
Abstract
Objectives: Cloud computing is a service delivery over the internet where users pay based on the usage and the Quality 
of service (Qos). The cloud environment supports high performance computing based on protocols, which allow  sharing 
of computation and storage. Scheduling in a cloud is the process of scheduling the virtual machines (VM) to meet the 
 customer’s request. Methods/Statistical Analysis: The proposed evolutionary algorithm called Memetic Algorithm (MA) 
takes makespan and total cost as two objectives and gives an optimal workflow schedule of jobs. Findings: The algorithm 
is testing with different IaaS parameters from Amazon. Results show that MA gives significantly better solution than other 
algorithms like Genetic Algorithm (GA) and Iasi Cloud Partial Critical Path (IC-PCP). The schedule generated by MA gives 
more stability on most of the workflow instances. Application/Improvements: The proposed model applied to schedule 
the VMs in a cloud in an effective way.
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1. Introduction
In the recent years, cloud computing has emerged as a 
computing paradigm that supports computing services 
to enormous remote users with heterogeneous require-
ment. The services are provided under the Service Level 
Agreement (SLA). The Virtual Machines (VMs) are the 
instances in SaaS. Using the VMs, the customer can almost 
get unlimited access to resources and also can lower the 
Total Ownership Cost (TOC).

Workflow model can describe any application that has 
jobs and flow of data among jobs. The workflow scheduling 
problem is NP-complete and it is a problem of assigning 
jobs to processors in multiprocessor environment1-3. It 
can be represented as a Directed Acyclic Graph (DAG) 
where the nodes are processes and the edges are workflow. 
The edges show the data dependencies among jobs. 

Figure 1 shows hybrid IaaS cloud having resources of 
private cloud and public IaaS cloud.

Figure 1. Hybrid IaaS cloud.

The work of service provider completed in two levels4: 

The infrastructure providers who rent resources.•	
The Service providers, who charge resources.•	

Usually the algorithm use QoS constraints for converting 
the problem in the form of single objective optimization 
problem. The algorithm LOSS and GAIN5 use a  schedule 
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and reassigns each job to other processor until it matches 
to budget. Few algorithms like NSPO6,7 use the Pareto 
Swarm Optimization algorithm (PSO) to generate trade 
off among cost and make span. The Multi-Objective 
Heterogeneous Earliest Finish Time (MOHEFT) extends 
the workflow in Amazon EC2. 

Most of the above algorithms are tough to apply for 
cloud as they based on traditional heterogeneous environ-
ment like Grid. In this paper, we will see an optimization 
algorithm for cloud workflow scheduling problem. This 
algorithm generates a set of schedules having different 
trade-off between time and cost. The proposed algorithm 
is an evolutionary algorithm called memetic algorithm 
that has genetic algorithm as its ancestor. Memetic 
 algorithm uses real world pay-per-use pricing strategies 
and it is based on IaaS instances. The memetic operators 
like encoding, evaluation function, initial population; 
crossover, mutation and reproduction are used. 

The paper highlights the commonly scheduling 
 algorithms and challenges on IaaS platforms in section 
2. This is followed by scheduling problem definition and 
the pricing models in section 3. The memetic algorithm is 
explained in section 4. The paper is concluded in  section 6.

2.  Common Scheduling 
Algorithms and Challenges in 
IaaS Platform

The workflow-scheduling problem assumes that the 
amount charged to a user is based on the resource utilized 
by them. POSH assumes that the number of CPU cycles 
utilized by a user can be exponentially correlated to the 
cost. Two assumptions are made for our pricing model.

The sum of cost of subtask is the total cost of task.•	
The cost is fixed when the service is under run.•	

The challenge in the existing scheduling algorithms is, the 
resource pool is usually limited. The list based heuristic 
algorithm traverses all available processors in the selec-
tion step of every task and finds the best assignment. But 
this cannot be applied every time in cloud scheduling as 
the resources are enormous and it is impossible to do such 
traversals. One of the existing algorithm is Particle Swarm 
optimization based algorithm. This algorithm defines the 
particle positions and velocities as matrices. The order 
is no of tasks (n) by no of resources(m). ie. mxn. The 
 disadvantage here is ‘m’ may be too large. 

There are few genetic operators, which represent 
the mapping of task to resources by strings. The exist-
ing genetic approaches may not be suitable to cloud 
environment every time because the VM instances are 
not permanent and may be allocated and deal located 
 anytime.

In8 has proposed a list based heuristics used in cloud. 
This constructs a instance pool of limited size and hosts 
out the possible schedules in advance. 

In this paper, we model the workflow-scheduling 
 problem in cloud. The pricing criterion is considered 
when the fitness evaluation is made. The algorithm 
is designing such that it does not depend upon a fixed 
 pricing scheme.

3.  Workflow Scheduling Problem

3.1 Definition of Workflow
A general method to represent workflow is by means of 
Direct Acyclic Graph (DAG). Here Work flow WF=(J, D) 
where J is the set of ‘n’ jobs. J={J0 , J1,….,Jn}. D is the set 
of edges or control dependencies. D={(Ji, Jj)/ Ji,Jj ЄJ} The 
weight assigned to the edges of the graph is the quantity 
of data transferred between jobs. The vertices (Jobs) have 
the weights, which will be the execution time of jobs in 
that processor.

The execution time of every job is denoted as Exec 
time (Ji). The data transferred from Ji to Jj is denoted as 
Data(Ji ,Jj ). Every job Ji apart from the source has its pre-
decessor Jk if there is an edge from Jk to Ji ie., Pred(Ji)={Jk/
(Jk, Ji)ЄD}. The source job will not have any predecessor. 
So Pred(Jsource)=Φ

The DAG we consider has a single entry and single exit.

3.2 Cloud Resource Management
The infrastructure as service platform provides 
 computational resource through virtual machines. The 
virtual machine that is running is called as an instance. 
The IaaS platform provides wide range of instance types 
having different execution time of jobs and bandwidths. 
Our assumption is that a customer is allowed to get any 
number of instances. So the set of instances I={I0 ,I1 ,….,} 
is infinite. The set T={T0 ,T1 ,….Tm} is the type of instances 
offered and it is fixed. Any job will fit on one instance 
from the available type in T.

CPU(Ti )represents the features of the instance type 
Ti . We assume that parallel execution of the jobs is also 
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possible. The time taken to execute any job is half if the 
CPU instance is doubled. The running time of Job Ji on 
instance type Tj is

 Time ji
Unit time ji

CPU Tj
( )

( )
( )

=  (1)

Where Unit time(Ji) is the time taken for executing job Ji 
for unit CPU time.

Any instance type Ti will have a bandwidth bw(Ti). 
When communicating among different instances, the 
minimum among bandwidth is considered so that the 
worst case for the time of communication can be taken.
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Where TR and TS are different instances, to which Ji and 
Jj are scheduled. 

The current cloud providers like Amazon EC2, 
Microsoft Azure, IBM etc have different pricing schemes. 
So the algorithm we have designed is a generic one that 
can fit for any pricing model. We assume that there are ‘k’ 
pricing models. P={P0 , P1 ,….Pk}. Hence, the function cost 
(Il, Pm, Tn) will calculate the cost for the instance ‘l’using 
the pricing model ‘m’ having the instance type ‘n’. So the 
IaaS model can be in general said as S=(I, P, M)

3.3 The Scheduling Problem
For a workflow WF=(J, D) and an IaaS S=(J, P, M), the  solution 
is to produce more scheduling choice having instance, type 
and order. Here order is the vector containing the scheduling 
order of tasks. We consider that the user opts only one pric-
ing scheme and does not change till the usage is complete. 
So the goal for the scheduler is to provide a schedule that 
has minimized cost where  Total C tos ( )=

*
Â cost I P Ti i
Tiel

n

, ,

where I∗ is the instances used by the user, p is the pricing 
option which will not vary9.

4.  Memetic Algorithm for 
Optimization

The memetic algorithm can be used to optimize several 
conflicting objectives by combining them as a single objec-
tive. The memetic algorithm is an evolutionary algorithm 
that simulates the natural evolution and is successful in the 

past. For the workflow scheduling problem, the memetic 
algorithm generates a set of schedules selected by the user 
constraints. The schedules are refined using the genetic 
operators and the optimal solution is reached.

4.1 Fitness Function
The fitness of any possible solution is the important  factor 
for selecting the solution. The two main objectives of our 
problem are Make span and Total cost. We should have 
the Start time(ST) and completion time(CT) for any 
schedule. Start time of any job will depend upon the finish 
time of its previous job. If the job ‘Ji belongs to instance 
Ij, Ins(Ji)=Ij.

 ST(Jfirst)=0 (3)

 ST(Ji)=max{Ins(Ji), 

} (4)

4.2 Encoding
The problem is encoded as follows. Order is the sequence 
of job indices. This can be like O1 , …..On where Oi+1 
will start execution after the completion of Oi. The job 
instance is an array of size ‘n’ where the ith element shows 
the instance of ith job. The instance type is an array of size 
‘m’ where the ith element shows the instance type of ith 
instance. Consider the DAG in Figure 2.

The topological ordering using the in degree of every 
vertices of the above graph gives the Figure 3.

4.3 Memetic Operators
4.3.1 Crossover
The scheduling order should always maintain the 
 constraints in the dependencies between jobs. If Jk has to get 
the output of Ji , then Ji should precede Jk in all the possible 

Figure 2. Example DAG workflow.

ramesh
Note
Team,Equation 4 not clear please provide.
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orders we generate. The crossover applied here is Partially 
Matched Crossover (PMX) shown in Algorithm 1. Given 
two schedules ‘S1’ and ‘S2’ the PMX will randomly pick 
two crossover points. This crossover point is used for the 
construction of child schedule. The crossover is done by 
considering the facts like the same job should not repeated 
and the dependencies among job are maintained.

Procedure Partially_Matched (S1,S2)1. 
N ← number of jobs2. 
P1 ← random value (0,n-1)3. 
P2 ← randomvalue (0,n-1) where P1 ≠P24. 
If P1 > P2, swap P1 and P25. 
Substring O1 ← substring (S1,P1,P2)6. 
Substring O2 ← substring (S2,P1,P2)7. 
For all allels (Jobs) in O1 and O28. 
If allels in substring (S1,0,P1)and substring 9. 
(S1,Pi+1,n-1) does not contain entries from substring 
(S1,P1,P2) and substring (S2,P1,P2), then replace 
 substring O1 by O2,
Else repeat steps 3 to 9.10. 
For string O1 and O211. 
Find the left out allels in O1 and O2.12. 
Fill them from left to right.13. 
Check if the dependencies are satisfied. If not repeat 14. 
steps 3 to 12

Algorithm 1: Partially matched crossover
The algorithm works for our example graph as follows. 
The dependencies are 0→1→2→3→4→8
S1 0 1 |2 6 3|7 4 5 8
S2 0 1|2 3 4|5 6 7 8 

Let P1 and P2 be 3 and 5. After executing steps 3 to 7 
we get
S1 x x|2 3 4|x x x x
S2 x x|2 6 3|x x x x

The allele involved in the substring is: 2, 3, 4 and 6. 
Executing step 9 will give the following output. 
O1 0 1|2 3 4|7 x 5 8
O2 0 1 |2 6 3|5 x 7 8

The step 10 and 11 says to find the left out allele of 
O1 and O2. In O1, the left out is 6. In O2, the left out is 4. 
Writing them from left to right, we get
O1 0 1 2 3 4 7 6 5 8
O2 0 1 2 6 3 5 4 7 8

The dependency is not disturbed in O1 and O2. So 
these can be the new off springs. If not the off springs 
are re-calculated. Then the corresponding instances and 
instance types are also updated. 

4.3.2 Mutation
The mutation is a genetically operation that maintains 
alteration in one or more gene values. It is the occasional 
random alteration of a value in a chromosome with small 
probability. It is shown in Algorithm 2.

Procedure Mutation(S1)1. 
N ← number of jobs2. 
P1 ← random value(0,n-2)3. 
P2 ← random value(1,n-1) where P2>P14. 
Swap positions P1 and P2 and generate new schedule5. 
Check if dependency is maintained6. 
If not repeat step 3 to 67. 
Check the fitness of new string8. 
Repeat step 3 to 8 till a better solution is obtained or 9. 
the number of iteration done is ‘n’

Algorithm 2: Mutation
4.3.3 Initial Population
In any scheduling algorithm, the solution space is huge. 
The initial population lays a major role in the convergence 
to the solution. For a problem size of ‘n’ jobs, the initial 
population of ‘n’ possible solution is generated. Out of the 
‘n’ schedules, first four schedule are based on

Figure 3. Encoding and scheduling for DAG example in 
Figure 2.
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Topological ordering•	
Heterogeneous Earliest Finish Time (HEFT)•	
Shortest Job First (SJF)•	
Minimal Cost Ordering (MCO)•	

The remaining n-4schedules are generated on random 
ordering. Any schedule generated will be considered only 
if the dependency is maintained.

The inclusion of four algorithms in generation of 
 initial population will help in quicker convergence towards 
the optimal solution. For each schedule generated, the 
instance-type and job to instance are mapped relatively. The 
procedure to generate initial population is in Algorithm 3.

Procedure initial population1. 
N ← number of jobs2. 
M ← number of instance types3. 
Generate schecule1 by topological ordering based on 4. 
in degree of any vertex
Generate schedule 2 by heterogeneous earliest finish time5. 
Generate schedule 3 by Shortest job first algorithm6. 
Generate schedule 4 based on the descending order of 7. 
cost (MCO).
For i=1 to n-48. 
Generate a random schedule ‘I’ so that the dependency 9. 
is maintained.
End procedure10. 

Algorithm 3: Initial population
4.3.4 Complexity Analysis
The complexity of crossover and mutation are O( ) and 
O(n) respectively where ‘n’ is the number of jobs. The 
checking of dependency and fitness is O(n). The time 
complexity of each generation is O( ). For a graph of ‘n’ 
vertices, a maximum of  edges can exist. If we go for ‘g’ 
generations, the overall complexity is O( ). Apart from 
the evolution, we have used four schedules in initial popu-
lation based on algorithms. The complexity of these also 
needs to be included. The HEFT, Topological ordering, SJF 
and MCO have O( ) complexity. The overall complexity 
is O( ) + O( ). Which is O( ) in general.

5. Testing

a. Parameters
IaaS Model
 The testing is done based on the instance specification 
by Amazon EC2

Figure 4b. Epigenomics.

Figure 4a. Montage.

Workflows
 Various workflows given by Pegasus workflow 
 management systems are needed for testing
Montage

This workflow can be highly parallelizable as shown in 
Figure 4a.

5.1 Epigenomics
This is a type of workflow in which the given application 
is split into multiple paths and then combined. It is shown 
in Figure 4b.

5.2 Cybershake
The cyber shake workflow system has architecture as 
shown in Figure 4c. This is used by Southern California 
Earthquake Centre (SCEC)

Figure 4c. Cybershake.
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5.3 Sip Hit
This workflow will automate search and is shown in 
Figure 4d.

5.4 Inspiral
This workflow can be used to generate sequence from 
data10,11. It is shown in Figure 4e.

The IaaS parameters used for different virtual 
machines are mentioned in the Table 1 (source www.aws.
amazon.com).

5.5 Algorithms compared
We have compared three algorithms namely IC-PCP11,12, 
Genetic algorithm and memetic algorithm. For a graph 
with ‘n’ jobs having ‘m’ instances types, there are mxn 
instances prepared. 

The following are the setups used.

For IC-PCP we consider heterogeneous VM’s that •	
could be acquired on demand13.
For GA, the schedule is repeated for 12 times in order •	
to check the effectiveness of convergence to solution.
For Memetic algorithm, the schedule is repeated with •	
the same constraints as GA.

We have assumed that the execution time of tasks are 
known in advance14,15.

The testing was done using four different deadline 
intervals of 1, 2, 3 and 4. The deadline interval is taking by 
finding the difference between fastest time and the slow-
est time and then dividing by five to get and interval size. 
The deadline interval is obtaining by adding the interval 
size. Say, if the slowest time is 50 ns and the fastest time is 
100 ns, the difference is 50 ns. The interval is 10ns. Now 
the deadline interval 1 is 60ns, deadline interval 2 is 70 
ns and so on.

6. Results and Analysis

6.1 Deadline Constraint
We have plotted graphs to show how far the deadlines 
are met. The graph is plotted based on the percentage of 
deadline met. Graphs are shown in Figure 5a to 5e. For the 
Montage workflow, IC-PCP did not meet the deadlines. 
The GA gave a better result than IC-PCP. GA gave  better Figure4e. Inspiral.

Figure 4d. Sip hit.

Table 1. IaaS parameters used.

Instance type vCPU
Memory 

(GiB)
PIOPS 

Optimized
N/W 

Preference
Price per 

hour

Db.m1.small 1 1.7 - Low $0.044

Db.m1.medium 1 3.75 - Moderate $0.087

Db.m1.large 2 7.5 Yes Moderate $0.175

Db.m1.xlarge 4 15 Yes High $0.350

Db.m2.xlarge 2 17.1 - Moderate $0.210

Db.m2.2xlarge 4 34.2 Yes Moderate $0.420

Db.m2.4xlarge 8 68.4 Yes High $0.840

Db.m2.8xlarge 32 244 - High $1.680
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result for deadline interval 3 and 4. The MA achieved 
100% result in deadline interval 3 and 4. It gave 90% and 
95% result in deadline interval 1 and 2 respectively. The 
results for Epigenomics also show that MA gives a better 
result than the other two. 

While comparing the performance of all three algo-
rithms in Cyber shake workflow, we found that IC-PCP gives 
slightly better performance than Montage and Epignomics. 
Still fails to meet the deadlines. Both the GA and MA 
showed a decently better performance in deadline 1 and 2. 
The performance was 100% for deadline 3 and deadline 4.

As for the Sip hit workflow, IC-PCP again met the least 
amount of deadline with the highest percentage being 70 
for the deadline interval 2 and the other two algorithms 
gave better performance. For the In spiral workflow, the 
IC-PCP once again showed a poor performance of 10 % 
for the deadline interval 3. MA showed the best of 90 % 
for interval 1 & 2 and 100% for interval 3 &4. GA came 
closer to MA having 80% accuracy in interval 1 & 2 and 
100% for interval 3 &4.

Observing the Figure 5a to 5e, we can say that the 
other two algorithms outperform IC-PCP. Out of the two 
evolutionary algorithms, MA has proven better than GA. 

6.2 Makespan
Makespan is the longest time taken to generate the 
 schedule16. The algorithm fails if the time taken to gener-
ate the schedule is longer than the given deadline. Here 
too we split into four deadline intervals based on the time 
of generating the schedule within the deadline. The dead-
line intervals 1 to 4 are defined based on the number of 
jobs. We have taken n=1 to 25 as deadline interval 1, n=26 
to 50 as deadline interval 2, n=51 to 75 as deadline inter-
val 3 and n=76 to 100 as deadline interval4. 

The results show that the IC-PCP is not much efficient 
in generating the schedule within the given deadline. The 
other heuristic search algorithms are better than IC-PCP. 
For the deadline interval 1 and 2 GA generates the  schedule 
quicker and for deadline interval 3 and 4 memetic algo-
rithm generates the schedule quicker than GA.

(d)

Figure 5. Deadline met (a) Montage (b) Epigenomics (c) Sip hit (d) Inspiral (e) Cybershake

(a) (b) (c)

(e)
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7. Further Analysis
The performance was analysed for different instances. 
It was found that the solution was generated with lower 
makespan most of the time. As future work, the algorithm 
can be compared with other optimization techniques. 

A noticeable point is the impact on the selection of 
initial population. The first four algorithms selected have 
a major difference in time for the convergence to the solu-
tion. It helps in faster convergence.

The algorithm was checked with the input condition 
of one Virtual machine of every type in each job. It was 
found that the algorithm takes more execution time for 
longer jobs compared to shorter jobs. 

Overall, the memetic algorithm performs better than 
other algorithms. When seeing the computational complex-
ity, the memetic algorithm is better than the other algorithms 
like PSO as memetic algorithm is heuristic based. 

Further analysis can be done with hybrid algorithms 
of ACO or Bees algorithm with genetic algorithm.

8. Conclusion and Future Work
There are many scheduling algorithms for multiproces-
sor architectures in cloud environment. However, most 
of these are difficult to be directly applied in cloud. The 
algorithm we developed overcomes the issues as we have 
used the real-world cloud computing models. 

In order to give a solution to the multi-objective cloud-
scheduling problem, we have given an encoding scheme 
that represents the scheduling criteria, the different 
instances of jobs and their types. The memetic operators 
like evaluation function, crossover and mutation are used. 
The experiment is checked with the actual pricing model 
in Amazon EC2 and the results are promising.

The future work can be a hybrid algorithm of PSO and 
memetic algorithm using more than one pricing scheme. 
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