
Abstract
Background/Objectives: Reconfigurable architecture has ability to dynamically allocate the hardware resources during 
runtime. It can be effectively used in computationally intensive application like media processing. As the motion estimation 
in video coding consumes large amount of computational time and resources, it can be mapped into reconfigurable 
architecture to effectively manage the power utilization by dynamic reconfiguration. Methods/Statistical Analysis: A 
systolic array based reconfigurable architecture for motion estimation which can be configured based on the properties 
of input video is proposed. A dynamically reconfigurable hardware is designed which can be worked on different search 
regions based on the level of motion in frames of input video. For the input video, the level of motion among the adjacent 
frames is determined by motion analyzer. Based on the level of motion between the frames of video, the search window size 
for block search is selected and this selection will enable the optimum number of processing elements for processing. This 
dynamic selection of hardware resources based on the search window reduces the power dissipation and computational 
complexity. Findings: Two search windows have been fixed for analysis 8 × 8 and 7 × 7. For power dissipation analysis, the 
total logic elements, total registers and fan-out for each design is taken. The performance is analysed by enabling selective 
number of processing elements for different size of search window. It is observed that power dissipation is high for the 
search window 8 × 8, because the resource utilization is higher than 7 × 7 search window. Instead of using the same fixed 
search window for performing block batching, different sized search windows can be used based on the level of motion 
of the video. After analysis, it is positively found that the proper selection of search window will lead to the optimum 
utilization in terms of power and resources. Application/Improvements: The context-aware reconfigurable hardware 
design for highly computationally intensive applications like video processing would be helpful in optimizing the power 
and resource utilization in hand held devices like smart phones, cam-coders etc. 
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1.  Introduction 
The field of reconfigurable architecture has been familiar 
to more audience because of the advantages of providing 
better performance and having less power dissipation 
than sequential CPU based computing. Media appli-
cations such as video processing in cell phone base 
stations are becoming more complex in computing 
power. In order to achieve the computational demands 
of these applications, new reconfigurable architectures 
are emerging. The Motion estimation is the critical com-
ponent in video coding as it consumes large amount of 
computational resources. Based on complexity analysis, 

different video compression standards show that the 
Motion Estimation (ME) module is the most computa-
tional intensive component. The full search algorithm is 
the efficient algorithm for motion estimation, because it 
has higher accuracy. This algorithm compares the macro 
blocks at each possible location in the search window with 
the macro block in current frame. This leads to the best 
possible match of the macro block in the reference frame. 
But it requires greater number of computations and takes 
higher power consumption. So the full search algorithm 
is mapped into reconfigurable architecture to efficiently 
manage the power and resource utilization. The recon-
figurable architecture for motion estimation is supplied 
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with current-block and search-region data from external 
memory. This reconfigurable fabric has been designed 
to be configurable on selecting the best processing ele-
ments and distributing these tasks to selective number 
of workers for achieving the parallelism. Typically, not 
all the functionality needs to be implemented by the 
reconfigurable module. The computation that is critical 
in time consumption lead to the reconfigurable fabric. 
The motion estimation in reconfigurable architecture 
can be adapted to comply with different system con-
straints such as power dissipation and time delay. When 
the best match is calculated exhaustively then there are 
possibilities that increase in power dissipation and pro-
cess of motion estimation may be slower. This motivates 
to develop the energy efficient architecture for motion 
estimation.

2.  Background and Related Works
In1, proposes a concept of dynamically reconfigurable 
approximation, which helps in maintaining better control 
over application-level quality metrics while simultane-
ously reduce the power consumption and benefits the 
hardware approximation. MPEG has been the most 
preferred video compression scheme. The dynamically 
reconfigurable approximate hardware architecture var-
ies the degree of approximation during run-time across 
multiple computational cycles, depending on inputs. 
In2, uses the fast motion estimation technique, Adaptive 
Rood Pattern Search (ARPS) technique. A single pro-
cessing element and simplified memory addressing is 
used to reduce the hardware complexity. An optimum 
area is used while satisfying speed requirements for real-
time video processing. The ARPS algorithm considers the 
proper prediction of the current motion vector and vari-
ous size of the search pattern based on available motion 
vectors. The ARP is followed by a Unit Rood Pattern 
(URP) to refine the search. The ARP pattern has centre 
point surrounded by four points located in four verti-
ces. In3, designed architecture to cover most of the video 
coding standards, including MPEG-2, MPEG-4, H.264, 
WMV-9 and AVS. The architecture easily handle flex-
ible search ranges without any increase in silicon area 
and configured prior to the motion estimation process 
for a specific standard. The important focus is on Block-
based ME architecture, Reconfigurable ME systems, 
Block-based architecture for H.264. In4, proposes the 
spiral search for variable block size motion estimation in 

H.264/AVC. The spiral search provides hardware friendly 
data flow with efficient resource utilization. The perfor-
mance is better when compared with three step search. 
It has lesser computational complexity. In5, discussed 
about the evolution of reconfigurable computing in 
coarse grained architectures. The coarse grained recon-
figurable is explored on the basis of hardware aspects 
of granularity, reconfigurability and interconnection 
networks. The better performance is achieved by expos-
ing the parallelism into the computation models. The 
coarse-grained architectures consist of functional units 
and they are most suited for multimedia and streaming  
applications. 

3.  Proposed System
The proposed system architecture is shown in Figure 1. It 
contains different blocks for generating motion vectors in 
energy efficient manner. First, the frames cache block is used 
for storing the sequence of frames from input video. The 
SAD calculator is designed inside the processing element, for 
generating the motion vectors of all macro blocks in current 
frame. Configuration memory is used to store the different 
configurations according to the output from the selection of 
processing element block. 

3.1  Frame Buffer
Video is defined as the sequence of frames. The sequence 
of frames in the input video is stored in frame buffer. 
These frames can be used in the motion analyser block 
and processing elements block for analysing the motion 
between the frames and for calculating the SAD values. 
The video format used in the proposed architecture is 
YUV video format.

Figure 1.  System architecture.
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3.1.1  YUV Video
Motion estimation needs an uncompressed video format. 
So, YUV 4:2:0 video format is used by our system. The 
YUV formats use 8 bits per pixel location to encode the Y 
channel, which use 8 bits per sample to encode each U or 
V chroma sample6. A notation called the “A: B: C” notation 
describes how U and V are sampled relative to Y. The term 
U is equivalent to Cb, and the term V is equivalent to Cr. 
The YUV videos include different types of format. Figure 2 
shows the original image 8 pixels wide and 4 pixels high, 
and indicates the boundaries of the chrominance pixels 
with heavy lines. The dots (white and black) in the Figure.2 
represent the chrominance samples. The black dots show 
the chrominance values. In YUV 4:2:0 video formats, for 
every Y value, Cr and Cb values are sampled in both the 
horizontal and vertical dimensions by a factor of 2.

3.2  Motion Analyzer 
For the input video, the level of motion among the adjacent 
frames is determined by motion analyzer7,8. The reference 
frame and current frame can be obtained from frames 
cache and he absolute difference between these two frames 
give the level of motion in video. A threshold is maintained 
to determine level of motion. If the absolute difference is 
lesser than or equal to threshold, then minimum number 
of processing element is enabled. High level of motion is 
detected, when the absolute difference between the con-
secutive frames are higher than threshold. This is given 
to selection of processing elements block. The configura-
tion with large size search window is selected when the 
level of motion is high. Because the best match of the cur-
rent frame block is obtained inside the large size search 
window. When the level of motion is low, the smaller size 
search window is selected. It is because the blocks in the 
frames may be moved to adjacent positions. So the best 
match is determined in power efficient manner.

3.3  Processing Elements 
The processing elements perform the Sum of Absolute 
Difference between current frame and reference frame and 
the formula for Sum of Absolute Difference is given as:

� (1)

Where c(i, j) is the current macro-block and r(i, j) is 
the candidate macro-block in the reference frame in 
equation(1). The macro-block in the current frame is 

searched for best match in the reference frame(s). The 
Figure 3 shows how the reference frame macroblocks are 
taken to calculate Sum of Absolute Difference.

The detailed working of single processing element is 
shown in Figure 4. The processing element contains a 
data cache for storing the macroblocks of current frame 

Figure 2.  Types of YUV video format.

Figure 3.  Sum Absolute Difference calculation inside 
search window.

Figure 4.  Structure of processing element.



Energy Efficient Reconfigurable Architecture for Motion Estimation in Video Coding 

Indian Journal of Science and Technology4 Vol 9 (39) | October 2016 | www.indjst.org

of analysis of input video frames, Motion analyzer, 
hardware modules, comparator and Configuration array. 
Altera Quartus II 9.0 was used to design the hardware 
modules. The Y, U and V components are stored sepa-
rately for each frame. The pattern of the YUV video is 
verified using Hex editor tool. The Y components are 
highly occupied the frame when compared with the other 
components. The Y values are taken to determine the level 
of motion between the frames. The difference between 
the current frame and reference frame is determined by 
formula:

	 � (3)

where Y’i j is the frame difference(3), Y1i j and Y2i j are 
the two frames which is used to calculate the difference7. 
Then the level of motion between the frames can be 
calculated using the formula (4).

	 �  (4)

where i, j are the rows and columns of the matrices and 
n is the number of elements in Y’i, j (4). Table 1 shows the 
frame differences for different YUV videos. The mean 
of observed frame difference values8 are akiyo = 0.3813, 
foremann = 4.9432, bus = 20.6877, coastguard = 7.7809. 
From the mean values, the threshold is fixed as 10. The 
’bus’ video contains the high level of motion because 
it contains the values at the range of 20 and above. The 
’akiyo’ contains the low level of motion, since it contains 
the values less than 1. 

The exact match of the current frame macroblock in 
reference frame is shown in Figure 5. The sample input 
matrices are given to processing elements to verify the 
working of hardware modules. 

and reference frame. The Sum of Absolute Difference 
calculator includes subractor and adder and the output is 
given to comparator.

3.4  Reconfiguration Module
The Reconfiguration module contains group of process-
ing elements. Each processing element requires a current 
block, a reference block and a subractor to calculate Sum 
of Absolute Difference, a register to store the output and 
an enable port which is connected to configuration mem-
ory to activate or inactivate the processing element. with 
respect to the size of the search window in current frame. 
The selection of number of processing elements selection 
can be determined by: 

	 � (2)

where N = search window size, n = size of macro block. 
So, the different configurations are obtained for different 
search windows. This shows that the reconfiguration of the 
system reduces power dissipation and efficient in resource 
utilization. A single PE calculates the Sum of Absolute 
Difference between two blocks. The SAD’s from each 
PE is given to the SAD comparator. The reconfiguration 
module contains 25 PE’s and 24 comparators.

3.5  Configuration Memory
The configuration memory is used to enable or disable the 
selective number of processing elements9, according to size 
of the search window. Among the total number of PE’s, 
smaller numbers of PE’s are active in default. If the system 
requires maximum number of PE’s then the configuration 
memory is used to enable PE’s in addition. This is referred 
as the configuration patterns. For different size of search of 
search window, the configuration patterns changed. This can 
reduce the power dissipation among the system design. 

3.6  SAD comparator
The output from the reconfiguration module is given to 
SAD comparator. The minimum SAD value obtain from 
the SAD comparator is the motion vector of the current 
block. So the resulting minimum SAD value is the best 
match of the current frame macro block.

4.  Results Analysis
This section contains the implementation results of 
reconfigurable architecture. The implementation consists 

Table 1.  Analysis of level of motion

Frame 
Difference

Video

Akiyo Foremann Bus Coastguard

1,2 0.3719 5.5826 20.2791 7.5364

2,3 0.3474 5.5880 20.1928 7.5999

3,4 0.3406 5.0315 20.4931 7.5567

4,5 0.3930 5.1051 20.7525 8.2267

5,6 0.4280 4.5335 20.8020 7.9229

6,7 0.3600 3.8905 21.0227 7,9136

7,8 0.4282 4.8714 21.2721 7.7132
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The following are the resulting SAD’s. SAD1 = 42, 
SAD2 = 57, SAD3 = 75, SAD4 = 92, SAD5 = 99, SAD6 
= 80, SAD7 = 82, SAD8 = 76, SAD9 = 67, SAD10 = 61, 
SAD11 = 85, SAD12 = 68, SAD13 = 46, SAD14 = 0, 
SAD15 = 32, SAD16 = 87, SAD17 = 56; SAD18 = 86, 
SAD19 = 49; SAD20 = 96, SAD21 = 76; SAD22 = 82, 
SAD23 = 75, SAD24 = 84, SAD25 = 95. For the search 
window size 8×8, all the 25 processing elements are 
enabled. The resulting configuration pattern for the 
search window 8×8 is ’1111111111111111111111111’. 
The minimum SAD value is obtained from processing 
element 14.To find out the next minimum SAD and to 
verify the this hardware modules, the processing element 
14 is disabled. So the configuration pattern becomes 
’1111111111111011111111111’. Table 2 shows the posi-
tion of blocks inside the search windows. in reference 
frame for the corresponding current frame blocks. For 
power dissipation analysis, the total Logic elements, Total 
registers and Fan-out is taken. The performance is analy-
sed by enabling selective number of processing elements 
for different size of search window. From Table 3, it is 
clear that power dissipation is high for the search window 
8 × 8, because the resource utilization is higher than 7 
× 7 search window. The comparison graph in Figure 6 and 
Figure 7 show that the total logic elements, total fan-out 
and total registers used by system for search window 8×8 
and search window size 7 × 7. The power dissipation for 
search window size 8 × 8 is higher than search window 
size 7 × 7 is shown in Figure 8.

The performance analysis shows that the power dis-
sipation is high for the search window size 8×8, because 
of the maximum number of processing elements are 
enabled.

Table 2.  Search window indexing table
Current frame 

block No.
Search Window 

indexing
Processing 

element No.
SAD

Block1 Block14 PE14 0
Block2 Block2 PE2 5
Block3 Block7 PE7 0
Block4 Block14 PE14 6
Block5 Block11 PE11 0
Block6 Block17 PE17 0
Block7 Block7 PE7 0
Block8 Block23 PE23 0
Block9 Block13 PE13 0

Table 3.  Resource usage and power dissipation

Resource usage
Search window 

8 × 8
Search window 

7 × 7
Total logic elements 4817 3053

Total registers 111 72
Total Fan-out 14363 9186
Total power 
dissipation 219.22mW 92.25mW

Figure 5.  Inputs for ME.

Figure 6.  Resource usage.
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5.  Conclusion and Future Work
The results conclude that the proper configuration for 
motion estimation selected, during runtime gives the opti-
mization in terms of power and resource utilization. For 
future work, the size of the search windows can be refined 
more accurately by proper analysis. More configurations 
also can be introduced based on analyzing the level of 
motions in the input videos. The hardware design can be 
modified for variable size block matching for identifying 
fine motions in the frames.

Figure 7.  Resource usage.

Figure 8.  Power dissipation.

6.  References 
1.	 Raha, Jayakumar A, Raghunathan H. Input-Based Dynamic 

Reconfiguration of Approximate Arithmetic Units for 
Video Encoding. IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems. 2008; 99:1–15. 

2.	 Biswas B, Mukherjee R, Chakrabarti I. Efficient Architecture 
of adaptive rood pattern search technique for fast motion 
estimation. IEEE transactions on very large scale integration 
(VLSI) systems for microprocessors and microcontrollers. 
2014; 39:200–9.

3.	 Lu L, McCanny JV, Sezer S. Reconfigurable system-on-a-
chip motion estimation architecture for multi-standard 
video coding. In Proceedings of IET Computer Digitise 
Technology. 2010; 349–64.

4.	 Muralidhar P,.Rama Rao CB, Dwith CYN. Efficient 
Architecture for Variable Block Size Motion Estimation in 
H.264/AVC. ACEEE International Journals on Signal and 
Image Processing. 2014; 5:215–329.

5.	 Zain-ul-Abdin, Svensson B. Evolution in architectures and 
programming methodologies of coarse-grained reconfigu-
rable computing. Microprocessors and Microsystems. 2009; 
4(33):161–9. 

6.	 Kerr DA. Chrominance Subsampling in Digital Images. In 
Proceedings of Electronic communications 3(AE). 2014; 
107–18.

7.	 Al-Ani MS, Hammouri TA. Video Compression Algorithm 
Based on Frame Difference Approaches. International 
Journal on Soft Computing (IJSC). 2011; 2(4):67–79.

8.	 Singla N. Motion Detection Based on frame difference 
method. International Journal of Information and 
Computation Technology. 2014; 4(15):1559–65.

9.	 Nithya R, Sarath Chandran KR, Premanand Chandramani V. 
Run-Time Reconfiguration of Processing Elements through 
Soft-Core Processor. Third IEEE International Conference 
on Communication and Signal Processing. IEEE Xplore. 
2014 Apr 3-5. p. 813–7. Doi: 10.1109/ICCSP.2014.6949956.


