
Abstract
Objective: Field Programmable Gate Arrays (FPGAs) are often used to accelerate hardware systems by implementing
algorithms on hardware. This paper presents the design and implementation of a fully pipelined single-precision Floating-
Point Unit (FPU) on a Spartan-6 FPGA chip. Methods: This paper presents a high-speed, modular design for improving the
performance of such applications. While the proposed design is capable of performing basic arithmetic operations and
square-root extraction, its modularity enables designers to add more functionality easily; or remove modules that they
deem unnecessary for a particular application. Findings: The investigation shows that the adder and multiplier modules
can be clocked at over 300 MHz and the top-module at over 200 MHz High operating frequencies were achieved by pre-
computing possible values in earlier pipelining stages, then correcting results in later pipelining stages. It was also found
that splitting longer operations in the critical path is a better alternative than processing the whole operation at once.
Limiting “Max_Fanout”, an attribute provided by Xilinx XST tool, proved valuable in reducing delays on overloaded nets.
Applications: This FPU would be a worthwhile addition as a floating-point extension in fixed-point processors for applica-
tions such as spectrum analyzers, 3D graphics, and audio processing units.

Design of Out-of-Order Floating-Point Unit
Sumanth Sridhar*, Sourabh Zunke, Kumar Vaibhav and M. Mohana Sundaram

Department of ECE, SRM University, Chennai-603203, Tamil Nadu, India; sumanth_sridhar@srmuniv.edu.in;
 sourabh_mahesh@srmuniv.edu.in, vaibhav_ranjitkumar@srmuniv.edu.in, mohanasundharam.m@ktr.srmuniv.ac.in

Keywords: DSP48A1Multiplier, FPU, FPGA, High-speed Pipeline, Out-of-order Processing, Non-restoring Algorithm,
Spartan-6, Single-Precision,

1.  Introduction
Floating points are away to represent real numbers into
binary format. IEEE754 standard1 specifies two types of
representation 32-bit single precision FPUs and 64-bit
double precision FPU. Figure 1 shows IEEE75432-bit
binary format.

The value of a number, N, is determined as follows:

	 N = (–1)s × (23-i × 2–i) × 2E–127� (1)

In the 32-bit single-precision floating-point format,
the exponent has a bias of +127. So, –127 will be rep-
resented as 0, and +128 will be represented as 255. The
mantissa includes another bit, an implicit 1, that should
be pre-pended during calculation. The radix point lies to
the right of this implicit bit. So, the mantissa lies in the
range of [1,2).

In this design, the FPU has been divided into four
stages of operation namely, In-order issue of inputs,
exception handling, out-of-order processing of arithmetic

operations and issue of outputs to respective output
registers. Out-of-order processing helps in preventing
wastage of cycles during pipelined execution of algo-
rithms2. In designing the multiplication module, a single
DSP multiplier DSP48A1 available with Xilinx Spartan 6
FPGA was used3. The division and square root modules
were performed using non-restoring algorithms4,5.

2.  Design and Implementation
The following designs were implemented in the FPU:

2.1  Floating-point Multiplication
Floating point multiplication is by far the simplest of the
coreoperations6. It is done by ExOR-ing the sign bits, mul-
tiplying the mantissas, and adding the exponents7. Abias
value of 127 is subtracted from exponents to get the resul-
tant exponent value. The critical path of this sub-module
lies along the multiplier used for the mantissa.

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(33), DOI: 10.17485/ijst/2016/v9i33/92999, September 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Design of Out-of-Order Floating-Point Unit

Indian Journal of Science and Technology2 Vol 9 (33) | September 2016 | www.indjst.org

The mantissa multiplication is implemented as 5-cycle
latency pipelined multiplier using a single DSP48A1
embedded multiplier unit on the Spartan-6FPGA fabric8.
Each DSP slice can perform 18 × 18 signed multiplications
and also includes pipeline registers and a 48-bit accumu-
lator. Since the multiplication of two 24-bit mantissas
generates a 48-bit result, the DSP slice can be effectively
used. The 5-cycle pipe line is implemented as an FSM as
shown in Figure 2.

The choice to use a single DSP unit presents a trade-off
between multiplier through put and the number of DSP
units used. The proposed multiplier can also be replaced
by 4DSP units to achieve maximum through put as shown
on pg. 28 of the DSP48A1 Slice Use Guide3.

As shown in Figure 3, a modified form of this model is
used to implement the pipeline. AU and BU are the higher
7 bits of the mantissas. A Land BL are the lower 17 bits of

the mantissas. EN is the enable signal for the accumulator.
Sel 1 and Sel 2 are select signals for the multiplexers. All
three are SET or RESET by the FSM.

2.2  Floating-point Adder/Subtractor
Floating point addition is done by performing the follow-
ing operations9:

	 � (2)

	 � (3)

	 � (4)

After these operations are performed, three situations
may arise:

•	 The result is already normalized and, thus, no action
is required.

•	 When the effective operation (EOP) is an addition, an
over flow of the result may occur. If the result overflows,
the mantissa is right-shifted by 1 and the exponent is
decremented by 1.

•	 When the effective operation is subtraction, there
might be a variable amount of leading zeros (lz) in
the result. In this case, the mantissa is left-shifted and
the exponent is subtracted by the number of leading
zeroes present.

Radix-point alignment of the mantissas before addi-
tion/subtraction lies along the critical path of the adder.
The delay was reduced by splitting the required shifting
operation in to two halves and distributing it between two
pipeline stages as shown in Figure 4. The ‘leading one’
detection operation was also divided into two pipeline
stages to reduce delay along the critical path. It is imple-
mented using a 24-bit priority look-ahead encoder.

2.3  Floating-point Division
In this paper, we have implemented non-restoring division
algorithm5. The steps involved areas follows-

•	 For given two input operands, compute the sign of the
division by XOR operation of the sign bits

•	 Compute exponent by subtracting the exponents of the
input operands and adding a bias of 127.

•	 The mantissa division is performed using a pipelined
non-restoring division algorithm.

•	 The result is normalized and rounded.
•	 Perform post output exception handling.

Figure 1.  IEEE-754 single-precision binary format.

Figure 2.  State Diagram of Mantissa Multiplication.

Figure 3.  Mantissa Multiplication using DSP48A1

Sumanth Sridhar, Sourabh Zunke, Kumar Vaibhav and M. Mohana Sundaram

Indian Journal of Science and Technology 3Vol 9 (33) | September 2016 | www.indjst.org

The non-restoring division algorithm gives a linear
convergence. The final result is obtained after 29 clock
cycles. The minimum clock period of the pipeline was
improved by preserving both the value of the divisors
mantissa as well as its 2’s complement in dedicated reg-
isters for the ADD/SUB block. A similar technique was
also applied in the square-root sub-module. The complete
division algorithm that has been implemented is shown in
Figure 5.

Mantissa division was initially attempted using multi-
plicative algorithms based on Taylor-series expansion10,11,
but they turned out to be too in accurateue to an accu-
mulation of truncation errors during partial product
calculation. Truncation was necessary to limit the use
of DSP multipliers in the implementation but the result-
ing mantissa has an error in the order of 10-5. This

magnitude of error is unacceptable, especially for large
exponent values.

2.4  Floating-point Square Root
Calculating square root in FPU is far more complex than
addition and multiplication operation. We have imple-
mented a model of non-restoring square root calculation
algorithm4. The calculation of exponent in square root is
done by following steps:

•	 Subtract a bias of +127. For an even exponent, right-
shift the exponent by 1-bit. For an odd exponent,
subtract 1 from the exponent and then right-shift. Also,
left-shift the mantissa by 1-bit for an odd exponent.

•	 In the resultant exponent, add a bias of 127 for positive
input exponent, whereas for negative input exponents
subtract the resultant exponent from 126.

Figure 4.  Adder/Subtractor Pipeline
Figure 5.  Mantissa Division Pipeline.

Design of Out-of-Order Floating-Point Unit

Indian Journal of Science and Technology4 Vol 9 (33) | September 2016 | www.indjst.org

The non-restoring square root algorithm uses two
input bits for generating one output bit, so the mantissa is
made 48-bit wide by appending 24 zeros. The input man-
tissa is further extended to 54-bits to produce a 27-bit
result. The last 3 bits of the result are used for rounding
the result to 24-bits. This has been depicted in Figure 6.

2.5  Rounding
The IEEE-754 standard1 defines four types of rounding:

•	 Round towards nearest even.
•	 Round towards positive infinity.
•	 Rounding towards negative infinity.
•	 Rounding towards zero.

All four round-modes are supported by this FPU. The
FPU architecture includes a 2-bit input port used to spec-
ify the rounding-mode for input set. If the round-mode is
fixed for any application, this port can be tied to a constant
value prior to synthesis to save on resources and enhance
logic optimisation.

Of the four supported modes, round towards nearest
even is recommended. It has the advantage of being an
unbiased-rounding modes in ceith and less rounding of
positive and negative numbers symmetrically.

2.6  Exception Handling
Exceptions can be categorized into two types:

•	 Initialisation-time exceptions
•	 Run-time exceptions

There are five types of exceptions that need to be
handled:

•	 Invalid operations
•	 Overflow
•	 Underflow
•	 Inexact

Invalid operation detection such as the divide-by-zero
exception can be handled at the initialisation-time, and
hence, the exceptions are flagged immediately and an
appropriate output is generated. However, overflow, under-
flow and in exact are run time exceptions and are handled
in the respective modules. Operations on infinity, zero
and NaN can cause exceptions depending on the opera-
tion. Correct outputs are generated when one or both of
the input operands are Infinity, zero or NaN. Exception
flags are raised, and aqNaN is generated at the output only
for the following operations:

•	 +∞ –∞ (OR) –∞ +∞
•	 ∞ × 0
•	 Division by zero
•	 (±∞) ÷ (±∞)
•	 Square root of negative numbers

2.7  FPU Architecture
The architecture implemented in the design is as shown
in Figure 7. The computing process is distributed in four
phases:

•	 Inputs are checked for initialisation-time exceptions.
•	 Incase an invalid operation is detected, qNaN is pro-

duced at E_ Z along with respective exception flags and
op_ID.

•	 If no exception is detected, inputs are processed by the
individual sub-module depending on the op-code.

•	 32-bit result is produced by the sub-module along with
the op_ID and any run-time exception flags that were
raised.Figure 6.  Mantissa Square-Root Pipeline.

Sumanth Sridhar, Sourabh Zunke, Kumar Vaibhav and M. Mohana Sundaram

Indian Journal of Science and Technology 5Vol 9 (33) | September 2016 | www.indjst.org

Figure 7.  FPU Architecture Overview

3.  Results
Functional (behavioral) simulation was performed using
Model Sim software as shown in Figures 8–11. Each
sub-module was thoroughly test educing comprehensive
test-benches. Test vectors used for testing and verification
were randomly generated using MATLAB software. Each
test-bench was fed with the correct (expected) hex-value
of the output. Each output was then checked against the
expected result and, should they match, the respective
wire of the correct signal in the test-bench is SET.

Place-And-Route(PAR) was done, and the generated
PAR reports highlight the behaviour of the design and
consumption of resources. The PAR reports were studied
and optimizations were performed by applying relevant
Xilinx XST attributes11 to nets on the critical path. Results
from the PAR report and the Post-PAR static timing report
are given in Table 1.

Figure 8.  FADD Functional Simulation

Figure 9.  FMUL Functional Simulation

Figure 11.  FSQRT Functional Simulation

Figure 10.  FDIV Functional Simulation

Table 1.  Timing and resource utilization summary

Module
Min

Period
(ns)

Max clock
Frequency

(Mhz)

Slice
Register

Used

Slice
LUT’s
Used

Latency
Cycles

Throughput
(outputs per

cycle)

FADD 3.115 321 6% 9% 9 1

FMUL 3.203 312 4% 6% 17 0.2

FDIV 3.404 293 18% 23% 29 1

FSQRT 3.613 276 13% 26% 29 1

TOP
MODULE 4.738 211 52% 74% (varies) (varies)

4.  Conclusions and Future Work
The primary objective was to develop an FPU that could
be used as a sub-module for other FPGA based projects,
while trying to achieve maximum speed. The design has
been completed; however, there is still scope for devel-
opment in the future. Further improvements in the
implementation of mantissa calculation for FDIV and
FSQRT sub-modules can be made13,14. Also, a different
strategy for place and route of the top module can be
attempted to get better timin results. More developments
that can be added are listed below:

•	 Adding a floating point to integer and integer to float-
ing point converter.

•	 Inclusion of floating-point comparison operations.
•	 Support for signaling NaN(sNaN).
•	 Combining the FDIV and FSQRT in to one sub-mod-

ule due to their functional similarities.
•	 Adding support for subnormal numbers.
•	 Including an output decoder.

Design of Out-of-Order Floating-Point Unit

Indian Journal of Science and Technology6 Vol 9 (33) | September 2016 | www.indjst.org

  8.	 XilinxSpartan-6FamilyOverview [Internet]. [Cited 2016
Feb]. Available from: www.xilinx.com.

  9.	 Gollamudi PS, Kamaraju M. Design of high performance
IEEE- 754 single precision (32 bit) floating point adder using
VHDL. International Journal of Engineering Research and
Technology. 2013 Jul; 2(7).

10.	 Liddicoat AA, Flynn MJ. High-performance floating-point
divide. Proceedings of Euromicro Symposiumon Digital
System Design, Warsaw; 2001 Sep. p.354–61.

11.	 Kwon TJ, Sondeen J, Draper J. Floating-point division and
square root implementation using a Taylor-series expan-
sion algorithm. 15th IEEE International Conference on
Electronics, Circuits and Systems, ICECS; 2008. p.702–5.

12.	 Xilinx XST User Guide for Virtex-6, Spartan-6, and 7 Series
Devices [Internet]. [Cited 2016 Feb]. Available from: www.
xilinx.com.s

13.	 Hassan SK, Monica PR. Floating point high performance
low area SFU. Indian Journal of Science and Technology.
2015 Aug; 8(20):1–7.DOI: 10.17485/ijst/2015/v8i20/78367.

14.	 Ragunath G, Sakthivel R. Low - power and area - efficient
square - root carry select adders using Modified XOR
Gate. Indian Journal of Science and Technology. 2016 Feb;
9(5):1–8.DOI: 10.17485/ijst/2016/v9i5/87181.

5.  References
1.	 IEEE Standard for Floating-Point arithmetic. IEEE Xplore

Digital Library; 2008 Aug 29. p.1–70.
2.	 Patil V, Raveendran A, Sobha PM, Selvakumar AD, Vivian

D. Out of order floating point coprocessor for RISCVISA.
19th International Symposium on VLSI Design and
Test(VDAT), Ahmedabad: India; 2015. p .1–7.

3.	 Xilinx Spartan-6DSP48A1SliceUserGuide [Internet]. [Cited
2016 Feb]. Available from: www.xilinx.com.

4.	 Li Y, Chu W. Anewnon-restoring square root algorith-
mandits VLSI implementations. International Conferenc
eonComputerDesign(ICCD96), Austin, Texas: USA; 1996
Oct.p.538–544.

5.	 Koren I. Computer arithmetic algorithms, 2nd edn. A K
Peters Ltd.; 2001.

6.	 Nesam JJJ, Sathasivam S. An efficient single precision float-
ing point multiplier architecture based on classical recoding
algorithm. Indian Journal of Science and Technolog. 2016
Feb; 9(5):1–7.DOI: 10.17485/ijst/2016/v9i5/87159.

7.	 Shengalet PA, Dahake V, Mahendra M. Single precision
floating point ALU. International Research Journal of
Engineering and Technology. 2015 May; 2(2):1–4.

