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1.  Introduction

There is a wide range of applications of CMOS spiral 
inductors in high speed Analog Signal Processing and data 
communications. The limitations of these spiral inductors 
include a low-quality factor, a small and non-tunable 
inductance, a low self-resonant frequency and the need 
for a large silicon area1. The passive spiral inductors also 
cannot scale with the process technology. However, the 
active inductors have a large tunable quality factor, large 
tunable inductance and high self-resonant frequency. 
The cost of production of active inductors are also too 
less and they are fully compatible with digital CMOS 
technologies.  Hence, realization of active inductor has 
become a popular research topic in research community 
to aid design engineer. 

Several circuit topologies of various active elements 
such as operational amplifiers2–4, current feedback 
operational amplifier (CFOA)5,6, voltage differencing 

buffered amplifiers (VDBA)7, current conveyor (CCI)8, 
current differencing transconductance amplifier 
(CDTA)9 were proposed in the literature for realizing 
active inductor circuits. But these circuits suffer from one 
or more problems use of external passive resistors, need 
of some floating passive components, cannot be tuned 
electronically, etc.  In this paper, a new active element 
namely voltage differencing voltage transconductance 
amplifier (VDVTA) is used as a building block for 
realizing active grounded inductor10–12. VDVTA consists 
of a current source controlled by the different of two input 
voltages and a multiple output amplifier which provides 
electronic tunability by varying its transconductance gain. 

VLSI circuits often operate at elevated temperature 
due to heat generation. Moreover, the temperature of 
VLSI chip does not remain same throughout entire chip. 
Hot-spots are found to exist due to variation in activity. 
The circuit block which is more active gets heated and 
its temperature is raised generating hot-spot. Due to 
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generation of hot-spot and variation of temperature, the 
circuit behavior varies. In an integrated circuit, billions 
of chips exist. If the performance of chip varies, then the 
entire integrated circuit performs poorly.  This paper 
investigates the impact of temperature variation on circuit 
response when VDVTA is used as grounded inductor for 
realizing bandpass filter.

2.  �CMOS Realization of Voltage 
Differencing Voltage 
Transconductance Amplifier

A symbolic representation of VDVTA is shown in Figure 
1. VDVTA contains p, n, v as high impedance input 
terminals and z, x+, x− as high impedance output terminals. 
VDVTA is characterized by the following matrix:

Figure 1.   Voltage differencing voltage transconductance 
amplifier (VDVTA) block diagram.
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The port equations obtained from the aforementioned 
matrix are 
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where, gm1 and gm2 are the two Arbel-Goldminz 
transconductances (AGTs) given in13.

Figure 2 represents a CMOS realization of VDVTA 
with the terminal ‘v’ grounded13.  AGT-I and AGT-
II denote positive and negative transconductances 
respectively.

Figure 2.   CMOS realization of a voltage differencing 
voltage transconductance amplifier (VDVTA).

3.  �Application of VDVTA as 
Grounded Inductor

VDVTA based grounded inductor circuit is shown in 
Figure 3. It consists of one VDVTA and a capacitor 
(C1). Based on equations obtained from (2-4) and 
approximating we get the Input Impedance (Zin) of the 
circuit as:

Figure 3.   Voltage differencing voltage transconductance 
amplifier (VDVTA) based grounded inductor.
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The equivalent input impedance of the grounded 
inductor is

.sLin eqZ =
					   

(6)

Comparing (5) with (6), the equivalent inductance is 
found to be
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The inductor obtained from Figure 3 is electronically 
tunable with both gm1 and gm2.

4.  �Application of VDVTA as 
Bandpass Filter

The working of the proposed inductor was verified by 
employing it in a bandpass filter. The bandpass filter 
circuit realized with VDVTA is shown in Figure 4. 

Let the equivalent inductance of the VDVTA 
configuration is given by ‘L’. The expression of resonant 
frequency of the bandpass filter circuit is given by
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Figure 4.   Bandpass filter circuit realized with voltage 
differencing voltage transconductance amplifier (VDVTA).

4.  Results and Discussion

This section presents the AC analysis of bandpass filter 
which is designed using grounded inductor. The grounded 
inductor in turn is realized employing voltage differencing 
voltage transconductance amplifier (VDVTA). The 
analysis is carried out at different temperatures.

5.1 �Variation of Input Impedance of Voltage 
Differencing Voltage Transconductance 
Amplifier based Active Grounded 
Inductor with Frequency

All the simulations in this work were performed using 
45-nm industrial CMOS process technology with dual 
supply of ±0.9 V. Virtuoso Analog Design Environment of 
Cadence was used as a simulation tool. Figure 5 shows the 
input impedance versus frequency plot of the proposed 
active inductor circuit using VDVTA configuration. The 
simulated active inductance value was found to be 8.5µH. 
As expected the input impedance of the inductor varies 
linearly with frequency.

Figure 5.   Simulation results showing input impedance 
variation with frequency.

5.2 �Impact of Temperature Variation on 
Resonant Frequency of Bandpass Filter

The carrier mobility µn, and the threshold voltage VT 
decrease with temperature. Temperature dependence of 
VT is expressed as 
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Where T0 is the reference temperature and αVT
 is a 

negative constant. 
Temperature dependence of mobility is given by 

( ) ( ) .0
0

TT Tn n T

am
m m

æ ö÷ç ÷= ç ÷ç ÷çè ø
				  

(11)

It is observed that the effect of decrease in mobility with 
temperature dominates and thus the transconductance of 
a MOSFET decreases with increase in temperature14.

To verify the temperature dependence of resonant 
frequency of the bandpass filter circuit, extensive 
simulations on Virtuoso Analog Design Environment of 
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Cadence using 45-nm Technology Model are performed. 
The response of the bandpass filter is analyzed at three 
different temperatures to observe the departure of 
resonant frequency from the theoretical values. They 
are 27°C (room temperature), 40°C, 80°C and 120°C 
shown in Figure 6. The simulation results are tabulated in 
Table 1. It is observed that the resonant frequency shifts 
towards lower frequencies as the temperature increases. 
This is attributed to the fact that the transconductance of 
a MOSFET decreases with increase in temperature due to 
the dominant effect of mobility.

Figure 6.   Variation of resonant frequency of Bandpass 
Filter with temperature. The graph shows decrease of 
resonant frequency with increase in temperature. It shows 
fr = 17.37 MHz @ 27°C, fr = 16.5 MHz @ 40°C, fr = 13.99 
MHz @ 80°C and fr = 12.023 MHz @ 120°C.

Table 1.    Resonant frequency values at various 
temperatures
Temperature(in °C) 27 40 80 120
Resonant Frequency(in MHz) 17.37 16.5 13.99 12.023

6.  Conclusion

An electronically-controllable active grounded 
inductor circuit was designed based on the voltage 
differencing voltage transconductance amplifier 
(VDVTA) configuration using Virtuoso Analog Design 
Environment of Cadence. Temperature variability 
analysis was performed to observe the temperature 
dependence of resonant frequency of the bandpass filter 
designed using VDVTA based active grounded inductor. 
The resonant frequency of the active grounded inductor 
can be electronically tuned. At higher frequencies, the 
active inductor is subjected to various parasitic effects. 

The active inductor circuit finds its application in high-
speed analog signal processing and data communication 
systems. 
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