
Abstract
Objectives: To optimize row-level data security for Transactional Business Intelligence (TBI) SQL queries to reduce
complexity and enable the back-end database to create better optimized execution plans that perform and scale well.
Methods/Statistical Analysis: Benchmark experiments were conducted using Oracle RDBMS 11gR2 using representative
SQL queries from Oracle’s Fusion CRM TBI Applications for five different users with multiple, varying roles and data access
permissions. All four measures of SQL performance viz. SQL response time (RT), Input-Output (IO) Buffer Gets, Hard-Parse-
Time and Shared Memory utilization were recorded with and without our proposed optimizations. The four performance
measures were then compared to record actual improvements. Findings: The benchmark experiments established very
promising results. We recorded repeatable, significant gains in not only the four measures of individual SQL performance
but also at the database resources level. The proposed architecture enables the creation of a hand-shake mechanism be-
tween the application and security frameworks to optimize query and application performance. This is done by creating
name-value pairs of roles and filter criteria and passing these from the middleware/application to the security framework
at run time. The result is a pruned version of the final physical SQL, retaining only relevant RDSPs while removing ones not
logically needed. Such optimized row-level data security makes TBI SQL queries less complex and the back-end database
is able to create better optimized execution plans that perform and scale well. Query Response Time (RT) improvements
ranging from 5% to 745 times, Hard-Parse Time improvements from 1% to 208 times, Logical I/O or Buffer Gets’ improve-
ment ranging from 43% to 454 times and SQL-Shared-Memory reduction by up to 52%. Application/Improvements: Our
proposed architecture is directly applicable to improve performance of all TBI applications that use row-level data security,
especially in the Software-as-a-Service (SaaS) and Cloud Models.

Performance Optimization of Row-Level-Data-
Security for Transactional Business Intelligence

Queries in Cloud and SaaS Business Applications
Arjun K. Sirohi* and Vidushi Sharma

School of ICT, Gautam Buddha University, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida - 201312,
Uttar Pradesh, India; asirohi@yahoo.com, vidushi@gbu.ac.in

Keywords: Access Control and Database Security, Cloud and SaaS Applications, Row-Level Data Security, RBAC, SQL Query

Performance, Transactional Business Intelligence

1.  Introduction
The recent rise in the use of Software as a Service (SaaS)
applications and the shift towards Cloud computing has
raised concerns about data security for both the providers
and consumers of cloud business applications. The origins
of Role Based Access Control (RBAC) can be traced to the
paper presented by Ferraiolo and Kuhn at the 15th National
Computer Security Conference1. Kuhn further elaborated
on some aspects of RBAC like mutual exclusion of roles2.

Later, the proposal by 3was adopted by the “The American
National Standards Institute, International Committee for
Information Technology Standards” (ANSI/INCITS) as a
standard4. Since then, many researchers and practitioners
have worked on the many different aspects of RBAC, which
reduces the cost of administering access control policies.
Chandramouli and Sandhu presented RBAC for com-
mercial database management systems5. Chandramouli
further described a business process driven framework
for RBAC model6. In their book titled “RBAC”, Ferraiolo,

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/100393, October 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Performance Optimization of Row-Level-Data-Security for Transactional Business Intelligence Queries in Cloud and SaaS
Business Applications

Indian Journal of Science and Technology2 Vol 9 (37) | October 2016 | www.indjst.org

Kuhn and Chandramouli have described RBAC and many
of its implementation details, including integrating RBAC
with Enterprise IT Infrastructures7. However, there is only
a passing reference to the performance impacts of RBAC
in the book, even in the second updated edition8. The
RBAC standard has since been adopted and implemented
by many manufacturers of widely used applications like
those from Oracle, Microsoft, IBM, SAP and Sales force.
Similarly, the evolution of XACML, the eXtensible Access
Control Markup Language, as a standard has led to its
adoption across industries as it also supports RBAC.
XACML-V3.0, the OASIS Standard for eXtensible Access
Control Markup Language (XACML) Version 3.0 has
been published and revised a few times9. While there
has been much research on and adoption of such secu-
rity implementation standards and their implementation’s
security benefits, there has not been much research on the
impacts of such data security models on the performance
and scalability of enterprise business applications in gen-
eral and specifically on the performance and scalability of
transactional business intelligence applications which are
resource-intensive even without the effects of row-level
data security.

While there are many different platform and applica-
tion layers involved in data security, this paper examines
the existing RBAC approach of applying RDSPs based
on the user’s job roles, group memberships being part of
territory and management hierarchies. In RBAC model,
users can be assigned to multiple roles and the data access
for such users is the union of all permissions for all the
roles. The problems related to access control constraints
and user-role assignment was the subject of research
published by10. The impact of such data security implemen-
tations, where users are assigned to multiple roles, on the
performance of SQL queries in the underlying relational
database is the focus of this paper. While RBAC-based
data security may not have huge performance impacts
when users have only one defined role, performance
regressions start to arise when users are assigned multiple
roles and they have access to row-level data via multiple
access paths. In such cases, the resulting RDSP sub-que-
ries are the union of all applicable RDSP sub-queries for a
given user. For example, a sales manager running a report
against a Customer Relationship Management (CRM)
application module such as Opportunity Management,
could have been granted multiple roles and implicit roles
through group memberships and role/territory hierar-
chies. Based on these multiple roles, the sales manager’s

access to data is controlled by a union of all RDSPs11.
Modern enterprise business applications have a very
complex data model with the data typically stored in
many different database tables. Further, TBI applications
involve multiple and complex technologies and are com-
posed of many layers of modelling and abstraction. This
results in great complexity in SQL queries’ generated at
run time. A simple logical request from the application
user often results in complex SQL queries. At the back
end, the database needs to process these complex queries
quickly and send back results to the user in sub-second
response time based on Service level Agreements (SLAs)
between providers and consumers of such applications.
Specifically, SQL queries being generated by TBI applica-
tions’ query-engines are extremely complex because they
involve large scale aggregations, analytics functions and
visualizations. Appending of RDSPs to such complex SQL
queries often results in poor performance, causing poor
user experience and adoption. Kohler and Schaad studied
this aspect of user adoption and very aptly observed that
“improving the performance of access control decisions
will improve the overall performance experienced by the
end user significantly”12.

In this paper, we propose an architecture that lim-
its the performance impacts of applying multiple RDSP
sub-queries to the data access SQL queries while still
enforcing the required row-level data security. The paper
has been divided into five sections. Section 1 is this intro-
duction. Section 2 discusses the current implementations
of RBAC and how seeded RDSP sub-queries are used.
Section 3 details the impact of applying RDSP on the
performance of TBI SQL queries. We highlight the most
important limitations in existing architectures. Section 4
describes the contributions of this paper and discusses
our proposed architecture to create a framework that acts
as a broker between the security framework and appli-
cation framework resulting in the trimming down of the
superset of RDSP sub-queries to only the ones deemed
necessary by the application framework before SQL que-
ries are dispatched to the back-end database. The paper
then presents results from benchmark experiments con-
ducted to support the proposed architecture in Section
5. The paper concludes with ideas for taking action for
implementation, including an actual implementation by
Oracle Business Intelligence Enterprise Edition (OBI EE)
platform based on the contributions of this paper. The
main contributions of this work can be summarized as
follows.

Arjun K. Sirohi and Vidushi Sharma

Indian Journal of Science and Technology 3Vol 9 (37) | October 2016 | www.indjst.org

To the best of our knowledge, the proposed architecture •	
is the first specifically designed for Enterprise TBI
applications to reduce the complexity of RBAC’s
RDSPs to improve performance of queries.
Instead of the standard RBAC implementation which •	
append a union of row level data security predicates
in the form of SQL sub-queries, we propose optimiz-
ing the row level data security predicates’ sub-queries
before the final query is sent to the backend database
for execution.
Our proposed architecture of creating a framework •	
for name-value pairs between the enterprise duty roles
and the application filter criteria in order to use these
pairings at run time to trim the union-all of RDSPs is
unique and new.

2. � Current State of Row-Level
Data Security Framework and
Motivation

Despite RBAC being adopted as a standard, it suffers from
many shortcomings, including performance. Coyne and
Weil bring out many limitations while comparing RBAC
with ABAC13. Similarly, in their critique of the ANSI stan-
dard, charged that though it had been adopted by many
vendors, including vendors for database management
systems, the RBAC “standard is hindered by limitations,
errors, and design flaws”14.The impacts of an RBAC imple-
mentation on performance were recently analysed by C
and He who presented their findings in IT Professional
journal15. A user is often assigned to multiple roles, and in
such cases, the security framework ensures that the user’s
access is controlled by the union of all granted roles16.
The actual implementation is often achieved through the
use of RDSP SQL sub-queries which are pre-created and
stored in either in a central grants table in the database
or in the new XACML format in the policy store. The
security framework ensures that at run time, the required
data security sets are put together based on the row-level
access grants for a defined role or multiple roles as the
case may be. When a user accesses the application dash-
boards/reports which require SQL queries to be sent to the
back-end relational database, all of the user’s applicable
RDSP sub-queries are compiled together and appended
to the main SQL by the security framework. As part of
business flows, a user typically defines additional search
criteria which are also appended to the main SQL by the

application framework. The final SQL thus generated at
run time takes the form where the RDSP sub-query could
be a simple IN or EXISTS predicate based on a single table
reference or a complex set of nested sub-queries based on
multiple tables and views.

In modern cloud and SaaS applications, users expect
sub-second response times while data security checks
add a big performance overhead. This aspect was studied
by Kohler and Fies and to overcome some of the perfor-
mance challenges of RBAC, they suggested a framework
that would use pre-computing and caching access deci-
sions in order to meet the performance requirements17.
Though caching can result in improved performance for
the user experience, we think that this solution does not
address the fundamental underlying problem.

3. � Problem Formulation, Material
and Methods

When we benchmarked hundreds of TBI queries for
Oracle’s Fusion CRM Applications18, we found that in a
majority of the cases the reason for poor performance was
the inability of relational database’s Cost-Based Optimizer
(CBO) to find an optimal execution plan. Our analysis
identified the union-all of RDSP sub-queries, appended
to data access queries at run time, as the top contributor
to the CBO’s poor decisions and were the most signifi-
cant performance inhibitor for the SQL queries. Yaish
and Goyal studied the effects of having multiple tenants
in a database and each tenant having multiple users. They
suggested development of “a multi-tenant access control
model based on a multi-tenant database schema” to meet
the new challenges19. In20 lamented the slow adoption of
Cloud-computing due to security concerns and proposed
a comprehensive security framework for cloud computing
environments. In21 proposed a new architecture for fine-
grained access control for cloud computing. However,
what we found during our study of existing literature of
cutting-edge access control technologies from the leading
researchers, practitioners and vendors is that there was
no existing or proposed architecture that would resolve
the performance challenges of row-level data security for
enterprise TBI applications.

We found that the problem was compounded by two
facts. One, TBI queries, as all other modern business
applications’ queries, are generated at run-time based on
the data model and abstraction layers as well as the design

Performance Optimization of Row-Level-Data-Security for Transactional Business Intelligence Queries in Cloud and SaaS
Business Applications

Indian Journal of Science and Technology4 Vol 9 (37) | October 2016 | www.indjst.org

of dashboards/reports. Invariably, the resulting physical
SQL has high complexity with many joins and aggregate
functions. This is before RDSP sub-queries are appended
based on the user’s roles, group memberships and
responsibilities. The RDSP sub-queries themselves access
multiple tables and views including role and territory
hierarchies making them fairly complex by themselves.
Thus, with RDSP sub-queries appended to them, the
resultant physical SQL queries become very large and
complex. The complexity and size of TBI SQL queries
along with RDSP sub-queries often cause the optimizer
to choose inefficient execution plans and thus negatively
impact their performance. We also found that the imple-
mentation of RBAC model in the application’s security
framework led to applying all of a user’s applicable RDSPs
to all TBI queries, regardless of what dashboard, report
or chart was the target of data being fetched by such que-
ries. We concluded that the apparent disconnect between
the application and security frameworks was resulting in
extremely expensive and wasteful database operations
and needed a resolution. This led us to our formulation of
the proposed architecture.

4. � Discussion and Proposed
Architecture

Given the many factors affecting the performance of TBI
SQLs that get appended with multi-role RBAC-based
RDSP sub-queries, we propose creation of a hand-shake
framework that acts as a broker between the TBI appli-
cation framework and the security framework. The goal
of this hand-shake is to trim down the superset of RDSP
sub-queries to only the ones deemed necessary by the
application framework before the final SQL queries are
dispatched to the backend database for execution. The
proposed solution encompasses the following:

4.1  At the Security Framework Level
First, for a defined set of Job, Duty and Data roles in an
enterprise, create unique identifiers for each role. For
example, Opportunity Territory Resource Duty could be
identified by “FNDDS__MOO_VIEW_OPPORTUNITY_
BY_TERRITORY_DATA__MOO_OPTY”. Each such
identified role corresponds to a RDSP sub-query
which can continue to be stored in an existing policy
store, either in the relational database or in XACML.
Second, create the ability for the security framework

to consume name-value pairs when received from the
TBI platform/application in order to set the query con-
text and prune the user’s applicable RDSPs down to
only the ones specified in the name-value pairs received
from the TBI platform/application framework. For
example, OPTY_DS_CONTEXT=’FNDDS__MOO_
VIEW_OPPORTUNITY_BY_TERRITORY_DATA__
MOO_OPTY’

4.2 � At the TBI Platform and Application
Framework Level

First, create a special class of standardized security
variables to be used for different application entities.
For example, Opportunity, Lead etc. in a CRM applica-
tion could use variables like OPTY_DS_CONTEXT
or LEAD_DS_CONTEXT. Second, develop the abil-
ity to pass name-value pairs of such security variables
to the security framework. For example, a variable
named OPTY_DS_CONTEXT could be set with the
value ‘MOO_VIEW_MY_OPPORTUNITY_DATA’ and
passed on as XML input to the security framework as in
this example: <Parameter><Name><![CDATA[OPTY_
D S _ C O N T E X T]] > < /
Name><Value><![CDATA[FNDDS__MOO_VIEW_
OPPORTUNITY_BY_TERRITORY_DATA__MOO_
OPTY]]></Value></Parameter>.

4.3 � At the User Interface (UI) Layer of the
TBI Application

Create user-friendly and easily understood names to be
displayed as report prompts. These can be presented to
the users in any UI-friendly method like a drop-down
pick-list or a multiple selection list or a radio-button
choice. The presented list should be restricted and based
on the roles available and defined for the user logged in to
the application. This can be achieved by caching a user’s
applicable roles when the user connects to the applica-
tion. Such caching would prevent any round trips to the
policy store as the user navigates to different parts of the
application. Also, we propose to provide the means for
this name-list to be customized by both the end-user as
well as by the application administrator, based on user
preferences and/or roles. First, the new class of variables
need to be added for which values can be set via dashboard
prompts. For example, for the custom value MOO_
VIEW_MY_OPPORTUNITY_DATA, we would like to
have display name “My Opportunities”, such that when

Arjun K. Sirohi and Vidushi Sharma

Indian Journal of Science and Technology 5Vol 9 (37) | October 2016 | www.indjst.org

“My Opportunities” is chosen by the user at the dashboard
prompt, the variable OPTY_DS_CONTEXT would be set
with the value ‘MOO_VIEW_MY_OPPORTUNITY_
DATA’. The names-values pairs of this new class of variables
are then passed on by the middleware server to the security
framework, providing the context to selectively apply data
security criteria. Similarly, query context can also be set at
analysis/report level, instead of dashboard prompts. This
variable name-value pair would convey the data security
context and can take the form OPTY_DS_CONTEXT
= ‘FNDDS__MOO_VIEW_OPPORTUNITY_BY_
SUBORD_SALES_TEAM_DATA__MOO_OPTY’.
When the security framework receives this name-value
pair, it prunes down the user’s applicable RDSPs to keep
only the specified RDSP, thus generating a much simpler,
smaller in size physical SQL which almost invariably
results in much better performance as compared to the
bloated physical SQL in existing architecture. A represen-
tative use case from a CRM Application is shown below.
In the example, a sales manager navigates to a report titled
“View Opportunity by Subordinate Sales Team Data”. The
leaner, more performant physical SQL generated using
our proposed architecture would only keep the one RDSP
sub-query based on the name-value pair passed from the
TBI application to the security framework. As a result, the
final SQL generated using our proposed architecture is
much smaller in size and much less complex than the SQL
generated in existing architectures. We share the results
of one such industry implementation and its benchmark
results in the next section.

5. � Benchmark Results from
Implementation of Proposed
Architecture

Our proposed architecture has been recently implemented
in Oracle®’s Fusion Transactional Business Intelligence
Applications22 that are built using the Oracle® Application
Development Framework (ADF)23 and Oracle® Business
Intelligence Enterprise Edition (OBI EE) OTBI platform24.
For the benchmarking experiments to establish the effects
on performance of our proposed architecture, we used the
Lead Management and Opportunity Management mod-
ules of Oracle’s Fusion CRM OTBI application against
an Oracle® 11gR2 database. We used five different users
with multiple, varying roles and data access permissions.
The benchmark established very promising results. We

Table 1.  SQL Performance Gains for Oracle’s CRM
OTBI Top Open Deals Report

CRM OTBI
Queries for
Top Open

Deals Report

Performance
Improvement
with proposed

solution
BufferGets

Performance
Improvement
with proposed
solution Cold

RT(Includes Hard
Parse Time)

Performance
Improvement with
proposed solution

Warm RT

Use Case 1 2X 8X 15%

Use Case 2 43% 6X 6%

Use Case 3 26X 5.6X 6.9X

Use Case 4 5X 39% 5%

Use Case 5 1.8X 21% 12%

Table 2.  SQL Performance Gains for Oracle’s CRM
OTBI Actuals Vs Quota Report

CRM OTBI
Queries for
Actuals Vs

Quota Report

Performance
Improvement
with proposed

solution
BufferGets

Performance
Improvement with
proposed solution
Cold RT(Includes
Hard Parse Time)

Performance
Improvement with
proposed solution

Warm RT

Use Case 1 2.6X 6X 1.2X

Use Case 2 6X 12.8X 1.5X

Use Case 3 454X 745X 138X

Use Case 4 122X 246X 13X

Use Case 5 17X 2X 2.6X

recorded repeatable, significant gains in not only individ-
ual SQL performance but also at the database resources
level. Tables 1and 2 show the significant performance
gains in SQLs’ response time (RT), buffer gets/logical IO,
hard parse time and shared memory utilization. Table 1
highlights the SQL Performance Gains for Oracle’s CRM
OTBI Top Open Deals Report while Table 2 depicts the
SQL Performance Gains for Oracle’s CRM OTBI Actuals
Vs Quota Report.

6.  Conclusion
In this paper, we recollected that RBAC based row-level
data security has been established as an industry standard
practice for many types of applications including enterprise
transactional business intelligence applications25. While
RBAC and XACML implementation details have been very
well researched and documented, the impacts of RBAC
based row-level data security on the performance and
scalability of TBI queries has not been the focus of much

Performance Optimization of Row-Level-Data-Security for Transactional Business Intelligence Queries in Cloud and SaaS
Business Applications

Indian Journal of Science and Technology6 Vol 9 (37) | October 2016 | www.indjst.org

research26. Though Ferraiolo, Kuhn and Chandramouli
claimed in their book that “Traditionally, commercially
available products lag behind the research community. It is
always easier to create a new security model or write a paper
than to implement and market a new feature.” We show
in this paper that this need not be the case. We have pro-
posed a novel architecture solution to create a framework
that acts as a broker between the security framework and
application framework to focus on the trimming down of
the superset of RDSP sub-queries to only the ones deemed
necessary by the application framework before sending the
SQL queries to the backend database.

The benchmark testing of many uses cases in Oracle®
Fusion CRM Transactional Business Intelligence
Applications against an 11gR2 Oracle® database have
shown significant performance gains by adopting the
context-sensitive data security proposed in this paper.
There are summarized below.

Query Response Time (RT) improvements ranging •	
from 5% to 745 times for the queries benchmarked,
and in some cases where the queries would hang ear-
lier, by many orders of magnitude.
Database hard parse time improvements from 1% to •	
208 times.
Logical I/O or Buffer Gets’ improvement ranging from •	
43% to 454 times.
SQL-shared-memory reduction by up to 52%.•	

The proposed improvement over existing RBAC
architectures has direct applicability to many SaaS and
Cloud applications and can lead to the improvement in
their adoption rates. We feel that our work is only a hum-
ble beginning and we expect further research to be done
on the performance impacts of RBAC solutions in enter-
prise applications as more and more vendors as well as
consumers move towards the Cloud and SaaS model. The
aim should be to minimize the impacts of RBAC on the
performance of enterprise business applications so that
adoption becomes easy.

7.  References
1.	 Ferraiolo DF, Kuhn DR. Role based Access Control’ 15th

National Computer Security Conf, USA. 1992. p. 554–63.
2.	 Kuhn DR. Mutual Exclusion of roles as a means of imple-

menting separation of duty in role-based access control
systems’. Second ACM Workshop on Role-Based Access
Control, Maryland. 1997; 1–8.

  3.	 Sandhu R, Ferraiolo D, Kuhn R. American National
Standard for Information Technology – Role based Access
Control. ANSI INCITS. 2004; 359:1–49.

  4.	 American National Standards Institute Standards for RBAC.
Available from: http://www.incits.org/INCITS_Published_
Standards.pdf, Date accessed: 4/03/ 2015.

  5.	 Chandramouli R, Sandhu R. Role based access control fea-
tures in commercial database management systems’. 21st
National Information Systems Security Conference, Crystal
City, Virginia. 1998. p. 1–9.

  6.	 Chandramouli R. Business Process Driven Framework
for defining an Access Control Service based on Roles
and Rules’. 23rd National Information Systems Security
Conference, Gaithersburg, 2000. p. 1–16.

  7.	 Ferraiolo DF, Kuhn DR, Chandramouli R. Role Based
Access Control (book), Artech House, USA, 2007.

  8.	 Ferraiolo DF, Kuhn DR, Chandramouli R. Role Based
Access Control (book), Artech House, 2nd edition, 2007.

  9.	 XACML OASIS Standard, XACML-V3.0, 2013. Available
from: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-
core-spec-os-en.pdf, Date accessed: 24/ 03/ 2015.

10.	 Sun Y, Wang Q, Li N, Bertino E, Atallah MJ. On the
Complexity of Authorization in RBAC under Qualification
and Security Constraints. IEEE Transactions on Dependable
and Secure Computing. 2011; 8(6):883–97.

11.	 Resource document, ‘Oracle® Fusion Applications Security
Guide 11g Release 1 (11.1.4)’. Available from: http://docs.
oracle.com/cd/E28271_01/fusionapps.1111/e16689/
F323388AN16D1F.htm Date accessed: 10/ 07/ 2015.

12.	 Kohler M, Schaad A. ProActive Access Control for Business
Process-Driven Environments. Computer Security
Applications Conference, Annual, 2008. p. 153–62.

13.	 Coyne E, Weil TR. ABAC and RBAC: Scalable, Flexible,
and Auditable Access Management, IT Professional. 2013;
15(3):14–6.

14.	 Li N, Byun J, Bertino E. A Critique of the ANSI Standard
on Role-Based Access Control. IEEE Security and Privacy.
2007; 5(6):41–9.

15.	 Chaudhary N, He L. Analyzing the performance impact of
authorization constraints and optimizing the authorization
methods for workflows, HIPC. 20th Annual International
Conference on High Performance Computing, U K. 2013.
p. 1–9.

16.	 Resource document, ‘Oracle® Fusion Applications Security
Guide 11g Release 1 (11.1.4). Available from: http://docs.
oracle.com/cd/E28271_01/fusionapps.1111/e16689/
F323388AN16D1F.htm, Date accessed: 10 / 07/2015.

17.	 Kohler M, Fies R. ProActive Caching - A Framework for
Performance Optimized Access Control Evaluations’, IEEE
International Workshop on Policies for Distributed Systems
and Networks, IEEE International Symposium on Policies for
Distributed Systems and Networks, Germany. 2009. p. 92–4.

Arjun K. Sirohi and Vidushi Sharma

Indian Journal of Science and Technology 7Vol 9 (37) | October 2016 | www.indjst.org

18.	 Resource document, Oracle Business Intelligence
OTBI Architecture. Available from: http://docs.oracle.
com/cd/E51367_01/fa_lcm_gs/OASAD/otbi_trouble.
htm#OASAD6512 Date accessed: 12/06/2015.

19.	 Yaish H, Goyal M. Multi-tenant Database Access Control.
IEEE 16th International Conference on Computational
Science and Engineering. 2013. p. 870–7.

20.	 Takabi H, Joshi JBD, Ahn G. Secure Cloud: Towards a
Comprehensive Security Framework for Cloud Computing
Environments. IEEE 38th International Computer Software
and Applications Conference Workshops, USA. 2010.
p. 393–8.

21.	 Msahli M, Chen X, Serhrouchni A. Towards a Fine-
Grained Access Control for Cloud, ICEBE. 2014, IEEE
11th International Conference on e-Business Engineering
(ICEBE). 2014. p. 286–91.

22.	 Resource document, Oracle® Fusion Transactional Business
Intelligence. Available from: https://docs.oracle.com/cloud/
farel8/common/OATBI.pdf, Date accessed: 4/ 06/ 2015.

23.	 Resource document, Oracle Application Development
Framework. Available from: http://www.oracle.com/tech-
network/developer-tools/adf/overview/index.html, Date
accessed:12/06/2015.

24.	 Resource document, Oracle Business Intelligence Enterprise
Edition product details. Available from: http://www.oracle.
com/us/solutions/ent-performance-bi/enterprise-edition-
066546.html

25.	 Gandhi A. Literature Review on Impact of CRM, SRM,
Information Sharing and Goal Congruence on Retail-
SCM. Indian Journal of Science and Technology. 2016 Jun;
9(22):1–9.

26.	 Leena NF, Jaykumar V, Issac SS. Assessing CRM Practices
in Hotel Industry: A Look at the Progress and Prospects.
Indian Journal of Science and Technology. 2015 Mar;
8(S6):1–9.

