
Indian Journal of Science and Technology, Vol 9(37), DOI: 10.17485/ijst/2016/v9i37/102108, September 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

* Author for correspondence

1. Introduction

The data that being generated in the present Era at such a
fast rate is voluminous and complex. In addition to this, a
system that processes schema-less data is a necessity. This
is due to the very fact that present data is not limited to
textual extensions. This wide variety ranging from music
and video files to the data extracted to social media has
put forward the need to have some new technologies that
can support them easily. The RDBMS was never designed
to handle such type of data. The case is not of its inability
to evolve but something more fundamental. The way it
sacrifices on availability of data over consistency and
partial tolerance forms a very big problem currently1.
They support more of batch processing and transactional
services that have a particular schema, while the data
that needs to be indexed may be unstructured or semi-
structured. Hence there is a requirement of big data
technologies that support schema-less content that may
or may not along RDBMS2. Elastic search is one such
NoSQL Big Data technology that has a promising future
as a search-server to handle such large and complex
data3. It is built to handle huge amounts of data volume
with very high availability and to distribute itself across
many machines to be fault-tolerant and scalable, all the

while maintaining a simple but powerful API that allows
applications from any language or framework access
to the database. In addition, it provides its own Query
Language called Query DSL that works over JavaScript
Object Notations (JSON). This paper shows how Elastic
search queries on datasets of research papers in portable
document format (.pdf) and provide the output relevant
to the query. Users can filter their search on the basis of
title, author, published year and keywords. Search server
will also provide item based recommendation of papers.
The search-server has been integrated to web-framework
Django for the front-end functioning of the project. The
use of package django-haystack enables the use of elastic
search with django in addition to handling fundamental
functioning of elastic search.

2. Elastic Search

In4 was initially written in Java to support free and open
source information retrieval software library. But as
it turns out, it was quite difficult to use since it’s just a
library and requires Java to work with it. Hence in early
2000s, a developer names Shay Banon started to work
on an abstraction layer over Lucene that made working
with search applications for Java programmers easier and

Abstract
Objectives: Implementation of Elastic search server to create a search engine that helps in searching, retrieving and
downloading research papers stored in Django framework database and indexed by Elastic search. Analysis: Elastic
Search, a search server based on Lucene can be used to search all types of documents with the help of its scalability and
near-real time search. Findings: A web application which queries and searches for relevant research papers, allows users
to customize their search and suggest list of research papers related to the initial query. It displays papers’ referenced
authors. Item-based recommendations help users find more similar papers. Applications: Fast, Incisive Search against
large volumes of data.

Keywords: Django, Elastic Search, Haystack, Lucene, REST

Research Document Search using Elastic Search
R. Vidhya1* and G. Vadivu2

1Department of Computer Science Engineering, SRM University, Kattankulathur - 603203,
Tamil Nadu, India; vidhya.r@ktr.srmuniv.ac.in

2Department of Information Technology, SRM University, Kattankulathur - 603203,
Tamil Nadu, India; vadivu.g@ktr.srmuniv.ac.in

Vol 9 (37) | September 2016 | www.indjst.org Indian Journal of Science and Technology2

Research Document Search using Elastic Search

named it Compass5. After some years, Compass libraries
were rewritten to provide real-time, distributed and
high-performance search engine. The standalone server
was released with name of Elastic search. In6 Elastic
search is multitenant and carries out its operations using
RE presentational State Transfer (REST) API. It uses
basic HTTP interface to work on the lightweight JSON
(javascript object notation) -queries. It’s easy to start
using documents as JSON documents that are far less
verbose than XML and just appropriate for transmitting
data sets. The REST API makes it easy to use different
languages like Java, Ruby, Perl, Python, and more. It is
much more advanced than traditional DBMS as it can
support storage of large amount of data and provides
near-real time responses to queries. The largest unit
in Elastic search index and smallest unit is document.
Elastic search is analogous to RDBMS Table 1. Document
is indexed (stored in database) and the respective fields
are mapped. The document stored is called index. Each
elastic search index consists of fixed number of Lucene
indices which are called shards. Elastic search manages
distribution during runtime. When a new document is
stored and indexed, Elastic search server defines the shard
responsible for that document. This automatic sharding
makes the distributive nature of Elastic search evident
and balances load of shards too7. Elastic search server
is a REST full server. Mapping in elastic search server
defines how each document fields are stored, indexed and
analyzed. Mapping can be implicit, already decided by the
server or explicit i.e. customized which gives the chance
to create complex indexes and analyze them accordingly.
Explicit mapping allows filtered indexing that saves disk
space and also optimal search. The search in elastic search
is near-real time8. There is a need to refresh the server to
get the result as of newly added indexes. The workflow of
ES Figure1 can be explained in brief as follows9:
•	 Documents are uploaded or stored; they may be of

any type and any size and in any number.
•	 Then the JSON Builder converts these documents

from their respective type to JSON documents.
•	 Now, it’s the duty of the Tokenizer, to break down the

data into individual words.
•	 These words are indexed and mapping is also done

so as to group the similar type of words into one
mapping type. This ensures the faster retrieval of text
as per the query fired by the user.

•	 The parser will parse the query and accordingly

search and retrieve the searched text from the indexed
documents.

						
The main advantages of elastic search are its horizontal

(sharding) and vertical (powerful servers) scalability
and its efficient way of handling agile data. But it lags
behind in security, transactions and durability. Since it is
a relatively new search tool (released in 2010), there’s a
need to develop mature client libraries.

Figure 1. Elastic search Workflow.

Table 1. Analogy between Elastic search
and RDBMS
Elastic Search Element RDBMS Elements
Index Database
Mapping Schema
Document-Type Table
Document Row

3. Dataset

The dataset to carry out search and retrieval of research
papers has been obtained from various sources. Some of
them being from ACM digital library and Google Scholar.
The data has been uploaded to the database of the Elastic
search server with collaboration of db.sqlite3 which is
primary storage for django modules. Haystack, which is

R. Vidhya and G. Vadivu

Vol 9 (37) | September 2016 | www.indjst.org Indian Journal of Science and Technology 3

the communication link between Elastic search server
and Django server, indexes the required fields of the
papers being uploaded, example, title, author, published
year. These are the fields which help the search API in
the mapping of the results. Elastic search version 2.2 and
Django Framework version 1.8.8 have been used.

3. Implementation

The application has the following modules:
•	 Site administration
•	 Search admin
•	 Search page
•	 Search Results
•	 Display Research Paper

Research Document Search application is built on
Django Framework that connects the database, core code,
static files and templates in one project. It is a high level
Python web-framework based on MVC (model-views-
controller)10 architectural pattern. The Django Models
is the data access layer, it contains all the information
about the data being accessed and validates and what
is the relationship between other data. Django Views
form the logic that accesses the model and calls for
appropriate template (html file). It is the bridge between
models and templates. The controllers are used to set URL
configuration that navigates to the view with appropriate
user input. This configuration11 is fundamental for all the
modules.

3.1 Site Administration
The site administration provides with super user privilege.
Django models are used to create fields corresponding
to the document (some of them later indexed) which
are title, author, keywords, published year, source and
location where the media (research papers) are stored.
The storage location of research paper is configured in
the Django settings. These fields are added using admin
module and stored in database. For these fields to appear
as changeable by administrator, they need to be registered
in “admin” module. Configuration of admin module
depends on django-admin-tools and its template loaders.

3.2 Search Admin
After the fields are specified and sample dataset is uploaded

using admin module, the indexing of the database is
performed which will enable us to retrieve search results.
This indexing is achieved by Search Indexes configured
using haystack12. Search Index indexes the fields which
are specified. These indexes and specified in text files in
templates. Elastic search (that communicates with it using
its server on HTTP interface) indexes the fields, making
them searchable with appropriate logic in views.

3.3 Search Page
This is the home page of the application by default. It calls
for querying the paper on the basis of the title, author,
and year of publication or keywords. The logic of search is
presented in Django views. The search is bifurcated into
two; first being normal search and second is advanced
search. Normal search takes the search text and matches it
against the indexed title of the pages, if any result is found
it returns the result. Advanced search searches for author,
year if publication and keyword. Keyword search involves
fully fledged document search. The views forward the
logic to a template. The views class Search Query Set class
of haystack that performs text matching with the context
as present in the database. The papers that matched the
query are stored in context dictionary with the number
of results.

3.4 Search Results
Search page navigates to this page after the query
matching. It displays the number of results that are
relevant to the query and link to each one of them. The
abstract is also displayed along with title, author and
published in year. But the results will only be displayed if
Elastic search server is on. Otherwise connection will be
refused and number of results will be returned a zero. The
code to display the results and its format is embedded in
the respective template itself.

3.5 Display Research Paper
The search result page provides link with displaying papers
in portable document format embedded on a web browser.
The core logic of the template is specified in Django views.
It specifies the location from where the document needs
to be retrieved and obtains it primary key. They give it
a unique identification. The paper is fetched from given
location and so are the related information indexed along
with it. List of authors involved and references cited are

Vol 9 (37) | September 2016 | www.indjst.org Indian Journal of Science and Technology4

Research Document Search using Elastic Search

listed along with it. The application also supports item-
based recommendation. It searches for papers, again
using Elastic search and Haystack, that are most similar
or been visited recently. The interface provides direct link
to the papers.

4. Future Enhancement

The document fields have been manually entered to
simplify the UI. Since, Elastic search is still a new
technology, it’s not considered appropriate to use it as
primary data source. It’s more effective if kept closer to
cache. But still, Elastic search can be used to parse the
documents to obtain title, authors and keywords on its
own so that there’s no need to manually upload all the
details. This can be done by converting .pdf to .txt and
using a elastic search mapping plug-in Apache TIKA13
that parses text or .doc files and automatically indexes the
details. Search engine optimization can be implemented
using Fuzzy Classification and Prediction14. The
application can be configured with web-crawlers that will
also fetch search results from other websites in order to
widen its range and credibility15.

5. Conclusion

Elastic search is quite accommodating in its usage and
configuration. It is a good big data technology for search
operations and data analytics. The performance of Elastic
search depends upon the type of query, the size of result
set and page size. When the result count or page size
increases, the search time increases. Presently Elastic
search has been adopted my major technological hubs like
Facebook, Github, Amadeus to overcome shortcomings
of old database technologies. It is believed, in some years,
Elastic search may soon develop to be a primary big data
technology.

6. References
1.	 Quora, Can we store big data in RDBMS. Available from:

https://www.quora.com/Can-we-store-big-data-in-
RDBMS-Why-and-why-not. Date Accessed: 1/08/2014.

2.	 NOSQL VS RDBMS - WHY THERE IS ROOM FOR
BOTH. Available from: http://aisel.aisnet.org/sais2013/27/.
Date Accessed: 18/05/2013.

3.	 Abubakar Y, Adeyi TGS, Auta IG. Performance Evaluation
of NoSQL Systems Using YCSB in a resource Austere En-
vironment. International Journal of Applied Information
Systems (IJAIS). 2014 Sep; 7(8):23–7.

4.	 Sematext Blog “Elastic Search: Distributed, Lucene-based
Search Engine. Available from: https://sematext.com/
blog/2010/05/03/elastic-search-distributed-lucene/. Date
Accessed: 3/05/2010.

5.	 The Future of Compass & Elastic search- Shay Banon.
Available from: http://thedudeabides.com/articles/the_fu-
ture_of_compass. Date Accessed: 07/07/2010.

6.	 Kononenko O, Baysal O, Holmes R, Godfrey MW, David.
Mining modern repositories with Elastic search. Proceed-
ings of the 11th Working Conference on Mining Software
Repositorie. 2014. p. 328–31.

7.	 Elastic search refresh interval vs indexing performance.
Available from: https://sematext.com/training/elastic-
search/. Date Accessed: 8/07/2013.

8.	 You know for Search. Available from: https://www.elas-
tic.co/blog/you-know-for-search-inc. Date Accessed:
13/07/2016

9.	 Sai Divya M, Goyal SK. ElasticSearch: An advanced and
quick search technique to handle voluminous data. COM-
PUSOFT. An International Journal of Advanced Computer
Technology. 2013 Jun; 2(6):171–5.

10.	 Holovaty A, Kaplan-Moss J. The Definitive Guide to Djan-
go: Web Development Done Right. Apress, (2nd edn). 2009
Jul.

11.	 Django Documentation, Available from: http://stackover-
flow.com/questions/29957604/django-1-8-static-files-
doesnt-work. Date Accessed: 30/04/2015.

12.	 Django-Haystack Documentation. Available from: https://
pypi.python.org/pypi/django-haystack/2.4.0. Date Ac-
cessed: 09/06/2015.

13.	 Understanding Information Retrieval by Using Apache
Lucene and Tika Part-1. Available from: https://dzone.
com/articles/understanding-information. Date Accessed:
22/08/2014.

14.	 Senthil Kumar NK, Kishore Kumar K, Rajkumar N, Amsa-
valli K. Search Engine Optimization by Fuzzy Classification
and Prediction. Indian Journal of Science and Technology.
2016 Jan; 9(2):1–5.

15.	 Kausar A, Dhaka VS, Singh SK. Design of Web Crawler for
the Client – Server Technology. Indian Journal of Science
and Technology. 2015 Dec; 8(36):1–7.

