
Abstract
Background/Objectives: Reconfigurable architecture has ability to dynamically allocate the hardware resources during
runtime. It can be effectively used in computationally intensive application like media processing. As the motion estimation
in video coding consumes large amount of computational time and resources, it can be mapped into reconfigurable
architecture to effectively manage the power utilization by dynamic reconfiguration. Methods/Statistical Analysis: A
systolic array based reconfigurable architecture for motion estimation which can be configured based on the properties
of input video is proposed. A dynamically reconfigurable hardware is designed which can be worked on different search
regions based on the level of motion in frames of input video. For the input video, the level of motion among the adjacent
frames is determined by motion analyzer. Based on the level of motion between the frames of video, the search window size
for block search is selected and this selection will enable the optimum number of processing elements for processing. This
dynamic selection of hardware resources based on the search window reduces the power dissipation and computational
complexity. Findings: Two search windows have been fixed for analysis 8 × 8 and 7 × 7. For power dissipation analysis, the
total logic elements, total registers and fan-out for each design is taken. The performance is analysed by enabling selective
number of processing elements for different size of search window. It is observed that power dissipation is high for the
search window 8 × 8, because the resource utilization is higher than 7 × 7 search window. Instead of using the same fixed
search window for performing block batching, different sized search windows can be used based on the level of motion
of the video. After analysis, it is positively found that the proper selection of search window will lead to the optimum
utilization in terms of power and resources. Application/Improvements: The context-aware reconfigurable hardware
design for highly computationally intensive applications like video processing would be helpful in optimizing the power
and resource utilization in hand held devices like smart phones, cam-coders etc.

Energy Efficient Reconfigurable Architecture for
Motion Estimation in Video Coding

S. Savitha* and K. R. Sarath Chandran

Computer Science and Engineering, SSN College of Engineering, Chennai - 603110, Tamil Nadu, India;
saviviji17@gmail.com, sarathchandran@ssn.edu.in

Keywords: Motion Estimation, Motion Vector, Power Optimization, Reconfigurable Architecture, Video Coding

1.  Introduction
The field of reconfigurable architecture has been familiar
to more audience because of the advantages of providing
better performance and having less power dissipation
than sequential CPU based computing. Media appli-
cations such as video processing in cell phone base
stations are becoming more complex in computing
power. In order to achieve the computational demands
of these applications, new reconfigurable architectures
are emerging. The Motion estimation is the critical com-
ponent in video coding as it consumes large amount of
computational resources. Based on complexity analysis,

different video compression standards show that the
Motion Estimation (ME) module is the most computa-
tional intensive component. The full search algorithm is
the efficient algorithm for motion estimation, because it
has higher accuracy. This algorithm compares the macro
blocks at each possible location in the search window with
the macro block in current frame. This leads to the best
possible match of the macro block in the reference frame.
But it requires greater number of computations and takes
higher power consumption. So the full search algorithm
is mapped into reconfigurable architecture to efficiently
manage the power and resource utilization. The recon-
figurable architecture for motion estimation is supplied

*Author for correspondence

Indian Journal of Science and Technology, Vol 9(39), DOI: 10.17485/ijst/2016/v9i39/100769, October 2016
ISSN (Print) : 0974-6846

ISSN (Online) : 0974-5645

Energy Efficient Reconfigurable Architecture for Motion Estimation in Video Coding

Indian Journal of Science and Technology2 Vol 9 (39) | October 2016 | www.indjst.org

with current-block and search-region data from external
memory. This reconfigurable fabric has been designed
to be configurable on selecting the best processing ele-
ments and distributing these tasks to selective number
of workers for achieving the parallelism. Typically, not
all the functionality needs to be implemented by the
reconfigurable module. The computation that is critical
in time consumption lead to the reconfigurable fabric.
The motion estimation in reconfigurable architecture
can be adapted to comply with different system con-
straints such as power dissipation and time delay. When
the best match is calculated exhaustively then there are
possibilities that increase in power dissipation and pro-
cess of motion estimation may be slower. This motivates
to develop the energy efficient architecture for motion
estimation.

2.  Background and Related Works
In1, proposes a concept of dynamically reconfigurable
approximation, which helps in maintaining better control
over application-level quality metrics while simultane-
ously reduce the power consumption and benefits the
hardware approximation. MPEG has been the most
preferred video compression scheme. The dynamically
reconfigurable approximate hardware architecture var-
ies the degree of approximation during run-time across
multiple computational cycles, depending on inputs.
In2, uses the fast motion estimation technique, Adaptive
Rood Pattern Search (ARPS) technique. A single pro-
cessing element and simplified memory addressing is
used to reduce the hardware complexity. An optimum
area is used while satisfying speed requirements for real-
time video processing. The ARPS algorithm considers the
proper prediction of the current motion vector and vari-
ous size of the search pattern based on available motion
vectors. The ARP is followed by a Unit Rood Pattern
(URP) to refine the search. The ARP pattern has centre
point surrounded by four points located in four verti-
ces. In3, designed architecture to cover most of the video
coding standards, including MPEG-2, MPEG-4, H.264,
WMV-9 and AVS. The architecture easily handle flex-
ible search ranges without any increase in silicon area
and configured prior to the motion estimation process
for a specific standard. The important focus is on Block-
based ME architecture, Reconfigurable ME systems,
Block-based architecture for H.264. In4, proposes the
spiral search for variable block size motion estimation in

H.264/AVC. The spiral search provides hardware friendly
data flow with efficient resource utilization. The perfor-
mance is better when compared with three step search.
It has lesser computational complexity. In5, discussed
about the evolution of reconfigurable computing in
coarse grained architectures. The coarse grained recon-
figurable is explored on the basis of hardware aspects
of granularity, reconfigurability and interconnection
networks. The better performance is achieved by expos-
ing the parallelism into the computation models. The
coarse-grained architectures consist of functional units
and they are most suited for multimedia and streaming
applications.

3.  Proposed System
The proposed system architecture is shown in Figure 1. It
contains different blocks for generating motion vectors in
energy efficient manner. First, the frames cache block is used
for storing the sequence of frames from input video. The
SAD calculator is designed inside the processing element, for
generating the motion vectors of all macro blocks in current
frame. Configuration memory is used to store the different
configurations according to the output from the selection of
processing element block.

3.1  Frame Buffer
Video is defined as the sequence of frames. The sequence
of frames in the input video is stored in frame buffer.
These frames can be used in the motion analyser block
and processing elements block for analysing the motion
between the frames and for calculating the SAD values.
The video format used in the proposed architecture is
YUV video format.

Figure 1.  System architecture.

S. Savitha and K. R. Sarath Chandran

Indian Journal of Science and Technology 3Vol 9 (39) | October 2016 | www.indjst.org

3.1.1  YUV Video
Motion estimation needs an uncompressed video format.
So, YUV 4:2:0 video format is used by our system. The
YUV formats use 8 bits per pixel location to encode the Y
channel, which use 8 bits per sample to encode each U or
V chroma sample6. A notation called the “A: B: C” notation
describes how U and V are sampled relative to Y. The term
U is equivalent to Cb, and the term V is equivalent to Cr.
The YUV videos include different types of format. Figure 2
shows the original image 8 pixels wide and 4 pixels high,
and indicates the boundaries of the chrominance pixels
with heavy lines. The dots (white and black) in the Figure.2
represent the chrominance samples. The black dots show
the chrominance values. In YUV 4:2:0 video formats, for
every Y value, Cr and Cb values are sampled in both the
horizontal and vertical dimensions by a factor of 2.

3.2  Motion Analyzer
For the input video, the level of motion among the adjacent
frames is determined by motion analyzer7,8. The reference
frame and current frame can be obtained from frames
cache and he absolute difference between these two frames
give the level of motion in video. A threshold is maintained
to determine level of motion. If the absolute difference is
lesser than or equal to threshold, then minimum number
of processing element is enabled. High level of motion is
detected, when the absolute difference between the con-
secutive frames are higher than threshold. This is given
to selection of processing elements block. The configura-
tion with large size search window is selected when the
level of motion is high. Because the best match of the cur-
rent frame block is obtained inside the large size search
window. When the level of motion is low, the smaller size
search window is selected. It is because the blocks in the
frames may be moved to adjacent positions. So the best
match is determined in power efficient manner.

3.3  Processing Elements
The processing elements perform the Sum of Absolute
Difference between current frame and reference frame and
the formula for Sum of Absolute Difference is given as:

� (1)

Where c(i, j) is the current macro-block and r(i, j) is
the candidate macro-block in the reference frame in
equation(1). The macro-block in the current frame is

searched for best match in the reference frame(s). The
Figure 3 shows how the reference frame macroblocks are
taken to calculate Sum of Absolute Difference.

The detailed working of single processing element is
shown in Figure 4. The processing element contains a
data cache for storing the macroblocks of current frame

Figure 2.  Types of YUV video format.

Figure 3.  Sum Absolute Difference calculation inside
search window.

Figure 4.  Structure of processing element.

Energy Efficient Reconfigurable Architecture for Motion Estimation in Video Coding

Indian Journal of Science and Technology4 Vol 9 (39) | October 2016 | www.indjst.org

of analysis of input video frames, Motion analyzer,
hardware modules, comparator and Configuration array.
Altera Quartus II 9.0 was used to design the hardware
modules. The Y, U and V components are stored sepa-
rately for each frame. The pattern of the YUV video is
verified using Hex editor tool. The Y components are
highly occupied the frame when compared with the other
components. The Y values are taken to determine the level
of motion between the frames. The difference between
the current frame and reference frame is determined by
formula:

	 � (3)

where Y’i j is the frame difference(3), Y1i j and Y2i j are
the two frames which is used to calculate the difference7.
Then the level of motion between the frames can be
calculated using the formula (4).

	 � (4)

where i, j are the rows and columns of the matrices and
n is the number of elements in Y’i, j (4). Table 1 shows the
frame differences for different YUV videos. The mean
of observed frame difference values8 are akiyo = 0.3813,
foremann = 4.9432, bus = 20.6877, coastguard = 7.7809.
From the mean values, the threshold is fixed as 10. The
’bus’ video contains the high level of motion because
it contains the values at the range of 20 and above. The
’akiyo’ contains the low level of motion, since it contains
the values less than 1.

The exact match of the current frame macroblock in
reference frame is shown in Figure 5. The sample input
matrices are given to processing elements to verify the
working of hardware modules.

and reference frame. The Sum of Absolute Difference
calculator includes subractor and adder and the output is
given to comparator.

3.4  Reconfiguration Module
The Reconfiguration module contains group of process-
ing elements. Each processing element requires a current
block, a reference block and a subractor to calculate Sum
of Absolute Difference, a register to store the output and
an enable port which is connected to configuration mem-
ory to activate or inactivate the processing element. with
respect to the size of the search window in current frame.
The selection of number of processing elements selection
can be determined by:

	 � (2)

where N = search window size, n = size of macro block.
So, the different configurations are obtained for different
search windows. This shows that the reconfiguration of the
system reduces power dissipation and efficient in resource
utilization. A single PE calculates the Sum of Absolute
Difference between two blocks. The SAD’s from each
PE is given to the SAD comparator. The reconfiguration
module contains 25 PE’s and 24 comparators.

3.5  Configuration Memory
The configuration memory is used to enable or disable the
selective number of processing elements9, according to size
of the search window. Among the total number of PE’s,
smaller numbers of PE’s are active in default. If the system
requires maximum number of PE’s then the configuration
memory is used to enable PE’s in addition. This is referred
as the configuration patterns. For different size of search of
search window, the configuration patterns changed. This can
reduce the power dissipation among the system design.

3.6  SAD comparator
The output from the reconfiguration module is given to
SAD comparator. The minimum SAD value obtain from
the SAD comparator is the motion vector of the current
block. So the resulting minimum SAD value is the best
match of the current frame macro block.

4.  Results Analysis
This section contains the implementation results of
reconfigurable architecture. The implementation consists

Table 1.  Analysis of level of motion

Frame
Difference

Video

Akiyo Foremann Bus Coastguard

1,2 0.3719 5.5826 20.2791 7.5364

2,3 0.3474 5.5880 20.1928 7.5999

3,4 0.3406 5.0315 20.4931 7.5567

4,5 0.3930 5.1051 20.7525 8.2267

5,6 0.4280 4.5335 20.8020 7.9229

6,7 0.3600 3.8905 21.0227 7,9136

7,8 0.4282 4.8714 21.2721 7.7132

S. Savitha and K. R. Sarath Chandran

Indian Journal of Science and Technology 5Vol 9 (39) | October 2016 | www.indjst.org

The following are the resulting SAD’s. SAD1 = 42,
SAD2 = 57, SAD3 = 75, SAD4 = 92, SAD5 = 99, SAD6
= 80, SAD7 = 82, SAD8 = 76, SAD9 = 67, SAD10 = 61,
SAD11 = 85, SAD12 = 68, SAD13 = 46, SAD14 = 0,
SAD15 = 32, SAD16 = 87, SAD17 = 56; SAD18 = 86,
SAD19 = 49; SAD20 = 96, SAD21 = 76; SAD22 = 82,
SAD23 = 75, SAD24 = 84, SAD25 = 95. For the search
window size 8×8, all the 25 processing elements are
enabled. The resulting configuration pattern for the
search window 8×8 is ’1111111111111111111111111’.
The minimum SAD value is obtained from processing
element 14.To find out the next minimum SAD and to
verify the this hardware modules, the processing element
14 is disabled. So the configuration pattern becomes
’1111111111111011111111111’. Table 2 shows the posi-
tion of blocks inside the search windows. in reference
frame for the corresponding current frame blocks. For
power dissipation analysis, the total Logic elements, Total
registers and Fan-out is taken. The performance is analy-
sed by enabling selective number of processing elements
for different size of search window. From Table 3, it is
clear that power dissipation is high for the search window
8 × 8, because the resource utilization is higher than 7
× 7 search window. The comparison graph in Figure 6 and
Figure 7 show that the total logic elements, total fan-out
and total registers used by system for search window 8×8
and search window size 7 × 7. The power dissipation for
search window size 8 × 8 is higher than search window
size 7 × 7 is shown in Figure 8.

The performance analysis shows that the power dis-
sipation is high for the search window size 8×8, because
of the maximum number of processing elements are
enabled.

Table 2.  Search window indexing table
Current frame

block No.
Search Window

indexing
Processing

element No.
SAD

Block1 Block14 PE14 0
Block2 Block2 PE2 5
Block3 Block7 PE7 0
Block4 Block14 PE14 6
Block5 Block11 PE11 0
Block6 Block17 PE17 0
Block7 Block7 PE7 0
Block8 Block23 PE23 0
Block9 Block13 PE13 0

Table 3.  Resource usage and power dissipation

Resource usage
Search window

8 × 8
Search window

7 × 7
Total logic elements 4817 3053

Total registers 111 72
Total Fan-out 14363 9186
Total power
dissipation 219.22mW 92.25mW

Figure 5.  Inputs for ME.

Figure 6.  Resource usage.

Energy Efficient Reconfigurable Architecture for Motion Estimation in Video Coding

Indian Journal of Science and Technology6 Vol 9 (39) | October 2016 | www.indjst.org

5.  Conclusion and Future Work
The results conclude that the proper configuration for
motion estimation selected, during runtime gives the opti-
mization in terms of power and resource utilization. For
future work, the size of the search windows can be refined
more accurately by proper analysis. More configurations
also can be introduced based on analyzing the level of
motions in the input videos. The hardware design can be
modified for variable size block matching for identifying
fine motions in the frames.

Figure 7.  Resource usage.

Figure 8.  Power dissipation.

6.  References
1.	 Raha, Jayakumar A, Raghunathan H. Input-Based Dynamic

Reconfiguration of Approximate Arithmetic Units for
Video Encoding. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems. 2008; 99:1–15.

2.	 Biswas B, Mukherjee R, Chakrabarti I. Efficient Architecture
of adaptive rood pattern search technique for fast motion
estimation. IEEE transactions on very large scale integration
(VLSI) systems for microprocessors and microcontrollers.
2014; 39:200–9.

3.	 Lu L, McCanny JV, Sezer S. Reconfigurable system-on-a-
chip motion estimation architecture for multi-standard
video coding. In Proceedings of IET Computer Digitise
Technology. 2010; 349–64.

4.	 Muralidhar P,.Rama Rao CB, Dwith CYN. Efficient
Architecture for Variable Block Size Motion Estimation in
H.264/AVC. ACEEE International Journals on Signal and
Image Processing. 2014; 5:215–329.

5.	 Zain-ul-Abdin, Svensson B. Evolution in architectures and
programming methodologies of coarse-grained reconfigu-
rable computing. Microprocessors and Microsystems. 2009;
4(33):161–9.

6.	 Kerr DA. Chrominance Subsampling in Digital Images. In
Proceedings of Electronic communications 3(AE). 2014;
107–18.

7.	 Al-Ani MS, Hammouri TA. Video Compression Algorithm
Based on Frame Difference Approaches. International
Journal on Soft Computing (IJSC). 2011; 2(4):67–79.

8.	 Singla N. Motion Detection Based on frame difference
method. International Journal of Information and
Computation Technology. 2014; 4(15):1559–65.

9.	 Nithya R, Sarath Chandran KR, Premanand Chandramani V.
Run-Time Reconfiguration of Processing Elements through
Soft-Core Processor. Third IEEE International Conference
on Communication and Signal Processing. IEEE Xplore.
2014 Apr 3-5. p. 813–7. Doi: 10.1109/ICCSP.2014.6949956.

