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1.  Introduction

A DNA molecule has four bases, namely, adenine 
(abbreviated A), cytosine (C), guanine (G) and thymine 
(T). A complete nucleotide is formed of these four bases 
being attached to the sugar/phosphate. Now the purpose 
of De Novo Assembly (DNA) sequencing is to determine 
the order of the four aforementioned bases in a DNA 
molecule, thus, also determining the order of a nucleotide 
in an entire DNA molecule in the process. Technological 
advancements in the fields of medicine and technology 
have led to the evolution of DNA sequencing methods1, 
which has greatly accelerated biological and medical 
research and discovery. The speed of sequencing attained 
has been greatly increased with the available modern 
DNA sequencing technology2, which has allowed for 
sequencing of complete DNA sequences or genomes of 

myriad species of life, including genomes of most known 
Prokaryote and Eukaryote species.

De Novo2 is a short read assembly algorithm which 
processes individual sequence reads by merging them 
together to form long contiguous sequences or ’contigs’. 
These contigs share the same nucleotide sequence as the 
original template DNA from which the sequence reads 
were derived. Generally, it is all about assembling reads 
together so that they form a new, previously unknown 
sequence. It is different from comparative assembly in 
the part where the comparative assembly process utilizes 
existing backbone or reference sequences to compare 
against, hence, building a sequence which is no identical, 
although closely resembling the sequence which serves 
as the backbone. In terms of complexity and time 
requirements, De Novo assemblers are more memory 
intensive and generally slower by magnitude orders. The 
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need of the assembly algorithm to compare a read with 
every other read serves to contribute to this.

The uptake of DNA sequencing technologies in modern 
life sciences has been made possible by the development 
of efficient algorithms capable of efficiently processing 
short read sequences. In particular, reassembly of human 
genomes (De Novo guided2) concluded from the input of 
aforementioned short reads, has had a positive impact on 
research in medical sciences. In the absence of a reference 
genome sequence, the possible alternatives utilize De 
Novo assembly algorithms. Later on, the data structure 
designs for spaced seeds are proceed to the form which 
includes paired K-mers so as to solve the limitations of 
the De Bruijn Graph (DBG) paradigm, which exist for 
long reads.

Now, random samples of nucleotide sequences from a 
target genome of length N are also known as reads. Thus, 
a read consists of a sequence of characters from the DNA 
alphabet, which includes: A, C, G, T alongside N which 
was mentioned previously. Consider r reads with varying 
lengths, from g min to g max. We denote the length of read 
p by g*p. The combined total length of the reads is denoted 
by M = r*p=1*g*p. Substitutions, insertions and deletions 
are often the three types of errors contained within a read. 
We denote by e*g as for maximum estimated error rate 
of a read. Thus, a read of length g *p may contain at most 
e*g*i errors.

Errors in reads are detected and subsequently 
corrected by the various error correction algorithms. 
However, the lack of perceived knowledge about the 
position of a read in it’s target genome means other 
possible solutions for the error correction process in a 
necessity. Hence, all error correction methods utilize 
heuristics in order to determine the reads which align to 
same genome positions, furthermore, comparing this set 
of reads so as to correct the reads towards the appropriate 
and general consensus of the set.

Nevertheless, correcting sequencing errors in the huge 
amount of reads generated by NGS technologies is time 
consuming and memory demanding. Furthermore, a huge 
amount of intermediate data is created in the computation 
process. For example, a naive implementation of the read- 
stack algorithm of ALLPATHS-LG3 would replicate a read 
for each k-mer subsequence of the read. For a 100G NGS 
file of read length 36 and k-mer size 25, this means that 
the total size of intermediate data is 1.2 Tera-bytes, that 
is, each of the717 reads is replicated 12 times. Thus, new 
strategies to store and process large quantities of data 

efficiently are required. The MapReduce4 framework is a 
scalable distributed computing framework for biologists 
and bio-informaticians to process huge amount of genome 
sequencing data. Though MapReduce and its famous 
implementation Hadoop5 are available for researchers and 
are highly fault tolerance when processing large datasets, 
the design of MapReduce algorithms6 is not trivial.

2.  Concept Headings

2.1 Overview of CloudRS Algorithm 
Current sequencing technologies generate a large number 
of reads. These reads contain many errors which present a 
major challenge in using the data in genome sequencing 
projects as assemblers have difficulties in dealing such 
with errors. CloudRS7 is an error correcting algorithm 
which corrects errors through the ReadStack (RS) 
algorithm. Unlike previous tools for error correction, 
CloudRS implements ALLPATHS-LG on Hadoop via Map 
Reduce. It is advantages lie in the part where it reduces 
the amount of false positives by being conservative in it is 
functionalities. Reads produced by different technologies 
which are used for sequencing like Illumina Genome 
Analyzer and Roche/454 can be processed by CloudRS 
without much difficulty. The rates of errors with respect 
to reads are comparatively more reduced in the process. 
This overview is given in a flowchart model in Figure 1.

Figure 1.    ReadStack overview flowchart.
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2.2 Overview of Datasets
The four experimental datasets were downloaded from 
the archives at NCBI, which are listed in Table 1. All the 
datasets are sequenced using Illumina sequencers. We 
used datasets D1-D4 in order to compare between two 
De Novo assembly algorithms, namely, VELVET8 and 
SSAKE9 when pipe lined with a ReadStack algorithm, 
namely CloudRS. Table 2 serves as the basis for this 
comparison, which will be explained further down the 
line.

2.3 Overview of Velvet
In10, a new collective set of algorithms called Velvet has 
been developed in the field of Genomic Sequence Assembly 
to manipulate De Bruijn graphs, representations of short 
words i.e. k-mers that holds well for very short reads and 
high coverage data sets graphically. Implementing Velvet 
to short reads and paired-ends information only, one can 
generate contigs of significant length, up to 50-KB N50 
length and 3-KB N50 on simulated prokaryotic data and 
Mammalian BACs respectively. This is a new approach 
that can produce useful assemblies by leveraging very 
short reads in combination with read pairs. Velvet 
can remove errors as well as resolve a large number of 
repeats provided the presence of read pair information is 
validated. When there is a repeat longer than the k-mer 
length, with unpaired r.eads, the assembly is broken.

2.4 Overview of SSAKE
Another short read based De Novo assembly algorithm is 
SSAKE. It leverages information from short sequences by 
using it is design oriented processes to categorize novel 
sequencing targets. This is done by assembling them into 
short contigs and scaffolds. This was the earliest algorithm 
published for the same. It is well-suited for structural 
variant assembly/detection as it assembles whole reads. 
Applications of SSAKE extend beyond genome assembly 
and the technology was applied to profiling T-cell meta-
genomes, targeted DNA, HLA typing and was key to 
the discovery of Fusobacterium in colon cancer. This 
algorithm can be written in PERL and has been utilized 

on the Linux platform. This algorithm would utilize cyclic 
processes to have procedural activities through hash table 
for it is data related activities with respect to short reads. 
SSAKE is known for being lightweight, robust and easy to 
run. The Workflow overview of De Novo Assembly is in 
Figure 2.

Figure 2.    Workflow overview of DNA.

3.  Results and Discussion

In11, a whole set of comparative metrics are established 
for the characteristic comparison of Assembly algorithms 
and such other processes associated with Genome 
assembly processes. Hence, as can be seen in Table 2, we 
have taken into account few important metric properties 
with regards to our datasets, the details of which were 
established in Table 1. These metrics help us compare 
between SSAKE and Velvet assembly algorithms which 
produce different results with the same datasets, after 
they have been acted upon and error corrected by the 
ReadStack based CloudRS error correcting algorithm.

Table 1.    Datasets
Dataset NCBI 

Genome Id
Genome Genome 

Size
Read 

length
Genome 

Coverage %
D1 166 Mycobacterium tuberculosis H37Rv 4.5MB 101bp 65.6
D2 169 Helicobacter pylori 26695 1.7MB 47bp 38.9
D3 176 Streptococcus pneumoniae 2.1MB 27bp 39.6
D4 175 Streptococcus pyogenes 1.9MB 16bp 38.5
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Table 2.    Compiling assembly pipelines on D1-D4
Dataset Assembly pipeline N50 Total 

length 
D1 CloudRS+Velvet 90 70075

CloudRS+SSAKE 1339 55134
D2 CloudRS+Velvet 80 22074

CloudRS+SSAKE 1636 20796
D3 CloudRS+Velvet 70 37337

CloudRS+SSAKE 1158 25481
D4 CloudRS+Velvet 71 20102

CloudRS+SSAKE 880  23154

In Table 2, we see that SSAKE has a far more positive 
effect on similar datasets with similar error correction4 
functionalities when compared to Velvet. The size of the 
N50 property serves as key judging criteria for the same. 
The other property considered here is the total length of 
reads, which is generally considered a functionally good 
metric to work with. 

N50 is generally considered as a value of length greater 
than half of the values present in the dataset12. Also, 
contiguous sequences aim to map sequential reads, hence 
higher the value greater is it is ability to map itself and 
find similar structures. We see in Table 2, the N50 values 
for SSAKE are comparatively higher than those of Velvet 
when pipelined with CloudRS. This jump in valuation on 
the positive side, which amounts to an increase in greater 
than 50% in most of the cases, shows that SSAKE, as in 
this scenario, is a far more reliable and relatively better De 
Novo Assembly algorithm when pipelined with CloudRS. 
Also, as mentioned in4, a better algorithm is one which 
has lower length of contigs and greater N50 value. As seen 
in Table 2, this is the case in our scenario which, hence, 
proves that SSAKE is the comparatively better algorithm.

4.  Conclusion

The very aim of this endeavor was to determine objectively 
the superiority of two major algorithms when dealing 
with similar data in fields which coincidentally are also 
the same. Genome analysis is a wide sphere of influence, 
especially so today with the growing influence and need 
to process DNA reads to determine sequences and hence, 
use them for evaluating effective medical solutions to 
pressing problems. Firstly, with the advent of adequate 
research work in this field, CloudRS has been determined 
over a large set of data as the most effective ReadStack 
based error detection and correction algorithm. Hence, 
we utilized the same to receive the primary error corrected 

data from the given dataset and hence this helped us 
determine a computational comparison between Velvet 
and SSAKE far more easily than would have been possible 
if we took the data straight out of a sequencer like Illumina. 

Now, questions may be raised about the choices in 
assembly algorithms, with reasons being asked regarding 
why Velvet and SSAKE were chosen. This was done after a 
lot of deliberation and following all algorithms which have 
a presence as a implementable DNA algorithm. While the 
two keywords: De Novo and Assembly relatively shorted 
the search results down, it must be understood that the 
final comparison were conducted between SSAKE and 
Velvet because of their general prominence in the field and 
the availability of effective implementation procedures for 
both of them. 

On comparison, it was determined that even by 
narrow margins, for the given set of data, SSAKE was the 
more efficient and hence, more reliable DNA algorithm. 
However, it must be realized that this comparison stems 
from relative results and varies for datasets13. Considering 
the datasets provided to us as a general scenario, which we 
believe is the situational case here barring exceptions, the 
conclusion comes to the fact that for error corrected data 
using ReadStack algorithms, same datasets show SSAKE 
to be relatively better De Novo assembly algorithm when 
compared to Velvet, if only at a slight advantage over one 
another when compared over general genome analysis 
comparison metrics14 which are widely accepted.
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