
Abstract
Objectives: An Electric Vehicle (EV) charging station supplies electrical energy for the charging of Electric Vehicles. As the 
plug-in hybrid electric vehicle is expanding, there is a growing need for widely distributed publicly accessible charging 
stations. This paper defines Optimization method for equalize/match charging schedule of Electric vehicle with dynamic 
wind power availability. Methods/Statistical Analysis: Optimal charging cost and average running time are the major 
considerable constraints at equalization of dynamic wind power with EV load. Depending upon the remaining parking 
time, the EVs are aggregated to reduce the size of the problem. The proposed model innovatively incorporates the degree 
of equalization between EV charging load and Wind power into the objective function. Estimation of EV parking time af-
fects the charging schedule, so it is a considerable factor for optimization. Findings: Particle Swarm Optimization (PSO) 
technique can optimize/reduce the scheduling problems and it can equalize dynamic behavior of wind power generation 
with respect to EV loads. Applications/Improvements: Computational efficiency and the average running time show the 
validation of the proposed technique.
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1. Introduction
Now a day’s world power utilization increases rapidly, to 
meet this growing power utilization the consumption of 
fossil fuel is increases. To preserve fossil fuels for future 
generations renewable power generation is the best alter-
native. Due to this the research was increasing in this area 
to maximize power generation from available sources. 
Among all renewable power generations wind power gen-
eration plays an important role due to its cleanness and 
high power generation capability1. Due to the dynamic 
behavior of wind the power generation is not in steady 
case, to make wind generation satisfactory different types 
of generators and turbine control methods are utilizing. 
And another way is load dispatching and load scheduling 
based on availability of generation. For this the analysis of 
wind power generation and availability of Battery Energy 

Storage System2 (BESS), the generated power is fed to 
BESS than load is applied on it. Here the rating of bat-
tery required to build BESS system is high due to this it is 
not economical. Another way is making utility as a smart 
grid; in this the Management of loads3 based on supply 
attributes is done.

Among all types of controllable loads EV is one of the 
most considerable loads due to its greater variableness 
in terms of charging. The proposed method can defines 
reduces the deviation in between load and wind genera-
tion in the sense of charging cost minimization. From 
past few years research have been done to reduce the cost 
of EV charging4. But till now some problems are facing in 
coordination of renewable energy sources with EV load. 
The problems can be raised due to dynamic behavior of 
wind at its source side and variable loading of EV, i.e., EV 
loading profile changes due to lack of information about 
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vehicles5 arriving, departure, parking time and no. of 
vehicles that are coming so on. To minimize uncertainties 
in EV scheduling, PSO can used. The PSO is a global opti-
mization approach6 for the management of energy which 
leads to the minimization of energy cost. To get a result 
for the direct application of the method in real-time con-
trol PSO is used. The main contributions are: 

To inventively join the coordinating degree amongst •	
demand and supply into the objective function to get 
adaptable adjusting. 
The PSO methodology is proposed to upgrade the •	
normal running time for every decision phase of the 
method and expand the limit of EV.

2. System Design

2.1 Basic System Analysis
Basically source consist of conventional and non-conven-
tional energy sources, these are in grid connected mode. 
Due to this let us consider source consist wind and non-
renewable power sources, system schedule controller 
(PSO controller), time aggregator and Electrical vehicles 
these can be shown in Figure 17.

The time aggregator is said to be the virtual agent for 
the EVs parked at that instant. The EVs with a similar 
remaining parking time are grouped into a similar set. As 
a result of the completely diversified driving nature of the 
EVs, the quantity of the aggregators is dependent on time. 
We consider the unconstrained matching problem on the 
basis of phases which are divided into 24. Every phase is 
1 hour. Similarly this method can be applied for all type 

of phases. To overcome this problem PSO technique s 
used. PSO is an effective tool for solving unconstrained 
optimization problem. The details of this method and 
the respective elements of the technique PSO, e.g., fitness 
function, modeling of constraints and objective function 
are detailed in this section.

2.2 PSO based Schedule Control
The main intention is to present a PSO global optimiza-
tion approach for management of energy which leads 
to the minimization of energy cost and to obtain mini-
mum average running time in real-time control. Since 
the PSO optimization variables are parameters8,9 of the 
rule-based method. This scheme can be used online also 
as the scheme no longer relies on a priori driving cycles 
after the offline optimization process is completed. The 
best ideal control execution which is used to conduct the 
PSO algorithm10 will be achieved by the scheme of Energy 
Management.

3. Methodology Implementation

3.1 Fitness Function
In this theory, the performance of each particle is esti-
mated by using the fitness function which is considered 
to be the objective function, through which a PSO can 
be assigned to the control variables of EV. However, as 
PSO is directly applicable only to unconstrained optimi-
zation problem, the driving performance requirements11 
are considered as constant.

3.2 Modelling of Constraints
Here, the system state is stated as = , where 
t = 1,2…T denotes phases with T=24, i=1,2…N indicates 
the EV number,  denotes the remaining parking time, 

 is the required energy to be charged for the ith number 
of EV at the initial phase t,  is the wind power gener-
ated at phase t is calculated using the Equation (10). 
and  are stated as follows:

  (1)

Where  if the ith EV is parking at phase t, 
 otherwise Figure 1. Basic structure of the system.
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3.3 Charging Energy Constraints:

  (2)

Where Equation (2) indicates the required energy to be 
charged for every EV must not be more than the capac-
ity of battery Bcap (60KWh). Equation (2) indicates the 
required energy to be charged must not be more than the 
maximum energy at the remaining parking times. P indi-
cates the constant charging power (3 KW)

3.4 EV Charging Load Constraint

  (3)

Where indicates the entire EV charging power at 
phase t, it is scheduled to meet the uncertain wind energy. 

 is the binary variable that indicates whether the EV is 
at the charging point or not.

3.5 Thermal Power Supply Constraint

  (4)

Where  indicates the power generated by the ther-
mal station, it is used when the wind energy is insufficient 
for the charging of EV. is the maximum power gen-
erated by the thermal power plant.

3.6 Objective Function
EV charging load is to be scheduled to equalize the avail-
ability of wind energy, a factor is introduced to provide 
the equalization between supply and demand 

  (5)

The above factor is included into the objective func-
tion to get the optimal equalization between wind power 
and charging load of EV12. 

Optimization objective considered is defined as fol-
lows:

  (6)

Where the weighting factor is at all phases t. The impact 
of the high wind power is reduced with small . The cost 

of the charging is reduced with large  when the wind 
power is less.

3.7 PSO Algorithm
Particle Swarm Optimization (PSO) was developed by 
James Kennedy and Russell Eberhart. In the PSO algorithm, 
position and speed of every particle are the two variables. 
Here in this case, the particles i.e., Electric Vehicles will 
move to the next position from the current position with 
respect to their current speed. The speed of the particle is 
decided with respect to the positions of the particle swarm 
i.e., best position of this particle and the best position of the 
entire possible particles of the system. Here, every particle 
speed is expressed as V = [v1, v2, v3, v4] T. At every itera-
tion time, w is linearly changed from wmax (here, is 1.2) to 
wmin (here, is 0.1) in keeping with the constant factor k and 
repetitive method of every particle’s position and speed are 
operated by the below Equations. After 100 iterations as 
mentioned, the particles are converged at the best point.

  (7)

  (8)

Step 1: Initial conditions. 
The particle swarm scale is initialized to a variable 

M = 100 and the maximum number of iteration times is 
initialized to N = 100. At the given boundary intervals, 
the positions of particles are selected accordingly and the 
speed is initialized to zero. 

Step 2: Fitness function calculation. 
Calculate the fitness function for every particle based 

on the rule-based method and then note the personal best 
time of every particle, it is denoted as P1

0….…PM
0 , the 

best among all the possible positions are selected as the 
best position of the entire particles G0. 
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Step 3: Assign the feasible points. 
Using the above equations, the position of every parti-

cle X1
k, …,XM

 k and their velocity V1
 k …VM

 k are calculated 
from the second iteration. And at every iteration time, the 
fitness function is calculated and the best position of the 
particle P1

 k …PM
k and the best position of the entire par-

ticles of the system  are noted according to:

  (9)

  (10)

Step 4: Final improvement. 
When the iteration time reaches the maximum num-

ber of iteration times N, the PSO algorithm is stopped. 

3.8 CRN and EV Aggregation
To reduce the average running time, the Common 
Random Number can be used for every activity. The CRN 
is utilized to think about the execution difference of vari-
ous designs13. The fundamental thought is to produce a 
typical arrangement of test paths for all the activity assess-
ment. 

At every phase t, watching the present state St, the roll-
out technique would assess all the possible activities to get 
the ideal activity. At the point of N stopped EVs holding 
up to be charged, there will be 2N activities to be assessed. 
The activity space 2N will increment exponentially with 
the size of the Electric Vehicle number. The large activity 
space will make it unmanageable to execute PSO tech-
nique to the stochastic coordinating issue. To defeat these 
challenges, EV aggregation14 is utilized. Here, we group 
the EVs by the parking time remained as in Figure 1. On 
grouping the EVs the activity space gets reduced. The 
choice of charging EV is ensured at the point when the 
aggregator gets the required power to be charged. 

4. Results Analysis
In this section, the wind power generation data and the 
electric vehicle parking schedules are considered for fur-
ther analysis. To verify the effectiveness of the computation 
of the PSO algorithm a numerical case is considered.

4.1 Statistical Data Analysis
The wind power generation purely depends on wind 
speed availability15. Figure 2 shows the histogram and 
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Figure 2. Histogram and fitting distribution of wind 
speed.

fi tting distribution of the wind speed. Speed of the wind16 
is measured on hourly basis and it is used as an input to 
PSO. The probability distribution of the wind speed is set 
using Weibull distribution17. Here, the wind speed data 
is considered from the Wind Technology Centre from 
2016 January to March on hourly basis. Figure 3 Shows 
Histogram and fitting distribution of trip driving distance 
is used to analyze EV parking time and running status. 
i.e., arriving time and departure time of the vehicle details 
respectively.

Every parking event is noted by its arriving time and 
duration of parking. This parking duration depends on 
the arriving time of the parking vehicle. It is assumed that 
the duration of parking for every parking vehicle follows 
the Gaussian distribution. The probability (PtPK) for the 
EV to park at time tand the mean (Micro(t)) and vari-
ance (Sigma(t)) value of Gaussian distribution analyzed 
are shown in Table 1.

4.2 Numerical Case
In order to show the performance of the applied strate-
gies, we perform an experiment where the number of EVs 
is increased in ten replications from 100 to 1000. To solve 
the problem using PSO technique we select sample paths 
as 100 denoted as Ma. So that the randomness of the per-
formance comparison is reduced.

EV charging policies 
The base method used as:

  (11)

: By using CRN and EV aggregation the method 
is enhanced and budget limits are not considered. Base 
method is compared with the enhanced method 
. All the EVs are considered where the average and stan-
dard deviation values are calculated5. Mavg indicates the 
matching factor and F represents the total charging cost 
of the EV. The matching factors of the both policies are 
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Figure 3. Histogram and fitting distribution of driving 
distance.

Table 1. Parameter setting of the parking event
Time(t) Pt PK Micro(t)Sigma(t) Time(t) Pt PK Micro(t)Sigma(t)

1 0.0077 10.4602 3.3162 13 0.0059 5.2301 3.0217

2 0.0075 10.0244 3.2849 14 0.0055 4.7943 2.9565

3 0.0076 9.5885 3.2539 15 0.0049 4.3584 2.8292

4 0.0076 9.1527 3.2415 16 0.0048 3.9226 2.9193

5 0.0076 8.7169 3.2242 17 0.0047 3.4867 2.6687

6 0.0076 8.281 3.1867 18 0.0045 3.0509 2.8199

7 0.0075 7.8452 3.0768 19 0.0043 2.6151 2.8178

8 0.0073 7.4093 3.1161 20 0.0036 2.1792 2.1391

9 0.007 6.9735 3.005 21 0.0077 1.7434 2.4435

10 0.0067 6.5376 2.9676 22 0.0075 1.3075 2.6609

11 0.0064 6.1018 2.6024 23 0.0076 0.8717 2.3739

12 0.0061 5.666 2.9275 24 0.0076 0.4358 2.000

almost same but the only difference is the running time. 
The average running time for the enhanced method is 
better when compared to the basic method. Between two 
decision phases the average running time interval must 
not exceed the limits. Table 2 shows the performance 
of the basic method and enhanced method with λ = 0. 
The matching factor of enhanced method is better com-
pared to basic method with increased values of standard 
deviation in all the cases. Table 3 shows the charging cost 
values with λ=1. From the both tables we understand that 
the charging of EV schedule matches with wind power 
generation. The λ is selected as 0 to reduce the high wind 
power impact, λ as 1 to reduce the cost of charging.

Figure 4 demonstrates the wind and EV energy to be 
charged for various charging methods on considering one 
sample path of equal amount of wind supply power. On 
comparing base method and the enhanced method the 
following points are observed.

Equalizing factor between demand and supply is •	
improved as the EV charging power follows the wind 
power18.

Table 2. Performance of the method λ=0 

Case N
Mavg1 
(mean)

Mavg1 
(std)

F1 
(mean)

F1 
(std)

Mavg2 
(mean)

Mavg2 
(std)

F2 
(mean)

F2 
(std)

100 0.5 0.5 321 085.7 0.5 0.6 162 285.5

200 0.5 0.6 831.6 083.7 0.5 0.6 694.4 279.1

300 0.5 0.6 1342.1 80.1 0.6 0.5 1226.9 266.9

400 0.5 0.6 1852.7 120.8 0.8 0.8 1759.3 402.6

500 0.5 0.7 2363.2 149.1 1 1 2291.8 497.1

600 0.6 0.7 2873.8 112.7 0.8 0.8 2824.2 375.7

700 0.6 0.8 3384.3 84.7 0.5 0.6 3356.7 282.2

800 0.8 0.8 3894.9 97.8 0.6 0.7 3889.1 326

900 0.8 0.8 4405.4 109.9 0.5 0.7 4421.6 366.2

1000 1 1 4916 122.9 0.5 0.8 4954 409.5

Table 3. Performance of the method λ=1

Case N
Mavg1 
(mean)

Mavg1 
(std)

F1 
(mean)

F1 
(std)

Mavg2 
(mean)

Mavg2 
(std)

F2 
(mean)

F2 
(std)

100 0.3 0.3 270 2.9 0.5 0.4 103 599.6

200 0.3 0.3 776.1 2.8 0.6 0.4 509.1 586

300 0.3 0.3 1282.2 2.7 0.6 0.4 915.2 560.5

400 0.4 0.4 1783.3 4 0.9 0.5 1321.3 845.4

500 0.5 0.5 2294.4 5 1.1 0.7 1727.4 1044

600 0.4 0.4 2800.6 3.8 0.9 0.5 2133.6 788.9

700 0.3 0.3 3306.7 2.8 0.6 0.4 2539.7 592.7

800 0.3 0.3 3812.8 3.3 0.7 0.4 2945.8 684.5

900 0.3 0.4 4318.9 3.7 0.5 0.5 3351.9 769

1000 0.3 0.4 4825 4.1 0.6 0.5 3758 860
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Figure 4. Wind and EV charging power using various 
charging methods. (a) Basic method . (b) Enhanced 
method .

Wind power usage is incremented as the overall •	
generated wind energy per day is 80KWh (approx.), 
where the wind per usage is 68KWh (approx.) for 
enhanced method and 45KWh (approx.) for basic 
method.
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The fluctuating effect on grid•	 19 is reduced as the 
 equalizing factor between EV charging power and 
wind power is improved.

During the unavailability of wind energy supply, 
 thermal power supply is utilized.

Time interval is one of essential limit in decision 
making. Figure 5 and 6 shows the required time for every 
decision phase in base and enhanced method, when mak-
ing decision at a phase. It is seen that the running time 
increments directly with the EV number. The customary 
strategy may come up short in regards to running time 
in large scale issues due to the condemnation of dimen-
sionality. Using PSO technique reduces the running time 
so it is better than the conventional method. The other 

Figure 5. Required time for making decision at every 
phase using base method .
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Figure 6. Required time for every decision phase of basic 
method and PSO technique.
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Figure 7. Charging capacity maximization using PSO.
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factor considered in this paper is charging capacity of 
EV. Figure 7 depicts the fact that the PSO technique can 
maximize the charging capacity compared to other con-
ventional methods. For instance, by totaling EVs (three 
aggregators), the quantity of activities lessens from 2100 
to 7776 in the instance of N = 100. In this manner, our 
strategy spares huge average running time and enhances 
the efficiency.

5. Conclusion
It defines equalization/matching of EV load with stochas-
tic wind power variations with minimized charging cost 
function. PSO is implementable directly only to uncon-
strained optimization problem. The dynamic behavior of 
wind source and EV load aggregation are taken to optimize 
scheduling. Based on the EV, Source status and cost of 
charging taking as a constraint, the iterative process is done 
to fetch optimal charging schedule (with in the required 
limit). The optimal charge scheduling can reduce cost of 
charging. Optimal charging schedule is based on size of EV 
load and reduced wind variations to grid. So, PSO tech-
nique is introduced to optimize load scheduling problems.
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