
Indian Journal of Science and Technology, Vol 9(45), DOI: 10.17485/ijst/2016/v9i45/92896, December 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

A DNA molecule has four bases, namely, adenine
(abbreviated A), cytosine (C), guanine (G) and thymine
(T). A complete nucleotide is formed of these four bases
being attached to the sugar/phosphate. Now the purpose
of De Novo Assembly (DNA) sequencing is to determine
the order of the four aforementioned bases in a DNA
molecule, thus, also determining the order of a nucleotide
in an entire DNA molecule in the process. Technological
advancements in the fields of medicine and technology
have led to the evolution of DNA sequencing methods1,
which has greatly accelerated biological and medical
research and discovery. The speed of sequencing attained
has been greatly increased with the available modern
DNA sequencing technology2, which has allowed for
sequencing of complete DNA sequences or genomes of

myriad species of life, including genomes of most known
Prokaryote and Eukaryote species.

De Novo2 is a short read assembly algorithm which
processes individual sequence reads by merging them
together to form long contiguous sequences or ’contigs’.
These contigs share the same nucleotide sequence as the
original template DNA from which the sequence reads
were derived. Generally, it is all about assembling reads
together so that they form a new, previously unknown
sequence. It is different from comparative assembly in
the part where the comparative assembly process utilizes
existing backbone or reference sequences to compare
against, hence, building a sequence which is no identical,
although closely resembling the sequence which serves
as the backbone. In terms of complexity and time
requirements, De Novo assemblers are more memory
intensive and generally slower by magnitude orders. The

Abstract
Objectives: The paper documents a comparative analytical study of the two prominent De Novo Algorithms (DNA) namely
Velvet and SSAKE, both are being pipelined by CloudRS. Methods/Statistical Analysis: The Research process conducted
in this project primarily utilized Next-Generation Sequencing data results. These data sets were further error corrected by
pipelining them with CloudRS. Upon error correction, the data sets were assembled separately by VELVET and SSAKE; the
data from the analysis were then analyzed as per the mathematical results produced in order to statistically compare the
two algorithms for a similar environment. Findings: On assembling the error corrected genome, the data produced sets of
values. These values were tabulated and noted in order to ensure effective comparison. The values being compared were
the N50 and corrected lengths of the assembled genes. The general genome analysis comparison metrics were then utilized
to compare the documented data. This showed that a higher N50 value with a better assembled error corrected length
read ensured more effectiveness of an algorithm. This result allowed for the first comparison between two prominent
DNA algorithms, which hadn’t been compared before, to ensure better understanding Applications/Improvements: The
applications of these results are endless, primarily, to ensure that work which involves assembled genome reads proceed
with the utmost effectiveness. Any further improved algorithms, if created down the line, can aid in improving the entire
process of the same. Thus, in the uniqueness of the results lies the novelty of the entire project.

Keywords: CloudRS, Comparison, De Novo Assembly (DNA), Evaluation, NGS

Evaluation of CloudRS Algorithm
with De Novo Assemblers

Ramraj S, Karthikeyan, Gohula Krishnan and Soumyajyoti Bhattacharya

SRM University, Kancheepuram _603203, Chennai, Tamil Nadu, India;
ramraj.s@ktr.srmuniv.ac.in, karthikeyan_thangavel@srmuniv.edu.in,

gohulakrishnan_b@srmuniv.edu.in, soumyajyoti_somnath@srmuniv.edu.in

Vol 9 (45) | December 2016 | www.indjst.org Indian Journal of Science and Technology2

Evaluation of CloudRS Algorithm with De Novo Assemblers

need of the assembly algorithm to compare a read with
every other read serves to contribute to this.

The uptake of DNA sequencing technologies in modern
life sciences has been made possible by the development
of efficient algorithms capable of efficiently processing
short read sequences. In particular, reassembly of human
genomes (De Novo guided2) concluded from the input of
aforementioned short reads, has had a positive impact on
research in medical sciences. In the absence of a reference
genome sequence, the possible alternatives utilize De
Novo assembly algorithms. Later on, the data structure
designs for spaced seeds are proceed to the form which
includes paired K-mers so as to solve the limitations of
the De Bruijn Graph (DBG) paradigm, which exist for
long reads.

Now, random samples of nucleotide sequences from a
target genome of length N are also known as reads. Thus,
a read consists of a sequence of characters from the DNA
alphabet, which includes: A, C, G, T alongside N which
was mentioned previously. Consider r reads with varying
lengths, from g min to g max. We denote the length of read
p by g*p. The combined total length of the reads is denoted
by M = r*p=1*g*p. Substitutions, insertions and deletions
are often the three types of errors contained within a read.
We denote by e*g as for maximum estimated error rate
of a read. Thus, a read of length g *p may contain at most
e*g*i errors.

Errors in reads are detected and subsequently
corrected by the various error correction algorithms.
However, the lack of perceived knowledge about the
position of a read in it’s target genome means other
possible solutions for the error correction process in a
necessity. Hence, all error correction methods utilize
heuristics in order to determine the reads which align to
same genome positions, furthermore, comparing this set
of reads so as to correct the reads towards the appropriate
and general consensus of the set.

Nevertheless, correcting sequencing errors in the huge
amount of reads generated by NGS technologies is time
consuming and memory demanding. Furthermore, a huge
amount of intermediate data is created in the computation
process. For example, a naive implementation of the read-
stack algorithm of ALLPATHS-LG3 would replicate a read
for each k-mer subsequence of the read. For a 100G NGS
file of read length 36 and k-mer size 25, this means that
the total size of intermediate data is 1.2 Tera-bytes, that
is, each of the717 reads is replicated 12 times. Thus, new
strategies to store and process large quantities of data

efficiently are required. The MapReduce4 framework is a
scalable distributed computing framework for biologists
and bio-informaticians to process huge amount of genome
sequencing data. Though MapReduce and its famous
implementation Hadoop5 are available for researchers and
are highly fault tolerance when processing large datasets,
the design of MapReduce algorithms6 is not trivial.

2. Concept Headings

2.1 Overview of CloudRS Algorithm
Current sequencing technologies generate a large number
of reads. These reads contain many errors which present a
major challenge in using the data in genome sequencing
projects as assemblers have difficulties in dealing such
with errors. CloudRS7 is an error correcting algorithm
which corrects errors through the ReadStack (RS)
algorithm. Unlike previous tools for error correction,
CloudRS implements ALLPATHS-LG on Hadoop via Map
Reduce. It is advantages lie in the part where it reduces
the amount of false positives by being conservative in it is
functionalities. Reads produced by different technologies
which are used for sequencing like Illumina Genome
Analyzer and Roche/454 can be processed by CloudRS
without much difficulty. The rates of errors with respect
to reads are comparatively more reduced in the process.
This overview is given in a flowchart model in Figure 1.

Figure 1. ReadStack overview flowchart.

Ramraj S, Karthikeyan, Gohula Krishnan and Soumyajyoti Bhattacharya

Vol 9 (45) | December 2016 | www.indjst.org Indian Journal of Science and Technology 3

2.2 Overview of Datasets
The four experimental datasets were downloaded from
the archives at NCBI, which are listed in Table 1. All the
datasets are sequenced using Illumina sequencers. We
used datasets D1-D4 in order to compare between two
De Novo assembly algorithms, namely, VELVET8 and
SSAKE9 when pipe lined with a ReadStack algorithm,
namely CloudRS. Table 2 serves as the basis for this
comparison, which will be explained further down the
line.

2.3 Overview of Velvet
In10, a new collective set of algorithms called Velvet has
been developed in the field of Genomic Sequence Assembly
to manipulate De Bruijn graphs, representations of short
words i.e. k-mers that holds well for very short reads and
high coverage data sets graphically. Implementing Velvet
to short reads and paired-ends information only, one can
generate contigs of significant length, up to 50-KB N50
length and 3-KB N50 on simulated prokaryotic data and
Mammalian BACs respectively. This is a new approach
that can produce useful assemblies by leveraging very
short reads in combination with read pairs. Velvet
can remove errors as well as resolve a large number of
repeats provided the presence of read pair information is
validated. When there is a repeat longer than the k-mer
length, with unpaired r.eads, the assembly is broken.

2.4 Overview of SSAKE
Another short read based De Novo assembly algorithm is
SSAKE. It leverages information from short sequences by
using it is design oriented processes to categorize novel
sequencing targets. This is done by assembling them into
short contigs and scaffolds. This was the earliest algorithm
published for the same. It is well-suited for structural
variant assembly/detection as it assembles whole reads.
Applications of SSAKE extend beyond genome assembly
and the technology was applied to profiling T-cell meta-
genomes, targeted DNA, HLA typing and was key to
the discovery of Fusobacterium in colon cancer. This
algorithm can be written in PERL and has been utilized

on the Linux platform. This algorithm would utilize cyclic
processes to have procedural activities through hash table
for it is data related activities with respect to short reads.
SSAKE is known for being lightweight, robust and easy to
run. The Workflow overview of De Novo Assembly is in
Figure 2.

Figure 2. Workflow overview of DNA.

3. Results and Discussion

In11, a whole set of comparative metrics are established
for the characteristic comparison of Assembly algorithms
and such other processes associated with Genome
assembly processes. Hence, as can be seen in Table 2, we
have taken into account few important metric properties
with regards to our datasets, the details of which were
established in Table 1. These metrics help us compare
between SSAKE and Velvet assembly algorithms which
produce different results with the same datasets, after
they have been acted upon and error corrected by the
ReadStack based CloudRS error correcting algorithm.

Table 1. Datasets
Dataset NCBI

Genome Id
Genome Genome

Size
Read

length
Genome

Coverage %
D1 166 Mycobacterium tuberculosis H37Rv 4.5MB 101bp 65.6
D2 169 Helicobacter pylori 26695 1.7MB 47bp 38.9
D3 176 Streptococcus pneumoniae 2.1MB 27bp 39.6
D4 175 Streptococcus pyogenes 1.9MB 16bp 38.5

Vol 9 (45) | December 2016 | www.indjst.org Indian Journal of Science and Technology4

Evaluation of CloudRS Algorithm with De Novo Assemblers

Table 2. Compiling assembly pipelines on D1-D4
Dataset Assembly pipeline N50 Total

length
D1 CloudRS+Velvet 90 70075

CloudRS+SSAKE 1339 55134
D2 CloudRS+Velvet 80 22074

CloudRS+SSAKE 1636 20796
D3 CloudRS+Velvet 70 37337

CloudRS+SSAKE 1158 25481
D4 CloudRS+Velvet 71 20102

CloudRS+SSAKE 880 23154

In Table 2, we see that SSAKE has a far more positive
effect on similar datasets with similar error correction4
functionalities when compared to Velvet. The size of the
N50 property serves as key judging criteria for the same.
The other property considered here is the total length of
reads, which is generally considered a functionally good
metric to work with.

N50 is generally considered as a value of length greater
than half of the values present in the dataset12. Also,
contiguous sequences aim to map sequential reads, hence
higher the value greater is it is ability to map itself and
find similar structures. We see in Table 2, the N50 values
for SSAKE are comparatively higher than those of Velvet
when pipelined with CloudRS. This jump in valuation on
the positive side, which amounts to an increase in greater
than 50% in most of the cases, shows that SSAKE, as in
this scenario, is a far more reliable and relatively better De
Novo Assembly algorithm when pipelined with CloudRS.
Also, as mentioned in4, a better algorithm is one which
has lower length of contigs and greater N50 value. As seen
in Table 2, this is the case in our scenario which, hence,
proves that SSAKE is the comparatively better algorithm.

4. Conclusion

The very aim of this endeavor was to determine objectively
the superiority of two major algorithms when dealing
with similar data in fields which coincidentally are also
the same. Genome analysis is a wide sphere of influence,
especially so today with the growing influence and need
to process DNA reads to determine sequences and hence,
use them for evaluating effective medical solutions to
pressing problems. Firstly, with the advent of adequate
research work in this field, CloudRS has been determined
over a large set of data as the most effective ReadStack
based error detection and correction algorithm. Hence,
we utilized the same to receive the primary error corrected

data from the given dataset and hence this helped us
determine a computational comparison between Velvet
and SSAKE far more easily than would have been possible
if we took the data straight out of a sequencer like Illumina.

Now, questions may be raised about the choices in
assembly algorithms, with reasons being asked regarding
why Velvet and SSAKE were chosen. This was done after a
lot of deliberation and following all algorithms which have
a presence as a implementable DNA algorithm. While the
two keywords: De Novo and Assembly relatively shorted
the search results down, it must be understood that the
final comparison were conducted between SSAKE and
Velvet because of their general prominence in the field and
the availability of effective implementation procedures for
both of them.

On comparison, it was determined that even by
narrow margins, for the given set of data, SSAKE was the
more efficient and hence, more reliable DNA algorithm.
However, it must be realized that this comparison stems
from relative results and varies for datasets13. Considering
the datasets provided to us as a general scenario, which we
believe is the situational case here barring exceptions, the
conclusion comes to the fact that for error corrected data
using ReadStack algorithms, same datasets show SSAKE
to be relatively better De Novo assembly algorithm when
compared to Velvet, if only at a slight advantage over one
another when compared over general genome analysis
comparison metrics14 which are widely accepted.

5. Acknowledgment

We wish to thank anonymous reviewers for their helpful
suggestions. We also wish to take this opportunity to
express our gratitude for The Department of Software
Engineering in SRM University, Kattankulathur for their
able support, without which carrying out this project
would not have been possible, especially the guidance and
support of our Head of Department, Dr. C. Lakshmi, who
helped us throughout the process as and when we needed
it. This project was conducted independently, without any
need for external corporate involvement.

6. References
1. Tipu HN, Shabbir A. Evolution of DNA sequencing, J Coll.

Phys. Surg. Pak. 2015; 25(4):210–15.
2. Mardis ER. Next-Generation DNA Sequencing Methods.

2008; 9:387−402.

Ramraj S, Karthikeyan, Gohula Krishnan and Soumyajyoti Bhattacharya

Vol 9 (45) | December 2016 | www.indjst.org Indian Journal of Science and Technology 5

3. Gnerre S, Mac Callum I, Przybylski D, Ribeiro FJ ,Burton
JN , Walker BJ, Sharpe T, Hall G Shea TP, Sykes S, Berlin
AMD, Aird M, Costello R, Daza L, Williams R, Nicol A,
Gnirke C, Nusbaum ES, Lander DB, Jaffe J. High-Quality
Draft Assemblies of Mammalian Genomes from Massively
Parallel Sequence Data. 2008; 108(4):1513−18.

4. Dean J, Ghemawat S. MapReduce: Simplified Data Pro-
cessing on Large Clusters, 2008 Commun. ACM. 2008;
51(1):107−13.

5. Welcome to Apache TM Hadoop TM. Data accessed:
22/06/2016. Available at: http://hadoop.apache.org.

6. Irudayasamy A, Arockiam L. Parallel Bottom-up General-
ization Approach for Data Anonymization using Map Re-
duce for Security of Data in Public Cloud, Indian Journal of
Science and Technology. 2015 Sep; 8(22):1−9.

7. Chung WC, Chang YJ, Lee DT, Ho JM. Using Geometric
Structures to Improve the Error Correction Algorithm of
High-Throughput Sequencing Data on MapReduce Frame-
work, IEEE International Conference on Big Data. 2014, p.
784−89.

8. Kopka H, Daly PW. Velvet: Algorithms for De Novo Short
Read Assembly using De Bruijngraphs, Cold Spring Harbor
Laboratory Press, 2008.

9. Warren RL, Sutton GG, Jones SJM, Holt RA. Assembling
Millions of Short DNA Sequences using SSAKE. 2007; 4(1):
500–01.

10. Kopka H, Daly PW. Correcting Errors in Short Reads by
Multiple Alignments, Cold Spring Harbor Laboratory
Press. 2008; 27(11):1455−61.

11. Bradnam KR. Assemblathon 2: Evaluating De Novo Meth-
ods of Genome Assembly in three Vertebrate Species, Giga-
Science. 2013; 23(2):10.

12. Chen CC, Chang YJ, Chung WC, Lee DL, Ho JM. Clou-
dRS: An Error Correction Algorithm of High-Throughput
Sequencing Data Based on Scalable Framework, IEEE In-
ternational Conference on Big Data, 2013, p. 717−22.

13. Priyadharshini V, Malathi A, Analysis of Process Mining
Model for Software Reliability Dataset using HMM, Indian
Journal of Science and Technology. 2016 Jan; 9(4):1−5.

14. N50. Date accessed: 26/2008. Available at: http://www.
broad.harvard.edu/crd/wiki/index.php/N50.

	_GoBack

