p. 263–70.

16.	 Johnson PM, Tjahjono D. Assessing software review meet-
ings: a controlled experimental study using CSRS[Internet].
1996 [cited 1996 Jun]. Available from: csdl.ics.hawaii.edu.

17.	 Chang CP, Chu CP. Defect prevention in software pro-
cesses: An action based approach. The Journal of Systems
and Software. 2007; 80(4):559–70.

18.	 Hovemeyer D, Pugh W. Finding bugs is easy. Proceedings
of Conference in Object Oriented Programming Systems
Languages and Applications (OOSPLA) Companion; 2004.
p. 132–5.

19.	 Basili VR, Green S, Laitenberger O, Lanubile F, Shull F,
Soerumgaard S, Zelkowitz M. The empirical investigation of
perspective-based reading. Empirical Software Engineering
journal. 1996; 1(2):133–64.

20.	 Sathyaraj R, Prabu S. An approach for software fault pre-
diction to measure the quality of different prediction
methodologies using software metrics. Indian Journal of
Science and Technology. 2015 Dec; 8(35). Doi no: 10.17485/
ijst/2015/v8i35/73717.

21.	 Paramasivan R, Santhi K. APPFPA based best compro-
mised solution for dynamic economic emission dispatch.
Indian Journal of Science and Technology. 2016 Feb; 9(6).
Doi no:10.17485/ijst/2016/v9i6/81015.

22.	 Kang SJ, Lee KM, Lee KM. Context-aware abnormality
monitoring service for care-needing persons using a proba-
bilistic model. Indian Journal of Science and Technology.
2016 Jun; 9(24). Doi no: 10.17485/ijst/2016/v9i24/96112.

23.	 Kim YY, Kim MH. What are software developers and medi-
cal expert’s priorities for adopting a healthcare software
platform? Indian Journal of Science and Technology. 2016
Jun; 9(24). Doi no:10.17485/ijst/2016/v9i24/96018.

24.	 Ramasamy S, Kumaran AMJM. Dynamically weighted
combination of fault - based software reliability growth
models. Indian Journal of Science and Technology. 2016
Jun; 9(22). Doi no:10.17485/ijst/2016/v9i22/93967.

25.	 Samuel S, Kovalan A. A design level optimization approach
for functional paradigm software designs considering low
resource devices development. Indian Journal of Science
and Technology. 2016 Jun; 9(21). Doi no:10.17485/
ijst/2016/v9i21/95208.

